ISRN SICS-R--92/05--SE

Methodology and Programming
Techniques in GCLA II

by
Martin Aronsson

SICS research report
R92:05
ISSN 0283-3638

Methodology and Programming
Techniques in GCLA 11

Martin Aronsson
Swedish Institute of Computer Science
Box 1263
S-164 28 Kista
Sweden
email: martin@sics.se

1992-03-12

Abstract

We will demonstrate various implementation techniques in the language
GCLA. First an introduction to GCLA is given, followed by some examples
of program developments, to demonstrate the development methodology.

Other examples are also given to show various implementation techniques
and properties of the system.

2 GO AL .ottt et e e ettt e 1
2.1 The Definition...oiiiiiiiiiiiiii i i er e 2

2.2 The Rule Definitionouveeeeiieiiiiiiiiiineiinae e, e 3

2.2.1 TheinferenCe Tules ...oovviirirneereiiiiii i 3

2.2.2 The search SIAtEZIEs ...vvuvereniriiiriiiiiiit et 8

3. Developing programs in the GCLA system eeenaes e 9
3.1 A simple example: Default 1easoningc.ccoveviiiiiii. 9

3.1.1 Step 1: Writing the declarative part..........c.cocoeeiiiiiiiiin. 9

3.1.2 Step 2: Writing STategIes . ..uovuvvnrrnerneneeniiiiiiiian, 11

3.2 Another example: Functional programming............cccovviviiieieniiniann. 14

3.2.1 Step 1: The declarative part.................. e e 14

3.2.2 Step 2: Writing Strategiesoevevvrnreeiereiiiniiiiie, 15

3.2.3 Step 3: Writing specialized rules...............cooiiin, 16

A, Other EXAMPIES..iuuuniiiiiiiiiiii ittt 17
O T 45 1Y S L TR PT Y 17

4.2 STRIPS like planning........ccoooiiiiiiiiiinn 21

4.3 Object oriented PrOraMIMINgovveerentriiruiiiiiiiiees 24

4.4 Guiding the search among the assumptions..............cooviiiiiiinn, 29

5 CONCIUSION « v teeneeee ettt et e et e e e et eae e e a e e ea e s e e s e e et ens 33
S Lo g 1Tl T P 33
APPENdiX A «..oeiiiii P, 1
Appendix B ..o et eeereeeeeaeaas iii

1. Introduction

The programming system GCLA has been developed for some years at SICS. Itis a
logical programming language, and has similar syntax as Prolog, while the declarative
semantics is completely different. While Prolog is based on first order logic, GCLA is
based on Partial inductive definition (PID), a framework developed by Lars Hallnis
[Hal91, HS-H88].

During the time there have been several versions. Two main versions can be discerned.
One older version interpreting a GCLA program, having some inference rules given
beforehand, called GCLA I [Ar090]. GCLA I had a very restricted set of control
primitives, which led to a large search space for larger programs. From the GCLA 1
system the GCLA 1I system was developed. GCLA II generalizes GCLA 1 in the sense
that the inference rules that interpreted the GCLA I program can be defined by the user.
The search order among the inference rules can also be freely defined by the user. By
this generalization GCLA 1II consists of two parts; the GCLA I program, which we
hereafter will refer to as the definition or the object level, and the code which implements
the inference rules and search strategies which we will call the rule definition or the meta
Jevel. The rule definition is a restricted form of a GCLA I program with some primitives
for accessing the definition, so the two parts share the same theoretical basis. For a more
complete presentation of GCLA II's theoretical properties and its relation to PID see
[Kre92].

The definition is intended to define the declarative knowledge of a domain while the rule
definition is intended to define how the declarative knowledge is to be used. The
development methodology we think of is a stepwise refinement scheme: first the
programmer writes a declarative program, the definition, and starts with a set of general
search strategies and inference rules. This general set implements the behaviour of
GCLA 1. Then, as the programmer gains more experience of how the declarative
knowledge is to be utilized, other search strategies and restrictions on rules are
implemented in the rule definition. Specialized rules can be implemented, and ultimately
the "declarative content” of the definition has been efficiently implemented by the
definition and a set of specialized rules and search strategies, performing the inferences
that one wants to perform, and nothing more. This development procedure gives as a
result that the declarative program has been proceduralized, without changing the
declaraitve part, and the same definition can be used by several different sets of rules and
strategies, depending on what one wants to achieve.

GCLA should not be seen as a programming language for a final implementation, but as
a programming environment, where the programmer has a lot of freedom to test different
ideas and techniques. When the GCLA programmer is finished, the result is a
specification of the behaviour and declarative content the application should have.

We will in this text refer to GCLA II as GCLA, or the GCLA system.

We will give a short presentation of GCLA 11, then give a small programming example
to show the programming methodology, and then give some further examples to show
different programming techniques.

2. GCLAII

The GCLA system is divided into two parts, one declarative part, called the definition or
the object level, and one procedural part, called the rule definition or the meta level. The

procedural part performs inferences and draws conclusions from the declarative part, but
the procedural part is not a meta interpreter, even though it has the same theoretical basis
as the declarative part. The rule definition is a subset of the language used at the
declarative level, together with some predefined primitives that acts as an interface
between the two.

Since the two levels are separated, the symbols and variables are also separated. This
means that the variables are of different kinds. For example, a meta level variable can be
bound to an object level variable but not the other way around, and an object level
variable cannot be bound to a meta level structure, just to object level terms. Object level
variables are treated as constants at the meta level.

For a more comprehensive description of GCLAII and its theoretical properties the
reader is referred to [Kre92].

The presentation here will focus on the syntax and properties that our prototype
implementation has, therefore some differences to [Kre92] can occur.

2.1 The Definition

The definition contains the declarative knowledge of the domain. In GCLA 1 this part
was called the program.

The syntax is similar to Prolog. Since we talk about inductive definitions, we have no
predicates or functions, just terms and conditions. A constant is a term, as well as a
variable. Constants begin with a lowercase letter, while variables begin with an
uppercase letter, or "_". The single symbol "_" denotes an anonymous variable. If a5,
..., A, are terms and £ is a functor (object level constructor) of arity n, then £(4;, ..,
a,) is a term. All terms are conditions, and if ¢, and ¢, are conditions, then so are ¢; -
> Cy, (C1, C2), (C1i C2),true and false.If xis an object level variable and c a
condition, then pi x\ cis a condition.

The conditions that are not terms are symbols and structures that have corresponding
inference rules in the procedural part. They cannot be bound to an (object level) variable,
and are in fact meta level structures. They are in some papers refered to as lifting
operators, since they are reachable from both levels. Such conditions are ¢; -> Co,
(C1, C2), (C1; C2),pi X\ C,true and false. Other conditions of this kind can be
defined by the user.

An atom is a term which is not a variable. If 4 is an atom, ¢ a condition, then a <= Cis
a clause. An ordered set of clauses forms a definition D.

Compared to pure Prolog (we discard all such things as var, !, etc), what has been
added is the possibility to assume conditions. For example, the clause

a <= (b -> c)
should be read as "a holds if ¢ can be proved while assuming b".

There is also a richer set of queries in GCLA than in Prolog. An ordinary Prolog query
is written

\—- a.

and should be read "Does a hold (in the definition D)". One can also assume things in
the query, for example

c \- a.

which should be read as "Assuming c, does a hold (in the definition D)',or "Is a
derivable from c".

An example of a definition is this small toy expert system.

symptom (high_ temp) <= disease (pneumonia) .
symptom{high_ temp) <= disease (plague) .
symptom (cough) <= disease (pneumonia) .
symptom(cough) <= disease(cold).

The definition contains the rules connecting symptoms and diseases, but contains no
facts. The facts are submitted by the queries. The intended answer to the query

disease (X) \- symptom(high temp) .
is that the variable x should be bound to pneumonia, and on backtracking to plague.
The query

symptom(high temp) \- (disease(X), disease(Y)) .
should give as result two possible bindings:

X = pneumonia, Y = plague or
X = plague, Y = pneumonia

The definition should not be seen as a set of logical clauses, but as a set of clauses
defining a set of terms and conditions that can be generated by the definition. So we
need some rules for how this set of term and conditions should be generated from the
definition. These inference rules are part of the rule definition.

2.2 The Rule Definition

The rule definition contains the procedural knowledge of the domain, i.e. the knowledge
used for drawing conclusions based on the declarative knowledge in the definition. This
part implements both inference rules and search strategies among the rules and among
the assumptions in the object level sequents. When the GCLA system is started, the user
is furnished with a general set of inference rules and strategies, implementing the
behaviour of GCLA I. This startup set can be extended with other rules and/or strategies
if the user wants that, or even be discarded. It is all up to the user.

2.2.1 The inference rules
The underlying idea of the rule definition is that the inference rules are coded as
functions, from the premises of a rule to the conclusion, with a possible proviso. The
inference rule

P], oy Pn .
—c rule_name Proviso

is coded by the function

rule_name(P1, ..., Py) = (Proviso, P1, ..., Pp) -> C

where P; and C are object level sequents, and Proviso contains restrictions when the
rule is applicable. The arrow "->" should be read as "if ... then ...". So these rules are
conditional functions from sequents to sequents.

Each P; can be obtained by it's derivation leading to P;. A representation of the
derivation is the nested functional expression of rulenames leading to Pj, so P; can be
replaced by this expression. In GCLA such a term is called a proofterm, and sequents
are normal forms of profterms. So evaluating a proofterm 71(r(...),) gives as a result

a sequent Assumptions Conclusion.
A simple example is
axiom(Term,Term)

which evaluates to

Term | Term.

So, testing a GCLA query if it holds or not results in the system trying to find a
proofterm whose canonical form is the query (the object level sequent) and an (object
level) answer substitution.

An inference rule is coded in GCLA as

rule_name(PTi, ..., PT,) <=
(Proviso, (PT;~>Seqi), ..., (PTp—>Seqy)) —> Seq

where seq, Seq; is object level sequents. The rule should be read: If proviso holds,
and if pT; maps to Seq;, then rule name(PT;, ..., PTp) Maps to seq. The proviso
contains restrictions when the rule is applicable, together with some other primitives.
These primitives perform tests of various kinds, and are also the interface to the object
level definition. Some of the primitives are:

atom(T) Checks whether the term T is an object level term, but not an
object level variable

term(T) Checks whether the term T is an object level term

clause (T, B) Succeeds if T <= B is an object level clause in the current

definition. The meta level variable B can be instantiated by
the call. If T is undefined and B is an uninstantiated (meta
level) variable, B is bound to £alse. This primitive does not
check whether T is an atom or not.

definiens (T,B) Succeeds if the definiens of the term T is B (Bis a';'-separated
structure of the bodies in the definiens). In short, the
definiens of a term T is the (maximal) set of all bodies whose
heads are unified with each other, and unified with T. There
can be more than one definiens for a term T. This primitive
does not check whether T is an atom or not. The reader is
refered to [Kre92] for a formal definition of the definiens
operation

unify (T1,T2) Unifies the object level terms 71 and T2.

not (T) not is true if T is proven false, i.e. not could be thought of
as having the GCLA definition not (T) <= T -> false.
Negation in GCLA will be discussed in section 3.1.1.

inst (X,C,C1) Instantiates x to a new variable in ¢, resulting in CI.
This primitive is used in I-quantified conditions, see below.

The primitives clause, definiens and unify are the only ways to unify object level
terms. There are a number of other primitives, which will be introduced when they are
called for.

The user has also the opportunity to write his own provisos into a proviso definiton.
This proviso definition is part of the procedural part. To distinguish the proviso
definition from the inference rules, the proviso clauses are written as 'Head :- Body'
(i.e. as in most Prologs). In the current implementation the provisos are in principle
compiled to Prolog clauses which are directly executed by the underlying Prolog system.

A GCLA 1I query consists of two derivation symbols, one object level symbol '\~' and
one meta level symbol "\\-":

rule name(PTi, ..., PT,) \\- (Assumption \- Conclusion).

GCLA tries to fill in p7; with proofterms coding the derivation tree corresponding to
rule name's premises.

As an example we give the inference rules implementing GCLA 1, or, in fact, the rules
for the calculus O£D in [Kre92], and the corresponding code in GCLA 1II. The operator
"a" is an infix (right associative) append operator that appends it's two arguments, " | " is
an infix cons operator and "[" and "1" marks a list of assumptions. To improve

readability, we have omitted the things making OLD a linear calculus.

If one reads the premises of the rules from left to right, one gets the linear calculus OLD.

d_right(C,PT) <=

M}_@ atom(C),
Al c clause (C,B),
(PT -> (A \- B))
where b <= B.€ D, -> (A \- C).

and o = mgu(b,c)

Io,Do,Rot+ Co d_left (A, I,PT) <=

Th- atom(A),
I,a,R} C definiens (A,D),
. . _r (PT => (IG[DIR] \- C))
where o is an g-sufficient substitution -> (I@[AIR] \- C).

with respect to © and D is calculated
by the definiens operation.

: a_right ({E -> C),PT) <=
ALAFC (PT —> ([ALIA] \- C))

AFA] > C -> (A \~ (Al -> C)).

,RF-B)U,CLREC) |
I,(B - Cn, R C

}._

a_left ((B -> cl),I,PT1,PT2) <=
(PT1 -> (IGR \— B)),
(PT2 -> (IR[CLIRI \— C))
~> (IR[(B =-> CL)IR] \- CO).

————————— Initial sequent
I,a,R}\ ¢

and ¢ = mgu(a,c)

(This rule is also refered to as axiom)

axiom(A,C,I) <=
term(C),
term(A),
unify (C,A)
-> (IR[AIR] \- C).

T
ART

true_right <= (A \- true).

1+
I,L,R-C

false left(I) <=
(I@[false|R] \- C).

AFCp AF C:z)F
AL (C1,C2)

*

v_right ((C1,C2),PT1,PT2) <=
(PT1 -> (A \- Cl1)),
(PT2 -> (A \- C2))
-> (A \- (Cl, C2)).

1,C1,C2,REC
I,(C;,C2),RF-C’

|_.

v_left((Cl,C2),I,PT) <=
(pT -> (IR[C1l, C2IR] \- C))
-> (I@[(C1, C2)IR] \- C).

AL C;
AL (C1;C2)

o_;ight(l,(Cl;CZ),PT) <=
(PT -> (A \- Cl1))
-> (A \- (Cl; C2)).
o_right(Z,(Cl ; C2),PT) <=
(pT -> (A \- C2))
-> (A \- (Cl; C2)).

I, CL,RFC)UI,C2,REC)
1,(C1;;C2),REC ’

o left ((Cl;C2),I,PT1, PT2) <=
(pT1 -> (IG[CLiR] \= C)),
(PT2 ~> (IR[C2IR] \~ C))

-> (IR[(C1l; C2) IR} \- C).

pi_left((pi X\ C1),I,PT) <=
I, C2, R C I+ inst (X,C1,C2),

I, IIx.C;),R+ C (PT -> (IQ[C2IR] \- C))
-> (I@[(pi X\ C1)IR] \- C).

where C7 is C; where all occurrences
of X has been replaced by a term

Note that in pi_left if we are certain that x does not occur somewhere else than in C1,
the inst proviso can be removed. This is the case in the current implementation, where
all occurences of x in c1 is replaced by a new variable at compile time.

When a clause introduce new variables in the body, these variables are thought of as
existentially quantified (c.f. Prolog). Therefore there is an implicit existentially quantifer
for all such variables. This means that there is an implicit, trivial rule for handling

existential quantified variables to the right of ' (- %). This rule is analogous to
existential introduction in natural deduction. To the left existential variables are much
more complicated to handle, since a rule for these variables should correspond to
existential elimination. Therefore, bodies that introduce new variables should not be
reduced by any left hand side rule.

However, there are cases where one wants to introduce variables that are thought of as
universally quantified, and these variables are easy to handle to the left of the turnstile
but not to the right (the dual behaviour to existentially quantified variables). To introduce
such variables in the body of a clause, the IT (pi) symbol is used, which is taken care of
by the rule pi_left. Note that there exist no pi_right rule, since the complexity for
that rule is to high (c.f. existentially quantified variables to the left). For further
information about variables and their interpretation in GCLA see [Eri92].

The II-rule rule was not part of the GCLA I system, but is useful, for example the
functional programming presented in section 3.2 uses this construct. It should also be
noted that the system does not check for new variables introduced in the body, so the
programmer must be aware of this condition. If one wants to introduce a rule for
handling existentially quantified variables, it i easy to do that. In principle the rule looks
like the pi_left rule, but operates on the object level conclusion instead.

Below is a generic derivation (in tree format) of a single step of a meta level inference
step. For a description of this in linear form, and further descriptions about the calculus
used at the meta level, we refer to [Kre92]. It should be pointed out that for execution
efficiency in the second derivation step the meta level sequent to the right (seq’ \\-
Seq) is executed before the left one.

Pr; \\- Seqjy PTh \\- Segp

\\- Provisos \\- PT; -> Seqy ... \\=- PTp —> Seqp
\\- Provisos, (PT; -> Seqi), ..., (PTp —-> Seqn) Seq’ \\- Seg
(Provisos, (PT; -> Seqi), ..., (PTp -> Segp)) -> Seq' \\- Seg
rule(PT1, ..., PTp) \\- Seqg

Sofar we have coded inference rules. We are now going to introduce search strategies
into the procedural part.

2.2.2 The search strategies
We have thought of the proofterms as uninstantiated, or instantiated to a rule term. An
uninstantiated proofterm was thought of as representing all possible derivation that was
possible to perform. When search strategies are introduced, they will be in place of the
uninstantiated proofterm, and refer to a particular search strategy instead. So, the
proofterms are now always instantiated to a rule term, or a strategy term. The strategies
can be seen as indeterministic functions, representing several possible derivations.

A strategy does always contain a vector of proofterms. The comma is to be interpreted
disjunctively in this vector, because the vector will occur to the left of the meta level
derivation symbol "\\-'. This vector is tried from left to right. It is this vector that
implements the indeterminism of a strategy.

The simplest form of a search strategy is
strat <= PT3, ..., PTp

where each pr; is a proofterm. pry is tried first and prp, is tried last. strat can also
contain one or more arguments. An example of a strategy is

arl <= axiom(,_ ,_), right(arl), left(arl).

where arl stands for "axiom, right, left". axiom is a rule name while l1eft and right
are strategy names.

Strategies can also contain restrictions on their applicability. These are written

strat <= Restriction -> Seq.
strat <= namej, ..., namep.

If the first clause holds, the vector in the second clause is used. Since proofterms occur
to the left of the derivation symbol "\\-', both clauses should be used conjunctively in
the proof. This contrasts to the usual usage where the clauses are read disjunctively (cf
Prolog).

Below is a generic strategy derivation. The execution continues in the right branch. As
before, when splitting a meta level arrow (->) to the left (of the turnstile) we first
perform the meta level axiom rule on the right branch (i.e. on the meta level sequent
seq' \\- Seq) before executing the Provisos.

\\- Provisos Seq’ \\- Seqg strati \\- Seqg

Provisos -> Seg' \\- Seg (straty, ..., stratp) \\=- Seqg
(Provisos -> Seq'); (straty, ..., stratp) \\- Seqg

strat \\- Seqg

The code below implements some common, general search strategies:

gcla <= arl.

arl <= axiom(_ , ,_), right{(arl), left (arl).

alr <= axiom(_, ,_), left(alr), right (alr) .

lra <= left (lra), right(lra), axiom(_,_ ,).

right (PT) <=
true_right, v_right (C,PT,PT), a _right (C,PT),
o_right (N,C,PT), d right (A,PT) .

left (PT) <=
false left (I), v_left (C,I,PT), a_left (C,I,PT,PT),
o_left(C,I,PT,PT), d_left(A,I,PT), pi_left(C,I,PT).

For a complete listing of the code which implements the general rules and strategies in
GCLA II see appendix A.

For a more thorough treatment of GCLA and its properties we refer to [Kre92].

One should also note that even though the procedural part codes algorithms, which
define how the declarative part is to be utilized, the coding of the rules and strategies is a
subset of GCLA I and can thus be given a declarative reading.

We are now equipped with a sufficient framework to look at an example program.

3. Developing programs in the GCLA system

One of the main objectives for developing GCLA was to make a system that supports
prototyping development of programs. The methodology in GCLA I is to first (try to)
write down the declarative knowledge. Then the programmer starts with general
inference rules for making derivations from the declarative knowledge. These rules are
supported by the system. As the programmer gets more familiar with the domain, the
general inference rules can be replaced or extended by more efficient algorithms,
implementing special inference rules for this particular domain and application.
Derivations that do not contribute or are even thought of as wrong can be cut off. All this
can be done without affecting the declarative part. There can also be several different
procedural parts for different applications, while the declarative part is shared between
the different applications.

3.1 A simple example: Default reasoning

We will use a small example implementing default reasoning for demonstrating the
development technique in GCLA.

The declarative content of the program is
An object is grey if it is an elephant and not an albino elephant
Clyde and Dumbo are elephants, and Jumbo is an albino elephant
All albino elephants are elephants.

This program can be categorized as a default reasoning program.

3.1.1 Step 1: Writing the declarative part

We start out by writing the declarative part. In this case it is simple, we just transform
the clauses above to GCLA clauses:

grey(X) <= elephant (X), (albino_elephant (X) -> false) .

elephant (clyde) .
elephant (dumbo) .
elephant (X) <= albino_elephant (X} .

albino_elephant (jumbo) .

The last condition in the first clause shows how negation is accomplished in GCLA.
false could be any symbol that is not defined, but it is convenient to decide upon one
symbol as the false (or absurd) symbol. By assuming albino_elephant (X) and trying
to prove the false symbol, we accomplish negation. This form of negation behaves as
negation as failure when it occurs to the right of the derivation symbol "\-" (i.e.
positively). When it occurs to the left of the derivation symbol (i.e. negatively),
albino_elephant (xX) is put to the right of "\-" in a new sequent according to the rule
a_left, and thus we can get bindings to the variable x. It is easy to see that double
negation is stripped off, i.e. \~ ((p -> false) -> false) is reduced to \- p.

Example queries are
\- grey (P)

which binds P to clyde or dumbo, and
grey(P) \- false

which binds p to jumbo. The last query succeeds 9 times with the set of general rules
presented in section 2.2, i.e. there exists 9 different derivations of grey () \- false.
We are going to use this last query as an example query throughout this section, so
when we give statistical values in this section we are refering to this query.

By using the statistical package of GCLA we can get different statistical values for a
query. Below is some values for the 9 derivations of the query arl \\- (grey(P) \-
false):

a_left/4 succeeds 1 times [a_left/4 fails 43 times
a right/2 succeeds 0 times |a_right/2 fails 44 times
arl/0 succeeds 18 times Jarl/0 fails 28 times
axiom/3 succeeds 0 times [|axiom/3 fails 44 times
d left/3 succeeds 9 times [d _left/3 fails 35 times
d right/2 succeeds 1 times {d right/2 fails 43 times
false left/l succeeds 9 times |false left/1 fails 35 times
left/1 succeeds 20 times [left/1 fails 30 times
o _left/4 succeeds 0 times Jo_left/4 fails 44 times
o right/3 succeeds 0 times o_right/3 fails 44 times
pi_left/3 succeeds 0 times |pi_ left/3 fails 44 times
right/1 succeeds 4 times right/1 fails 40 times
true right/0 succeeds 3 times true right/0 fails 41 times
v_left/3 succeeds 1 times [v_left/3 fails 43 times
v_right/3 succeeds 0 times [v_right/3 fails 44 times
TOTAL: 66 TOTAL: 602

Note that a call to a rule or strategy can both succeed and fail. This happens for example
when a rule application succeeds, but the rest of the execution fails, or we force the
system to backtrack and find another solution.

-10 -

We can also get statistics about choicepoints. Below is a listing of where the positive
choicepoints (i.e. those choices that results in an answer substitution) are for the query
arl \\- (grey(P) \- false). The first position is an unique invokation identifier,
ie. the number of the call. For example, the first choicepoint occurs after 46 rule- and
strategy calls. The next number is the depth of the call. The third position is the rule or
strategy where the choicepoint arises, and the fourth position is the rule choosen. The
last position is the sequent where the choice arises. The first two positions are the same
as in the tracer, which can be useful to debug programs (a listing of a trace of the call
arl \\- (grey(P) \- false) is given in appendix B).

These are the choicepoints:

46 12 arl right (arl) elephant (jumbo) \-true

46 12 arl left (arl) elephant (jumbo) \-true

58 10 left (arl) false left ([elephant (jumbo)])
elephant (jumbo) ,false\-false

58 10 left (arl) d~left(elephant(jumbo),[],arl)
elephant (jumbo),false\-false

72 13 left (arl) false_left([albino_elephant(jumbo)])
albino_elephant (jumbo), false\-false

72 13 left (arl) d_left (albino_elephant (jumbo), []1,arl)
albino_elephant(jumbo),false\—false

105 15 arl right (arl) albino_elephant (jumbo) \-true

105 15 arl left (arl) albinoﬁelephant(jumbo)\-true

117 10 left(arl) false_}eft([elephant(jumbo)])
elephant (jumbo) ,false\-false

117 10 left(arl) d_left(elephant(jumbo),[],arl)
elephant (jumbo), false\-false

131 13 left(arl) false_left([albino_elephant(jumbo)])
albino_elephant(jumbo),false\—false

131 13 left(arl) d_left(albino_elephant(jumbo),[],arl)
albino_elephant(jumbo),false\~false

176 10 left(arl) false left ([elephant (jumbo)])
elephant (jumbo) ,false\-false

176 10 left(arl) d_left(elephant(jumbo),[],arl)
elephant (jumbo) , false\-false

190 13 left(arl) false_left([albino_elephant(jumbo)])
albino_elephant (jumbo),false\-false

190 13 left(arl) d_left(albino_elephant(jumbo),{],arl)

albinoﬂelephant(jumbo),false\—false

As we can see, there are 8 choicepoints. We will now use this knowledge to write more
efficient meta level code, which removes these choicepoints without changing the
behaviour of the program with respect to the query (queries).

3.1.2 Step 2: Writing strategies

As we now have defined the declarative part, we can start to define how the declarative
part is to be used. This is done by starting with the general rules and strategies that
GCLA supports from start. These rules and strategies are listed in section 2.2.

As a first refinement to the general set of rules and strategies, we could see that it would
be sufficient to use an assumption when the false symbol false occurs as a conclusion.
We can also note that the axiom rule is never used (there are other rules that are not used
either, but these are used in the query \- grey (), for example). Two new strategies
are constructed:

-11-

o\@

Never do axiom!
First try standard right strategy
else if consequent is false...

es <=
right (es),
left _if false(es).

o

o

o°

left if false(PT) <= Is right false?
(_ \- false).
left if false(PT) <=

left (PT) .

o

If so do standard left strategy.

es stands for "elephant strategy”. By this the number of times the above query es \\-
(grey (P) \- false) succeeds is reduced by a factor of 3 to 3.

The corresponding table of successes and failures contains the following data:

a left/4 succeeds 1 times [a_left/4 fails 15 times
a_right/2 succeeds 0 times |a_right/2 fails 22 times
d_left/3 succeeds 3 times [d_left/3 fails 13 times
d right/2 succeeds 1 times |d right/2 fails 21 times
es/0 succeeds 8 times |es/0 fails 14 times
false left/l succeeds 3 times [false left/1 fails 13 times
left/1 succeeds 8 times |left/l fails 10 times
left if false/l succeeds 6 times |left if false/l fails 16 times
o left/4 succeeds 0 times Jo_left/4 fails 16 times
o_right/3 succeeds 0 times |Jo_right/3 fails 22 times
pi left/3 succeeds 0 times |pi left/3 fails 16 times
right/1 succeeds 2 times right/1 fails 20 times
true right/0 succeeds 1 times [true right/0 fails 21 times
v_left/3 succeeds 1 times |v_left/3 fails 15 times
v_right/3 succeeds 0 times |v_right/3 fails 22 times
TOTAL: 34 TOTAL: 256

If we compare these figures to the ones before, we can see that the number of inferences
have been reduced, both regarding successes and failures.

The corresponding statistics about choicepoints are now:

These are the choicepoints:

56 14 left(es) false left ([elephant (jumbo)])
elephant (jumbo) , false\-false

56 14 left (es) d_left (elephant (jumbo), [],es)
elephant (jumbo) , false\-false

70 18 left(es) false left([albino_elephant (jumbo)])
albino elephant (jumbo), false\-false

70 18 left (es) d left (albino_elephant (jumbo), [],es)

albino elephant (jumbo), false\-false

The listing above shows that we have reduced the number of choicepoints to two. These
two can also be removed. By noticing that every sequent is true if the symbol faise
occurs among the assumptions, and never try any other rules to the left if false occurs
among the assumptions, the number of times the above query succeeds can be reduced
by another factor of 3. The code implementing this is

212 -

es <=
right (es),
left if false(es).

o® o o\@

@

left 1f false(PT) <=
(_ \- false).

left if false(PT) <=
no_false assump (PT),
false left ().

@

no_false assump (PT) <=
not (member (false,A))

oe o

=> (A \-).
no_false assump (PT) <=
left (PT) .

member (X, [X]|_]1).
member (X, {_IR])
member (X,R) .

Never do axiom!
First try standard right strategy
else if consequent is false...

Is right false?
rules.

If so perform left

No false assumption
i.e. the term false is not a
member of the assumption list

Proviso definition

Note how the original strategy left is restricted to be applicable only when there is no
symbol false among the assumptions by the new strategy no_false assump.

The table now looks like
a_left/4 succeeds 1 times |a_left/4 fails 12 times
a_right/2 succeeds 0 times |a_right/2 fails 20 times
d left/3 succeeds 1 times |d left/3 fails 12 times
. right/2 succeeds 1 times |d right/2 fails 19 times
es /0 succeeds 6 times [es/0 fails 14 times
false left/1 succeeds 1 times [false left/1 fails 26 times
left/1 succeeds 3 times |left/1 fails 10 times
left if false/l succeeds 4 times [left if false/1 fails 16 times
no false assump/l succeeds 3 no false assump/l fails 11
times times
o left/4 succeeds 0 times Jo_left/4 fails 13 times
o _right/3 succeeds 0 times o _right/3 fails 20 times
pi_left/3 succeeds 0 times [|pi left/3 fails 13 times
right/1 succeeds 2 times right/1 fails 18 times
true right/0 succeeds 1 times jtrue_right/0 fails 19 times
v_left/3 succeeds 1 times [v_left/3 fails 12 times
v_right/3 succeeds 0 times |[v_right/3 fails 20 times
TOTAL: 24 TOTAL: 255

and there are no choicepoints left, i.e. the query

es \\- \- false)

(grey (P)

succeeds just once, binding P to jumbo.

We have not reduced the execution time for the query grey (P) \- false, since we use
the same number of rules as before. But for queries that fails the execution time is

reduced. For example the query

es \\- grey(dumbo) \- false

-13-

takes about 65% of the execution time of the query
arl \\- grey(dumbo) \- false.

What we have done is to reduce the original search space, i.e. the number of possible
derivations, by reducing the applicability of the rules, and to restrict the rules'
applicability. In this example we do not need to write special rules, since the original
suffice. However, in the next example we will gain by introducing new inference rules.

3.2 Another example: Functional programming

As the second example we choose to show how functions can be implemented and
executed in GCLA. The declarative part contains the functions that we want to define,
while the procedural part defines how the functions are going to be executed.

3.2.1 Step 1: The declarative part

The definition contains the functions that we want to define. A simple example of a
function is addition on successor arithmetic.

add(0,X) <= X.

add (s (X),Y) <= succ(add(X,Y)).

add (X, V) #{X \= s(), X \= 0} <=
pi Z\ ((X -> 2) =-> add(Z,Y)).

succ(X) <= pi ¥\ ((X -> Y) -> s(¥)).

The third clause of add contains a unification guard, '#{x \= s(_), X \= 0},1e.a
restriction on the unifier. The variable x is restricted not to be bound to an s-structure, or
the constant 0. In case x is not bound to anything, x is restricted by these guards, and
these restrictions are kept for the rest of the execution. This means that these three
clauses are mutually exclusive.

To start with, the general inference rules presented above will suffice, if we make some
restrictions. The "numbers", i.e. s-structures and the constant 0, are canonical terms,
and as such any d-rule cannot be applied to it. Therefore we have to restrict them. Below
is the code for that, together with the new strategies for left and right:

d leftl(T,I,PT) <=

not (functor(T,s,1)),

not (functor (T, 0,0))

=> (IG[T|_] \- _).
d_leftl(T,I,PT) <= d_left(T,I,PT).

d rightl(T,PT) <=
not (functor(T,s, 1)),
not (functor (T, 0,0))
-> {_\=-T).
d rightl(T,PT) <= d_right (T,PT).

rightl (PT) <=
v_right(_,PT,PT), a_right(_,PT),
o_right(_, ,PT), d_rightl(_ ,PT), true_xright.
leftl (PT) <=
v_left{(_,_,PT), a left(, ,PT,PT), pi_left(_,_,PT),
o left(_, ,pT,PT), d_leftl(_, ,PT), false left().

lra <= leftl(lra), rightl{(lra), axiom(_, ,_).

-14 -

The query
lra \\- add(s(0),s(0)) \- X

has four possible answers; X = s(s(0)),X = s(add(0,s(0)),X =
succ (add (0, s(0)),and X = add(s(0),s(0)). They are all correct answers in some
sense, although the first one is (mostly) the intended one.

It is worth noting that if the search order of 1ra is changed, other possible evaluation
strategies can be accomplished. For example the search order lazy,

lazy <= axiom{(, ,), left(lazy), right(lazy)

accomplishes some kind of lazy evaluation, which is reflected in the sequence of the
solutions: the answers to the query

lazy \\- add(s(0),s(0)) \- X

are X = add(s(0),s(0)),X = succ(add(0,s(0)),X = s(add(O,s(O)),andX2=
s (s (0)), presented in this order.

3.2.2 Step 2: Writing strategies

The reason why all partially evaluated answers are returned is that the axiom rule is
applicable to all terms, and not just to canonical terms, i.e. the constant 0 and s-
structures. In this application the axiom rule is used to return answers. If the axiom rule
is restricted analogously as the d_left1 rule, its applicability can be reduced to the terms
that are the results of evaluating expressions.

We also introduce a proviso canonical, which holds if the term is a canonical answer
term.

fun_axiom(T,C,I) <=

(canonical (T),canonical (C)) -> (IR[T|_]1 \- C).
fun _axiom(T,C,I) <=

axiom(T,C,I).

d leftl(T,I,PT) <=

not (canonical(T))

=> (IG[T!_1 \=).
d_leftl(T,I,PT) <= d__left(T,I,PT) .

left (PT) <= false left(), v_left(_, ,PT), a_left(_,_ ,PT,PT),
d leftl(, ,PT), pi_left(_,_ ,PT).

eager <= left (eager), a_right(_,eager), fun_axiom(_,_,_).

canonical (X) :— var(X).
canonical (X) :— functor(X,s,1).
canonical(X) := X ==

With the code above, the query
eager \\- add(s(0),s(0)) \- X.

returns just the wanted answer x = s(s(0)), and no others.

- 15 -

3.2.3 Step 3: Writing specialized rules

There are still some things to be done better. The fun_axiom rule can be changed from a
restriction implemented as a strategy (as above) to a specialized rule. The succ-clause
(referred to as a substitution clause or evaluation clause, since its argument is
substituted, or evaluated, to a canonical value) is always evaluated in a special way,
namely first by an application of the d_left rule (through the d_left1 strategy), then
by an application of the pi_left rule followed by the a_1eft rule. The premise of the
arrow is evaluated by a_right and the conclusion is a returned, canonical term to which
the fun_axiom is applied. We implement this sequence of rule applications by the
strategy subst_strat, which first checks whether the chosen term is a succ-term or
not, and if so, applies this sequence of rule applications. We have also extended the
proviso in the d_left1 strategy not to handle succ-terms.

fun_axiom(T,C,I) <=
canonical(T),
canonical (C),
unify (T, C)
-> (IG[T|_1 \- C).

d leftl(T,I,PT) <=

not (canonical(T)),

not (functor (T, succ, 1))

=> (IQ[TI_1 \- _).
d_leftl(T,I,PT) <= d__left(T,I,PT) .

subst_strat (T,_) <=
functor (T,succ,1l) => (IG[TI_1 \- _).
subst_strat (T,PT) <=
d_left(T,_,pi_;eft(_,_,a_;eft(_,_,a*right(_,PT),
fun axiom(_, ,_)))).

eager <=
subst_strat (_,eager), d_leftl(_,_,eager), pi_left(_,_,eager),
fun_axiom(_,_,_J)« a_left(_,_,a_right (eager), eager).

canonical (X) :—- var(X).
canonical (X) :- functor(X,s,1l).
canonical (X) :— ==

By these small changes, we have reduced the execution time by about 50%, compared to
the previous solution. This comes from the new rule fun_axiom and from the sequence
of rule applications in subst_strat, which cuts off a lot of rule tests.

The code can still be more efficient by some simple changes. The strategy subst_strat
can be turned into a new rule, subst, which performs the whole sequence of rule
applications of subst_strat in one rule step. We also remove the succ-clause from the
definition and "lift" it to be on the same level as the arrow "->". This means that the
succ (...) condition has its own rule, subst. This is done by the proviso
const ructor, which is used to declare such condition-constructors.

We are also introducing a new rule (eval) for handling the third clause of add, i.e. a
rule which evaluates the first argument of add if it is not on canonical form. The proviso
evalschema defines when and which arguments that should be evaluated. The
evaluation takes place in the second row of the rule clause (pT -> I@R \- c). An
example of a query which uses this schema is add (add (s (0) , s(0)), s(0)) which
evaluates to s (s (s (0))).

-16-

fun_axiom(T,C,I) <=
canonical (T), canonical(C),
unify (T,C)
-> (IRIT]|_]1 \= C).

4 leftli(T,I,PT) <=
not (canonical (T))
-> (IQ[T|_1 \-).
d leftl(T,I,PT) <= d_left(T,I,PT).

subst (succ(A) ,PTs) <=
unify(Concl,s (T1)),
(pTs -> (IG[AIR] \- T1))
-> (I@[succ(A)|R] \- Concl).

eval (T,PTs) <=
evalschema (T, T1,C),
(r(PTs) -> (IGR \- C)),
(PTs -> (IR[T1[R] \- Concl))
-> (IQ[T|R] \- Concl).

evalschema (add (A, B) ,add (A1,B), (A —-> Al)) :-
not (A = 0), not(A = s()).

eager <= eval(_,eager), subst (_,eager),
d leftl(_,_,eager), fun_axiom(_,_,_).

r(PT) <= a_right(_,PT), ¢_right (_,a_right (PT), a_right(_,PT)).

canonical (X) :—~ var(X).
canonical (X) :- functor(¥,s,1).
canonical (X) :—= X ==

constructor(succ,1).

With this coding the execution times are reduced by another one third of the previous
version. There are of course further improvements to be done, but we stop here.

4. Other examples

There are a lot of other example programs and applications which have been developed.
We will list some of them here, and point out the interesting techniques and other points
of interest. We will not present the development of the programs as we did above, but
comment on the "final" program.

The primitive include that occurs in the beginning of all the rule files loads the file
rules.rul from the GCLA rules' library, i.e. sets GCLA up with the general rules
described in the appendix.

4.1 Sorting

This example shows integration of relational and functional programming, and has been
presented in more detail in [Aro91b]. It has some interesting properties. One can note
that the functional part, the clauses defining gsort and append, are executed by one set
of inference rules, mostly left hand side rules (see the rules for functional execution
above). The relational part is a horn clause definition, which consists of the clauses
defining split, and these are executed by the right hand side rules (v_right and
d_right). The intersection of these two sets are empty, SO there is a "border" between

- 17 -

the functional and relational execution in this application. This means that these two parts
can be further developed without disturbing each other, for example it is possible to
"plug in" better functional execution strategies than presented here.

Definition:
A = A.

gsort ([1) <= [1.
gsort ([F[R]) <=
pi L \ (pi G \ (split(F,R,L,G) ->
append (gsort (L) ,cons (F,gsort (G))))) .

append([],F) <= F.
append([F|R],X) <= cons (F,append (R, X)) .
append (X, Y) #{X \= [_|_1,X \= []} <=

pi Z\ ((X -> 2) -> append(Z,Y)).

Split(_r []I[]I[])-
split (E, [FIR], [F|2],X) <= E >= F,split(E,R,Z,X).
split (E, [F|R],Z, [FIX]) <= E < F,split(E,R,Z,X).

cons(X,Y) <= pi X1 \ (pi Y1 \ ((X -> X1), (Y -> Y1) =-> [X1i{Y1l])).

Below are the code for the inference rules and strategies in the gsort example. In
principle we use the general rules, but specializes the strategies.

The provisos < and >= are defined on numbers in the usual way.

(The corresponding rules shows how parts of the underlying system, in this case
Prolog, can be incorporated into GCLA. These relations should in fact be part of the
object level system in a more complete implementation of GCLA.)

Rules and strategies for gs:

:— include (library('rules.rul')).
%%% Rules

right_ 1 <=
X<Y ->
(_ \=- X <7Y).
right_g e <=
X >=Y —>
(_\= X >=Y).

222 Restrictions of rules defined in rules.rul
g _axiom(T,I) <=
(data (T) ->
(IR[T} 1 \=).
g_axiom(T,I) <=
axiom(T,C,I).

g d left(T,I,PT) <=

(not (data (T)) =->

(TelT|_1 \- _)).

g d left(T,I,PT) <=
d left(T,I,PT).

- 18 -

data

split_right (PT) <=

(_ \"‘ split (___l___l__l___)) -
split_right (PT) <=

d right (_,PT).

o

%% Strategies
gs <= g _fun(qgs),
g _rel(gs) .

Functional execution
Relational execution

o

o

g_fun (PT) <=
a_right(_,PT), v_left{_,_,PT), a left(_,_,PT,PT),
pi_left(, ,PT), g d left(_, ,PT), g axiom(_,_).

g _rel(PT) <=
v_right(_,PT,PT),
split_right (r).

r <= right(r), right g e, right 1.

%$%% Provisos
data([]) .
data([_I_1).

data (X) := number (X).

fills the same role as canonical did in the add-example in section 3.2, i.e. we
have restricted the axiom rule to be applicable only on data terms, and the d_left rule to
be applicable on terms that are not data. In the sorting procedure we have restricted the
relational execution to start with the atom split, which can be seen in the strategies

split_right and q_rel.

The top level strategy gs returns either a strategy for functional evaluation or a strategy

for relational evaluation.

A small extension of the general strategies and rules presented in appendix A are used

for comparison of figures and behaviour.

Rules and strategies for 1ra:

In thi
query

%%% Extension of the general strategy lra
lra <= leftl(lra),rightl(lra),qg axiom(_,_).

rightl(S) <= true right, v_right(_,S,8), a right(_,8),

o right(_,_,S8), d_right(_,8), right_g e, right_l.

leftl(8) <= false left(), v_left(_,_,S), a_left(_, ,S,5),

o left(, ,8,8), qd left(_,_,8), pi_left(_,_,S).

s example it suffice to look at one kind of queries, queries that sorts a list. The

lra \\- gsort(I[3,4,1,5,2]) \- P.

has the following statistics to find the first solution» = [1,2,3,4,5]:

-19 -

a left/4 succeeds 17 times Ja_left/4 fails 151 times
a right/2 succeeds 19 times Ja_right/2 fails 55 times
axiom/3 succeeds 20 times [axiom/3 fails 0 times
d left/3 succeeds 30 times [d left/3 fails 29 times
d right/2 succeeds 11 times [d right/2 fails 44 times
false left/l1 succeeds 0 times [false left/l1 fails 168 times
leftl/1 succeeds 76 times |leftl/1 fails 92 times
lra/0 succeeds 150 lra/0 fails 18 times
times o left/4 fails 151 times
o _left/4 succeeds 0 times |o_right/3 fails 55 times
o right/3 succeeds 0 times |pi_left/3 fails 92 times
pi left/3 succeeds 29 times [gq_axiom/2 fails 18 times
q_axiom/2 succeeds 20 times |g d left/3 fails 121 times
g & left/3 succeeds 30 times [cightl/1 fails 38 times
rightl/1 succeeds 54 times [right_g_e/0 fails 42 times
right g e/0 succeeds 2 times right 1/0 fails 38 times
right_ 1/0 succeeds 4 times f[true right/0 fails 87 times
true right/0 succeeds 5 times [v_left/3 fails 168 times
v_left/3 succeeds 0 times |v_right/3 fails 74 times
v_right/3 succeeds 13 times
TOTAL: 1441
TOTAL: 480
The query

as //- gsort([3,4,1,5,2]1) \- P.

has the corresponding statistics (to find the first answer):

a_left/4 succeeds 17 times [a_left/4 fails 91 times
a right/2 succeeds 19 times [a_right/2 fails 138 times
axiom/3 succeeds 20 times [gaxiom/3 fails 0 times
d left/3 succeeds 30 times |d left/3 fails 0 times
4 right/2 succeeds 11 times [d_right/2 fails 24 times
o right/3 succeeds 0 times o _right/3 fails 30 times
pi_ left/3 succeeds 29 times [pi left/3 fails 62 times
q_axiom/2 succeeds 20 times |gq_axiom/2 fails 12 times
g d left/3 succeeds 30 times [d left/3 fails 32 times
q_fun/1 succeeds 115 g fun/1 fails 12 times
Cimes q rel/1 fails 0 times
q_rel/1l succeeds 12 times [gs5/0 fails 0 times
as/ 0 succeeds 127 r/0 fails 18 times
times right/1 fails 24 times
r/0 succeeds 23 times [right_g_e/0 fails 22 times
right/1 succeeds 17 times [right 1/0 fails 18 times
right g e/0 succeeds 2 times |split_right/1l fails 0 times
right_1/0 succeeds 4 times [|true right/0 fails 36 times
split_right/1l succeeds 5 times |v_left/3 fails 108 times
true right/0 succeeds 5 times v_right/3 fails 35 times
v_left/3 succeeds 0 times
v_right/3 succeeds 13 times TOTAL: 662

TOTAL: 499

and we can see that the number of calls (succeeded and failed) has decreased
significiantly. An exhaustive search for this query gives the following table of total
succeeded and failed calls:

220 -

ira as

Succeeded calls TOTAL 480 TOTAL 499
Failed calls TOTAL 2574 TOTAL 1422
Total number of calls TOTAL 3054 TOTAL 1921

A significiant better performance for the gs strategy.

4.2 STRIPS like planning

STRIPS is a planning system, invented by Nils Nilsson [Nil82]. In short, the system
has a global database, which is altered when a planning operation is executed. From a
starting state the system performs planning operations until it has reached some goal
state, and the resulting sequence of planning operations is the plan.

In our case the planning operations are called action, andis a conditional function from
one state to another. Whether an action is possible to perform or not is determined by the
relation possible, and perform changes the global database. rem c 1/2 and def_c1/2
are defined in the rule code using the proviso primitives rem/1 and de£/1, and removes
respectively defines the clause in its first argument.

Definition:

% Initial state
onf(a,b).
on{b,c).
table(c).
clear(a).

2 action is a function from an action A to a state sit.
action(A,sit(8)) <= (possible(d) -> perform(A,sit (8))) .
action(A,action(X,S)) <=

pi Y\ ((action(X,S) -> sit(Y)) —> action(A,sit(Y))).

possible (stack (X,Y)) <=
table (X),clear (X),clear (YY), (X = ¥ —> false) .
possible (unstack (X,Y)) <= on(X,Y),clear(X).
possible (move (X,Y,2)) <=
on(X,Y),clear(X),clear(2), (X = 2 -> false) .

perform(stack(X,Y),sit(S)) <=

rem_cl(table(x),rem_cl(clear(Y),def_cl(on(X,Y),sit(s(S))))).
perform(unstack(X,Y),sit(S)) <=

remﬁcl(on(X,Y),defﬁpl(table(x),def_cl(clear(Y),sit(s(S))))).
perform(move(X,Y,Z),sit(S)) <=

rem cl(on(X,Y),

rem _cl(clear(z),
def_cl(clear(Y),def_cl(on(X,Z),sit(s(S)))))).

We present two different sets of meta level code. In the first the inference rules are the
common ones, i.e. the general rules presented in section 2.2, together with some new
rules. We here show how the primitive provisos def and rem are incorporated by the
rules def left, def_right, rem left and rem right. The proviso def (R) asserts
the clause R in the current definition, but upon backtracking removes the same clause

221 -

again. rem(Rr) does the opposite, i.e. removes all clauses that are unifiable with g, but
does not unify variables in r. This means that rem always succeeds, sometimes without
removing anything. Upon backtracking the removed rules are added again.

We declare two new symbols, def_c1/2 and rem_c1/2, as condition constructors, i.e. at
L1 1]

the same level as the arrow "->", the comma ", " etc.

The term sit (...) is the return answer from the action-function, and is returned from
the perform-clauses. As it is a returned answer, it should not be subject to the d_left
rule, so the rule s_d_left is restricted not to handle that term.

Rules and strategies for strips:

.~ include (library('rules.rul')).

def left (def (X,Y),I,PT) <=
def (X},
(PT -> (IRI[YIR] \- C)) —>
(I@[def cl(X,Y)IR] \- C).
rem left (rem(X,Y),I,PT) <=
rem(X) ,
(PT => (IQR[YIR] \= C)) ->
(I@[rem cl(X,Y)IR] \- C).
def right (PT) <=
def (X),
(PT -> (A \- Y)) ->
(A \= def cl(¥X,Y)).
rem right (PT) <=
rem (X),
(PT => (A \- Y)) —->
(A \- rem cl(X,Y)).

s_d _left(T,I,PT) <=

not (functor (T,sit,1)) -> (IQ[TI|_] \-).
s_d left(T,I,PT) <=

d left(T,I,PT).

strips <= s_left (strips),s_right (strips),axiom(_,_,_).

s_left (PT) <= false_left(_), def left(_,_,PT), rem left(_ , ,PT),
pi_left(_,_,PT), v_left(, ,PT), a_left(_,_ ,PT,PT),
o_left(,_,PT,PT), s_d_ left(_, ,PT).

s_right (PT) <= true_right, def right(PT), rem right (PT),
v_right(_,PT,PT), a_right(_ ,PT), o_right(_,PT), d right(_,PT).

constructor (def_cl,2).
constructor (rem cl,2).

With the above setting, i.e. more or less the general rules of GCLA, the behaviour is
correct, but inefficient. Some example queries are

_22 -

1 strips \\- action(X,sit(0)) \- table(a).

X = unstack(a,b) ;
X = unstack(a,b) ;
X = unstack(a,b) ;
no
2) strips \\- action(X,action(Y,action(Z,sit(0)))) \- on(c,b).
X = stack(c,b),
Y = unstack(b,c),
7 = unstack(a,b) 7 ;
X = stack(c,b),
Y = move(b,c,a),
7 = unstack{a,b) ? ;
no
3) strips \\- action(unstack(b,c),action (unstack(a,b),sit(0)))
\~ sit(s(s(0))),table(X).
X=Db?;
X =a?;
X=c?;
X=Db ? ;
X=Db?;
X=c?;
X=a?2;
X=c?;

. There are 150 answers to this query.

The first two queries represent planning, while the third represents simulation. In the

third query the answers are repeated over and over again.

A much more efficient rule code is the one presented below. On the top level there are
two possibilities, either a planning step should be performed or the execution is finished.
We are finished if the only assumption is sit (_), in which case we start to examine the
object level conclusion. The strategy act's two proofterms handle the two object level
clauses, i.e. the first proofterm performs a planning step and the other defines the
sequence of rules for the substitution clause (c.f. functional programming, section 3.2).

perf together with remdef alter the global database.

223 -

Rules and strategies for str:
str <= act(rl,perf (str)), finished.

act (s1,82) <= ([action(’,8)] \- _).

act (S1,82) <=
d left(_,_,a_left(_,_,S81,52)),
d_left(_J_,pi_left(_,_,a_;eft(_,ﬁ,a_right(_,str),str))).

perf () <= not (functor(T,sit,1)) -> ([T] \=-).
perf (8) <=
d left(_, ,remdef).

remdef <= def left(_,_,remdef), rem left{_,_,remdef),
axiom(, ,_), finished.

finished <= not (functor (C,sit,1)) -> ([sit()1 \- C).
finished <= ra.

ra <= right(ra), axiom(_,_,_).
rl <= right(rl), left(xl).

The corresponding queries for 1 - 2 before have the same behaviour regarding the
answers, but the query 3 has stopped to loop:

str \\- action (unstack (b,c),action (unstack(a,b),sit (0)))
\- sit(s(s(0))),table(X).

X=Db ?;
X =a?;
X=c? ;
no

We can also omit the sit (s (s (0))) in the query 3. It was used in the first version to
assure that the actions were performed before table (x) was tested.

If we look at the number of calls for query 1, we have the following table for the two
strategies:

Number of calls strips str
First answer: TOTAL: 293 TOTAL: 143
Exhaustive search TOTAL: 2465 TOTAL: 479

The strategy st r has significiant better figures than strips, and we have also removed
redundant answers with the new strategy.

4.3 Obiject oriented programming

It is possible to get a kind of object oriented programming using the assumptions as
objects, whose arguments hold the object's internal state. The objects can communicate
with each other by using two techniques: either using shared variables, a common
technique in logic programming, or by using the arrow- and axiom rules, which
instantiates an argument in a given (named) object.

-24 -

An object is suspended if its first argument is unbound. This is taken care of by the
susp_object condition. It acts as freeze in many cases, a delaying operation in some
Prologs. A susp_object assumption is reachable by the s_axiom rule, and therefore
we can instantiate the variable by an application of the s_axiom rule. This gives the two
possibilities to send messages: instantiating a variable that is shared, or by knowing the
term representing the object and use the s_axiomrule.

In our example, the objects of the ship class get messages by the s_axiom rule, while
the objects of the sailing_ship class get their messages by a shared variable, i.e. a
stream of messages, implemented by a list, where the tail of the list is always unbound
and used for the next message.

Definition:
X = X.

ship (weight (W),N,W,L) <= susp_pbject(R,class,ship(R,Nl,Wl,Ll)).

ship (name (N) ,N, W, L) <= susp_object (R,class, ship (R,N1,Wl,L1)) .

ship (length (L) ,N,W,L) <= susp_object (R,class, ship (R,N1,W1l,L1)) .

ship(new_sailship(S,MaxS),N,W,L) <=
susp_object(S,N,sailing_ship(S,N,W,L,O,MaxS)),
susp_pbject(R,class,ship(R,Nl,Wl,Ll)).

ship ({],N,W,L).

sailing_ship([max*sailarea(MaxS)!R],N,W,L,S,Maxs) <=
susp_pbject(R,N,sailing_ship(R,N,W,L,S,MaxS)).
sailing_ship([current_sailarea(S)IR],N,W,L,S,MaxS) <=
susp_object(R,N,sailing_ship(R,N,W,L,S,MaxS)).
sailing_ship([changeﬂsailarea(Sl)IR],N,W,L,S,MaxS) <=
(81 >= 0,51 =< MaxS ->
susp_object(R,N,sailingﬂship(R,N,W,L,Sl,MaxS))).
sailing ship([],N,W,L, S, MaxS) .
sailing_ship([FIR],N,W,L,S,MaxS)#
{F \= max_sailarea(_),
F \= current_sailarea(_),
F \= change_sailarea(_)} <=
(susp_object(F,class,ship(Y,N,W,L)) -
susp_object(R,N,sailing_ship(R,N,W,L,S,MaxS))).

Inheritance is implemented as in the last clause of sailing_ship. The arrow is used to
pass the message to the class above the current class (in this case from the
sailing_ship class to the ship class). So if a sailing_ship does not know how to
answer a message, it passes it to the ship class. A generic derivation of this message
passing is:

{X/1}

superclass (X) \- superclass(1) superclass (1), subclass(Y) \- messages

superclass (X), (superclass(l) -> subclass(Y)) \- messages

superclass (X), subclass (1) \- messages

In the left branch of the tree the axiom rule passes the message from superclass (1) to
superclass (X), binding x to 1, and in the right branch the message has been passed
from the subclass to the superclass, and the execution proceeds with superclass.

In this application it is suitable to introduce some new inference rules. The condition
susp_object (...) is declared to be a constructor, and a rule for susp_object is
introduced.

225 -

The axiom rule is changed to be applicable on suspended objects only, implemented by
the new s_axiom rule. This is how an object is asked to do something. ready is just a
rule to finish the execution on top level. It is applicable when we have got an answer
instantiation to our query. The rule obj_left is used instead of the rule d_left, and
gets the definition of the method that the object should execute. There are also rules for
numeric comparisons.

Rules and strategies for obi:

;= include (library('rules.rul')).

s_axiom(T,C,I) <=
functor (T, susp_object,3),
functor (C, susp_object,3),
unify (T, C)
=> (IR[TI_]1 \= C).

s_o(PT) <=
nonvar (X),
(PT -> (IG[Y[R]) \- C))
~-> (IR [susp_object (X,Name,Y) |[R] \- C).

ready <= nonvar(X) ->
(_ \— answer(X)).

obj left (T, X,PT) <=
functor (T,0,),
object (0),
definiens (T,Dp,N),
N > 0,
(PT -> (X@[DplY] \- C))
-> (X@[TI1Y] \- C).

right 1 e <=

X =< Y ->

(\= X =<0Y).
right g e <=

X >= Y ->

(_\= X >=Y).

constructor (susp_object,3).

object (sailing ship).
object (ship) .

ob]j <= ready, end of execution
v_right(_,send;message,reduce(obj)). % Next call to an object

@

send message <= s_axiom(_,_,_)rar.

reduce (PT) <=
s_o(obj_left(_,_,handle(PT))). % Reduce a called object

handle (PT) <=
a_left(_ , ,s_axiom(_,_,_),reduce(PT)),% Calling another object
s_o(obj_left(_,_ ,handle(PT))), A not empty stream
a_left(_, ,ar,reduce(PT)), An if-stmnt in a method
v_left(_,_ ,handle(PT)),PT. Splitting of a process

o

d@ oo

=26 -

% ar is used to evaluate conditions in methods
ar <= right 1 e, right g e,
v_right (_,ar,ar), d right(_,ar), true right.

gcla <= obj.

The top level strategy is obj. It is always the case that the left term in a vector should
pass a message to an object, so the only rule for the term to the left in a vector is the
s_axiomrule, or some rule to the right to bind a stream variable. Before considering the
right term in the vector, we should reduce the object that got a message, which is
handled by reduce. When the object has finished its execution, the strategy obj is used
again.

s_o is applicable on objects that have received a message in their message variable, or
message streams. ob3_left finds the definition for the object's action in the definition,
and handle executes that action. The comments explain what the different proofterms in
the vector of handle perform.

The reader may have noticed that the rule code can be further improved. For example,
since the rule s_o is always followed by an application of obj_left, these two rules
could be concatenated. In the same way v_right can be removed.

Some queries are

1) We ask the object £ia by its stream argument what its current sailarea is:
susp_object(X,fia,sailing_ship(x,fia,3600,8,0,45)) \~
X = [current_sailarea(S)|_],answer(S).
s =0,
X = [current_sailarea(0)]|_A]l ? ;
no

2) A more complicated query. We ask the sailing ship £ia about its name, and there
are no methods for finding names among the sailing_ship methods, so the
question is passed to the ship class.

susp_object (4, class,ship(Z,A,B,C)),
susp_object(X,fia,sailingmship(x,fia,3600,8,0,45)) \=-
X = [name (N)|_],answer(N).

= fia,

3600,

8,

fia,

[name (fia) | A],
= name (fia) ? ;

I

i

N X Z QW
i

no

2'y This is the same query as above, without a ship class that can answer the name-

message:

susp_object(X,fia,sailing~ship(x,fia,3600,8,0,45)) \—
X = [name(N)|],answer(N).

no

-27 -

3) Here a new sailing ship is created, the current sailarea is changed, and we then
ask the new sailing ship about its current sail area.
suspﬁobject(Z,class,ship(Z,A,B,C)) \~

susp_object(new_sailship(s,45),class,ship(_,grete,3600,9)),
S = [change sailarea(25),current_sailarea(Area)|_l,
answer (Area) .

Area = 25,

For comparison purposes, we include a rule code version based on the general rules and
strategies. In order to use one of the general strategies for comparing purposes, right
and 1eft must be extended with the new rules right_1_e, right_g_e, ready and s_o
above. The rules d_left and d_right must also be restricted not to handle
susp_object-conditions, which is done through the constructor primitive.

Rules and strategies for 1ral:
:— include (library('rules.rul’)).

s_axiom(T,C,I) <=
functor (T, susp_object, 3),
functor (C, susp_object, 3),
unify (T, C)
-> (IQ[TI_]1 \- C).

s_o(Cont) <=
nonvar (X),
(Cont -> (IG[YIR] \- C))
-> (I@[susp_object (X,Name,Y) [R] \- C).

ready <= nonvar(X) ->
(_ \- answer(X)).

right 1 e <=
¥ =< Y ->
(\= X =< Y).
right_g e <=
X>=Y >
(\= X >= Y).

constructor (susp_object,3).

lral <= leftl(lral), rightl(lral), axiom(_,_,_), s_axiom(_,_,_).

rightl(8) <=
true right, right_l e, right_g e, v_right(_,S,8),
a_right(_,8), o_right(_,_,8), d_right(_,8), ready.
leftl(S) <=
s_o(S), false left(), v_left(_, ,S), a_left(_,_ ,8,8),
o left(_ , ,S,8), d_left(_,_,S8), pi_left(_, ,S).

We can now compare these two approaches with each other. The first one is a highly
specialized one while in the second one we have not performed any special search
behaviour at all. The performance and behaviour are very different, as the table below
shows.

_28 -

Number of answers lral obj
Query no 1 5 1
Query no 2 128 1
Query no 3 140 1

(Note, however, that for the 1ral strategy, we get the same answer susbtitution all the
time.)

For the queries above (1 - 3) the number of calls performed are shown in the table
below. (The missing figures for exhaustive search are due to enourmous execution
times. Compare the number of answers given above with the number of calls for the
query 1, and scale the figures for 1ral appropriately to get the figures for query 2 and

3.

lral obj
Query number First Exhaustive |First Exhaustive
answer search answer search
1 102 640 26 28
2 187 - 32 46
3 264 - 61 113

4.4 Guiding the search among the assumptions

In many applications it happens that many assumptions are applicable simultaneously. At
these points it is very desirable to reduce the search space by taking one of the applicable
assumptions and leave the others. For example consider the definition

p(X) <= bl (X).
q(X) <= b2(X).

and the sequent

p(l), g(2) \- something.
In this case there are two possibilities leading to the same sequent, namely first resolve
p (1) and then q(2), or first try q(2) and then p (1), both leading to

bl(1), b2(2) \- something.
By a few strategy definitions this kind of behaviour can be avoided. We will first
demonstrate one version that gives a plausible behaviour in most cases, and then an
extended version. These versions can for example be used in the object oriented
programming example in section 4.3. The extended version was invented during the
development of a terminological reasoning application, which can be found in [Han92].

The example definition that we are going to use here is a small, academic one, since itis
the behaviour of the meta level that is interesting.

Definition:
pl(1).
p2(2).
p3(3).

-29 -

The first version of the rule definition consists of four strategies and one proviso. ars is
the top level strategy. The ordinary axiom rule and right strategy are tried, and then the
search strategies are tried. searchl and search are mutually exclusive; searchl
handles the case when the left most term among the assumptions is applicable, and
search handles the rest of the assumptions. An assumption is applicable if the term to
the left of it is not applicable, which means that all derivations where the choosen term
has an applicable term to the left are removed.

Rules and strategies for ars:
:— include (library('rules.rul')).

ars <= axiom(_, ,_).,
right (ars),
searchl(,ars),
search(_,ars).

searchl (T,PT) <= applicable(T) -> ([T|_] \- C).
searchl (T,PT) <= leftl(T,PT).

search(T,PT) <=
(applicable (T) ,not (applicable(T1)) =-> (I@[T1,T|Rest] \- C)).
search(T,PT) <= leftl(T,PT).

leftl(T,PT) <=
false_}eft(_),vgleft(T,I,PT),aﬁleft(T,I,PT,PT),
o left(T,I,PT,PT),d left(T,I,PT),pi left(T,I,PT).
%$%% Proviso
applicable(T) :— atom(T).
applicable(T) :- functor(T,F,A),

not (F = true), constructor(F,A).

With the query ars \\- pl(X),p2(¥),p3(Z) \- q(a) we get4 possible answers
(i.e. 4 derivations). The only way to instantiate a term to the right of another term in the
antecedent is to first instantiate the term to the left, as we can see below where first x is
bound to 1, then v is bound to 2 etc, but never ¥ bound to 2 without binding x to 1;

ars \\~ pl(X),p2(Y),p3(2) \~- true.

gives the following, complete list of answers (we have compacted the set of possible
variable instantiations to tripples):

[(X,Y,2),(1,Y,2),(1,2,2),(1,2,3)]

The query arl \\- pl(X),p2(Y),p3(2) \- q(a) succeeds 16 times (i.e. 16
derivations):

((X,Y,2),(1,Y¥,2),(1,2,2),(1,2,3),(1,Y,3),(1,2,3), (X,2,2),
(1,2,Z),(1,2,3),(X,2,3),(1,2,3),(X,Y,3),(l,Y,3),(1,2,3),
(X,2,3),(1,2,3)]

The interesting choicepoints for the strategy arl are:

-30 -

14 2 d left(pl(l)) arl true,p2(_1492),p3(_1496)\-true

14 2 d left (p2(2)) arl pl(_1370),true,p3(_ 1378)\~-true
14 2 d left (p3(3)) arl pl(1248),p2(_1252),true\-true
28 5 d left(p2(2)) arl true,true,p3(2624)\~true
28 5 d_left (p3(3)) arl true,p2(_2510),true\~true
103 5 d left(pl(1)) arl true,true,p3(_4083)\-true
103 5 d left (p3(3)) arl pl(_3967),true,true\-true
178 5 d left (pl(l)) arl true,p2{ 5534),true\-true
178 5 d left (p2(2)) arl pl(5422),true,true\-true

The choicepont at call 28 is when the system chooses p1 first, the choicepoint at call 103
is when p2 is choosen first, and the choicepoint at call 178 is when p3 is choosen first.

The number of calls for these two strategies are:

arl ars

Number of calls TOTAL: 240 TOTAL: 61

By comparing the lists above, we can see that to the first query, we have no tripple
where v or z is instantiated, but not x. In the second query we have. However, this is
not a deterministic choice of an assumption in the general case, since the goal sequent

ars \\~ pl(X),p2(Y),true,p3(Z) \- true

where the applicable assumptions are underlined, has two possible choices (among the
assumptions), namely p1 (x) and p3 (x). We can see that below, where z can be bound
to 3 before x is bound to 1 (relate this list of answers with the one before).

[(XIYIZ)I (lIYIZ) r (11212)1 (11213)1 (1IY13) r (11213) r (X’YIB)I
(1,Y,3),(1,2,3)]

By introducing a meta level symbol among the assumptions, that in much behaves as a
pointer into the assumptions, it is possible to reduce the choice of an assumption to a
deterministic choice. This is done in the rule definition below. ars1 is the top level
strategy, which in the last term of the vector introduces a mark among the assumptions,
then searches the assumptions and if one applicable is found and reduced, ars1 is used
again. search tries to use the perform strategy, and if that is not possible, it proceeds
with the search. introduce_ mark just introduces the mark mark first among the
assumptions. This mark will then be moved to the right as the search is continued until
an applicable term next to the right of the mark is found. proceed with_search just
moves the mark one step to the right, i.e. exchanges mark and the term to the right of
mark, if this term is not applicable. It is this step that is the crucial step, since if the term
was applicable, this step is not allowed, and the system will not be able to proceed with
the search, which means that other, applicable terms further to the right will not be
choosen.

-31-

perform picks the term next to the right of mark, tests if it is applicable, and if so,
removes mark by applying rm_mark, and then applies the 1eft1 strategy to it. rm_mark
just removes the mark before it applies the proofterm in its argument.

Rules and strategies for arsi:

:~ include(library('rules.rul')).

arsl <= axiom(_,_,_),
right (arsl),
introduce mark (search(arsl)).

search (PT) <= perform(_, ,PT), proceed with_search(search(PT)).

introduce_mark (PT) <=
(PT => ([mark|X] \- C})
-> (X \- Q).

proceed with search(PT) <=
not (applicable(T)), % test not applicable
(PT ~> (X@[T,mark|Rest] \- C))
-> (X@([mark,T|Rest] \- C).

perform(I,T,PT) <= (applicable(T) -> (I@[mark,T|Rest] \- C)).
perform(I,T,PT) <= rm;mark(leftl(T,I,PT)).

leftl(T,I,PT) <=
false left (I), v_left(T,I,PT), a left(T,I,PT,PT),
o _left(T,I,PT,PT), d left(T,I,PT), pi_left (T,I,PT).

rm mark (PT) <=
(PT -> (X@Y \- C))
-> (X@[mark|Y] \- C).

%%% Proviso
applicable(T) :- atom(T).
applicable(T) :- functor(T,F,A),

not (F = true), constructor(F,A).

With this rule definition, we have the same behaviour as the ars strategy explained
before, except that there will be just one applicable term among the assumptions, the left
most assumption for which the applicable proviso holds. The query

arsl \\- pl(X),p2(Y),true,p3(2) \- true
now gives the complete answer list

[(XIYIZ) 14 (l!YIZ) r (1I212) r (11273)]
There is also the possibility to write other search strategies among the assumptions, but
they will be more complicated to write down. We are currently working on these
matters, and trying to improve the meta level language to support other kinds of
techniques to remove and cut away choicepoints.
Also note that in the general case one cannot use the above strategies. There are cases

when the above strategies cuts off derivations that leads to other, correct answers, i.e.
there are cases when one assumption must be reduced before another one. In other

-32-

words, the derivation depends on the outlook of the assumptions themselves, and not
the order of the assumptions.

5. Conclusion

Comparing GCLA 1I with GCLA I, GCLA II offers a much better way to implement
control and search algorithms, which is also much cleaner than in GCLA 1. By
distinguishing the control part, and making the control part separate from the declarative
part, we get a very clear and understandable programming system, where the
development of the procedural system can be performed without disturbing the
declarative part. This is an advantage, especially if several persons want to use the same
declarative database. By having a clear distinction between the object level and the meta
level we get a much nicer and clearer understanding of how system behaves. There are,
however, further developments to be done. For example it should be possible to express
such things as "if this derivation succeeds, do not try these possible derivations" etc. As
it is now, we cannot express if a derivation succeeds or fails. There are also some other
things to be elaborated on, for example meta level negation and some other meta level
language improvements. With these additional improvements we expect GCLA I to be a
good system for developing programs, especially KBS programs of various kinds.

References

[Aro90] M. Aronsson, L-H. Eriksson, A. Giredal, L. Hallnés, P. Olin, The
Programming Language GCLA: A Definitional Approach to Logic
Programming, New Generation Computing 7(4), pp. 381 - 404,
1990.

[Aro91a] M. Aronsson, GCLA User's manual, Technical Report SICS T91:21,
1991

[Aro91b] M. Aronsson, A Definitional Approach to the Combination of
Functional and Relational Programming, Research Report SICS
R91:10, 1991

[Eri92] L-H. Eriksson, A Finitary Version of the Calculus of Partial Inductive
Definitions, Extensions of Logic Programming: Proceedings of a
workshop held at SICS, Februari 1991, Springer Lecture Notes in
Artificial Intelligence.

[Hal91] L. Hallnis, Partial Inductive Definitions, Theoretical Computer
Science vol. 87 pp 115 - 142, 1991

[HS-H88] L. Hallnis, P. Schroeder-Heister, A Proof-Theoretic Approach to
Logic Programming, published in two parts in the Journal of Logic
and Computation, part I: Clauses as Rules, vol. 1(2), pp 261 - 283,
1990, part II: Programs as Definitions, vol. 1(5), pp 635 - 660, 1991.

[Han92] P. Hanschke, Terminological Reasoning and Partial Inductive
Definitions, Extensions of Logic Programming: Proceedings of a
workshop held at SICS, Februari 1991, Springer Lecture Notes in
Artificial Intelligence.

-33-

[Kre92] P. Kreuger, GCLAII, A Definitional Approach to Control, Extensions
of Logic Programming: Proceedings of a workshop held at SICS,
Februari 1991, Springer Lecture Notes in Artificial Intelligence.

[Nil82] N. Nilsson, Principles of Artificial Intelligence, Springer-Verlag,
1982.

-34 -

Appendix A

This appendix contains the inference rules and strategies that are loaded into the GCLA
II system when it is started. The file is submitted with the system together with some
other files implementing common, general inference rules and strategies. The user can
freely copy and change this file.

% Rules
true_right <= (_ \- true).
false left(I) <= (I@([falsel_] \- _).

axiom(A,C,I) <=
term(C),
term(A),
unify (C,A)
~-> (IQ[A]|_]1 \- C).

d right (C,PT) <=
atom(C),
clause(C,B),

(PT -=> (A \- B))
-> (A \- C).

d left (A, I,PT) <=
atom(A),
definiens (A,D),
(PT => (IGR[DIR] \- C))
-> (IG[AIR] \- C).

a_left((B -> Cl),I,PT1,PT2) <=
(pT1 -> (IGR \- B)),
(PT2 -> (IR[CL1|R] \= O))
> (IR[(B -> C1)|R] \- C).

a right ((E -> C),PT) <=
(PT => ([AL1|A] \- C))
-> (A \- (A1l -> C)).

o _right (1, (C1;C2),PT) <=
(PT -> (A \- Cl))
-> (A \- (Cl; C2)).
o_right(2,(Cl ; C2),PT) <=
(PT -> (A \— C2))
-> (A \- (Cl; C2)).

o _left((Cl;C2),I,PTl, PT2) <=
(PT1 -> (IG[C1IR] \- C)),
(pT2 -> (IRICZ2|R] \- C))
~> (I@[(C1l; C2)IR] \- C).

v_right ((C1,C2),PTL,PT2) <=
(PT1 -> (A \- Cl)),
(PT2 -> (A \- C2))
-> (A \- (C1l, C2)).

v_left ((C1,C2),I,PT) <=
(PT -> (I@[C1l, C2IR] \- C))
-> (I@[(C1l, C2)|R] \- C).

pi_ left ((pi X\ Cl),I,PT) <=
inst (X,C1,C2),
(PT -> (IB[C2IR] \- C))
-> (I@[(pi X\ C1)|IR] \~ C).

e
o
o

B B O et e o e T e S L i i e e e s S i s st . o

o
o\
o\

o\®
[

% Provisos

constructoxr(';',2).
constructor ((=>),2).
constructor (true,0) .
constructor(false,0) .
constructox (', ',2).
constructor ('pi',1).

o
oP

% Strategiles
gcla <= arl.
arl <= axiom(, ,_), right(arl), left(arl).
alr <= axiom(, ,_), left(alr), right(alr).
lra <= left(lra), right(lra), axiom{(_, ,).

A
r

no_left <= axiom(_,_,_), right(no_left).

right (PT) <= true right, v_right(_,PT,PT), a_right(_,PT),
o_right(_,_,PT), d_right(_,PT).

left (PT) <= false left(), v_left(_, ,PT), a_left(_,_ ,PT,PT),
o left(, ,PT,PT), d left(_,_ ,PT), pi_left(_ , ,PT).

Appendix B

This appendix contains the output from the tracer for the query arl \\- grey(p) \-
false. We have generated all 9 possible derivations.

?- arl \\- grey(P) \- false.

|

+ CALL 1 0 arl \\- grey(_47) \- false 1

+ CALL 15 3 arl \\- elephant(_47), (albino_elephant(_47)->false) \- false 1

+ CALL 26 6 arl \\- elephant(_47),albino_elephant(_47)->false \- false 1

+ CALL 38 9 arl \\- elephant(_47) \- albino_elephant(_47) 1

+ CALL 46 12 arl \\- elephant (jumbo) \- true 1

+ EXIT 46 12 arl \\- elephant (jumbo) \- true 1

+ EXIT 38 9 arl \\- elephant (jumbo) \- albino_elephant (jumbo) 1

+ CALL 50 9 arl \\- elephant (jumbo),false \~ false 1

+ EXIT 50 9 arl \\- elephant (jumbo),false \~- false 1

+ EXIT 26 6 arl \\- elephant (jumbo),albino_elephant {jumbo)~>false \- false 1

+ EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ EXIT 1 0 arl \\- grey(jumbo) \- false 1

P = jumbo ? ;

+ REDO 1 0 arl \\- grey{jumbo) \- false 1

+ REDO 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ REDO 26 6 arl \\- elephant (jumbo), albino_elephant (jumbo)->false \- false 1

+ REDO 50 9 arl \\- elephant(jumbo),false \- false 1

+ CALL 64 12 arl \\- albino_elephant (jumbo),false \~ false 1

+ EXIT 64 12 arl \\- albino_elephant (jumbo),false \- false 1

+ EXIT 50 9 arl \\- elephant (jumbo),false \- false 1

+ EXIT 26 6 arl \\- elephant (jumbo), albino_elephant (jumbo)->false \~ false 1

+ EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ EXIT 1 0 arl \\- grey{jumbo) \- false 1

P = jumbo ? ;

+ REDO 1 0 arl \\- grey{jumbo) \- false 1

+ REDO 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ REDO 26 6 arl \\- elephant (jumbo), albino_elephant (jumbo)->false \- false 1

+ REDO 50 9 arl \\~- elephant (jumbo),false \- false 1

+ REDO 64 12 arl \\~- albino_elephant (jumbo), false \~ false 1

+ CALL 78 15 arl \\- true,false \~ false 1

+ EXIT 78 15 arl \\- true,false \- false 1

+ EXIT 64 12 arl \\- albino_elephant (jumbo), false \- false 1

+ EXIT 50 9 arl \\- elephant (jumbo),false \~ false 1

+ EXIT 26 6 arl \\- elephant (jumbo), albinc_elephant (jumbo)->false \- false 1

+ EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ EXIT 1 0 arl \\- grey(jumbo) \- false 1

P = jumbo ? ;

+ REDO 1 0 arl \\- grey(jumbo) \- false 1

+ REDO 15 3 arl \\=- elephant (jumbo), (albino_elephant (jumbo)->false) \- false 1
+ REDO 26 6 arl \\=- elephant (jumbo),albino_elephant (jumbo)->false \- false 1

+ REDO 50 9 arl \\- elephant(jumbo), false \- false 1

+ REDO 64 12 arl \\- albino_elephant (jumbo), false \- false 1

+ REDO 78 15 arl \\- true,false \~ false 1l

+ FAIL 78 15 arl \\- true,false \~ false 1

+ FAIL 64 12 arl \\- albino_elephant (jumbo), false \- false 1

+ FAIL 50 9 arl \\- elephant (jumbo), false \~ false 1

+ REDO 38 9 arl \\- elephant (jumbo) \- albino elephant (jumbo) 1

+ REDO 46 12 arl \\- elephant (jumbo) \- true 1

+ CALL 105 15 arl \\- albino_elephant (jumbo) \- true 1

+ EXIT 105 15 arl \\- albino_elephant (jumbo) \- true 1

+ EXIT 46 12 arl \\- elephant (jumbo) \~ true 1

+ EXIT 38 9 arl \\~- elephant (jumbo) \- albino_elephant (jumbo) 1

+ CALL 109 9 arl \\- elephant (jumbo), false \~ false 1

+ EXIT 109 9 arl \\- elephant (jumbo),false \~ false 1

+ EXIT 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1

-iii -

+

R Tk -

T T T e T T T T T T S ST S + 4+ + +F + F ++ + 4+ + + O

B I T T -

o

EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
EXIT 1 0 arl \\- grey{jumbo) \~- false 1

= jumbo ? ;

REDO 1 0 arl \\- grey(jumbo) \- false 1

REDC 15 3 arl \\~- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
REDO 26 6 arl \\~ elephant (jumbo),albino_elephant (jumbo)->false \- false 1
REDO 109 9 arl \\- elephant (jumbo),false \- false 1

CALL 123 12 arl \\- albino_elephant (jumbo), false \- false 1

EXIT 123 12 arl \\- albino_elephant (jumbo), false \~ false 1

EXIT 109 9 arl \\- elephant (jumbo),false \~ false 1

EXIT 26 6 arl \\- elephant (jumbo),albinoc_elephant (jumbo)->false \- false 1
EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)~->false) \- false
EXIT 1 0 arl \\- grey{(jumbo) \~ false 1

= jumbo ? ;

REDO 1 0 arl \\- grey(jumbo) \- false 1

REDO 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
REDO 26 6 arl \\- elephant {(jumbo),albinoc_elephant (jumbo)->false \~ false 1
REDO 109 9 arl \\- elephant (jumbo),false \- false 1

REDO 123 12 arl \\- albino_elephant (jumbo),false \- false 1

CALL 137 15 arl \\- true,false \- false 1

EXIT 137 15 arl \\- true,false \- false 1

EXIT 123 12 arl \\- albinc_elephant (jumbo), false \- false 1

EXIT 109 9 arl \\- elephant (jumbo), false \- false 1

EXIT 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1
EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)~->false) \- false
EXIT 1 0 arl \\- grey(jumbo) \- false 1

= jumbo ? ;

REDO 1 0 arl \\- grey(jumbo) \- false 1

REDO 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
REDO 26 6 arl \\- elephant (jumbo), albino_elephant (Jjumbo)~>false \- false 1
REDO 109 9 arl \\- elephant (jumbo), false \~ false 1

REDO 123 12 arl \\- albino_elephant (jumbo), false \- false 1

REDO 137 15 arl \\~- true,false \- false 1

FAIL 137 15 arl \\- true,false \- false 1

FAIL 123 12 arl \\- albino_elephant (jumbo), false \~ false 1

FAIL 109 9 arl \\- elephant (jumbo},false \- false 1

REDO 38 9 arl \\- elephant (jumbo) \- albino_elephant (jumbo) 1

REDO 46 12 arl \\- elephant (jumbo) \=- true 1

REDO 105 15 arl \\- albinc_elephant (jumbo) \- true 1

CALL 164 18 arl \\- true \- true 1

EXIT 164 18 arl \\- true \- true 1

EXIT 105 15 arl \\- albino_elephant (jumbo) \- true 1

EXIT 46 12 arl \\~- elephant (jumbo) \- true 1

EXIT 38 9 arl \\- elephant (jumbo) \- albino_elephant (jumbo) 1

CALL 168 9 arl \\- elephant (jumbo),false \- false 1

EXIT 168 9 arl \\- elephant (jumbo),false \- false 1

EXIT 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)~->false \- false 1
EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
EXIT 1 0 arl \\- grey(jumbo} \- false 1

= jumbo ? ;

REDO 1 0 arl \\- grey(jumbo) \- false 1

REDO 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \~ false
REDO 26 6 arl \\- elephant(jumbo),albino_elephant (jumbo)->false \- false 1
REDO 168 9 arl \\~- elephant (jumbo), false \- false 1

CALL 182 12 arl \\- albino_elephant (jumbo), false \~- false 1

EXIT 182 12 arl \\- albino_elephant (jumbo), false \- false 1

EXIT 168 9 arl \\- elephant (jumbo),false \- false 1

EXIT 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1
EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)->false) \- false
EXIT 1 0 arl \\- grey{jumbo) \- false 1

= jumbo ? ;
REDO 1 0 arl \\- grey(jumbo) \- false 1

Siv -

REDO 15 3 arl \\- elephant (jumbo), (albinc_elephant (jumbo)->false) \- false 1
REDO 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1
REDO 168 9 arl \\- elephant (jumbo), false \- false 1

REDO 182 12 arl \\~- albino_elephant (jumbo), false \~ false 1

CALL 196 15 arl \\- true,false \- false 1

EXIT 196 15 arl \\- true,false \- false 1

EXIT 182 12 arl \\- albino_elephant (jumbo), false \- false 1

EXIT 168 9 arl \\- elephant (jumbo), false \- false 1

EXIT 26 6 arl \\- elephant (jumbo),albinc_elephant (jumbo)~->false \- false 1
EXIT 15 3 arl \\- elephant (jumbo), (albino_elephant (jumbo)~->false) \~- false 1
EXIT 1 0 arl \\- grey(jumbo) \~- false 1

+ 4+ 4+ o+ o+ o+ o+t

= jumbo ? ;

REDO 1 0 arl \\- grey(jumbo) \- false 1

REDO 15 3 arl \\- elephant {jumbo), (albino_elephant (jumbo)~->false) \- false 1
REDO 26 6 arl \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1
REDO 168 9 arl \\- elephant (jumbo),false \- false 1

REDO 182 12 arl \\- albino_elephant (jumbo), false \- false 1

REDO 196 15 arl \\- true,false \- false 1

FAIL 196 15 arl \\- true,false \- false 1

FAIL 182 12 arl \\- albino_elephant (jumbo), false \- false 1

FAIL 168 9 arl \\- elephant (jumbo),false \- false 1

REDO 38 9 arl \\- elephant (jumbo) \- albino_elephant (jumbo) 1

REDO 46 12 arl \\- elephant (jumbo) \- true 1

REDO 105 15 arl \\- albino_elephant (jumbo) \- true 1

REDO 164 18 arl \\- true \- true 1

FAIL 164 18 arl \\- true \- true 1

FAIL 105 15 arl \\- albino_elephant (jumbo) \- true 1

FAIL 46 12 arl \\- elephant (jumbo) \- true 1

CALL 232 12 arl \\- true;albino_elephant(clyde) \- albino_elephant (clyde) 1
CALL 240 15 arl \\=- true;albino_elephant (clyde) \- false 1

CALL 253 18 arl \\- true \- false 1l

FAIL 253 18 arl \\- true \- false 1

FAIL 240 15 arl \\- true;albino_elephant (clyde) \- false 1

CALL 275 15 arl \\- true \- albino_elephant (clyde) 1

CALL 283 18 arl \\- true \~- false 1

FAIL 283 18 arl \\- true \- false 1

FAIL 275 15 arl \\~ true \- albino elephant(clyde) 1

FAIL 232 12 arl \\~- true;albino_elephant (clyde) \- albino elephant (clyde) 1
CALL 307 12 arl \\- true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
CALL 315 15 arl \\- true;albino_elephant (dumbo) \- false 1

CALL 328 18 arl \\- true \- false 1

FAIL 328 18 arl \\- true \- false 1

FAIL 315 15 arl \\- true;albino_elephant (dumbo) \- false 1

CALL 350 15 arl \\- true \- albino_elephant (dumbo) 1

CALL 358 18 arl \\~- true \- false 1

FAIL 358 18 arl \\~ true \- false 1

FAIL 350 15 arl \\- true \- albino_elephant (dumbo) 1

FAIL 307 12 arl \\- true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
FAIL 38 9 arl \\- elephant(_47) \- albino_elephant(_47) 1

CALL 385 9 arl \\- true;albino_elephant (clyde),albino_elephant (clyde)~>false \~
alse 1

CALL 397 12 arl \\- true;albino_elephant (clyde) \- albino_elephant (clyde) 1
CALL 405 15 arl \\- true;albino_elephant (clyde) \- false 1

CALL 418 18 arl \\- true \- false 1

FAIL 418 18 arl \\- true \- false 1

FAIL 405 15 arl \\- true;albino_elephant (clyde) \- false 1

CALL 440 15 arl \\- true \- albino_elephant(clyde) 1

CALL 448 18 arl \\- true \- false 1

FAIL 448 18 arl \\- true \- false 1

FAIL 440 15 arl \\- true \- albinc_elephant (clyde) 1

FAIL 397 12 arl \\- true;albino_elephant (clyde) \- albino_elephant (clyde) 1
CALL 473 12 arl \\- true,albino_elephant (clyde)->false \- false 1

CALL 485 15 arl \\- true \- albinc_elephant (clyde) 1

CALL 493 18 arl \\- true \- false 1

FAIL 493 18 arl \\- true \- false 1

FAIL 485 15 arl \\- true \- albino_elephant(clyde) 1

B I S S S S S T T T S S S S S S T s T T T S S S S S S S S S S S e A T T I T T T !

+ FAIL 473 12 arl \\- true,albino_elephant (clyde)->false \- false 1

+ FAIL 385 9 arl \\- true;albino_elephant (clyde),albino_elephant (clyde)->false \-
false 1

+ CALL 520 9 arl \\- true;albino_elephant (dumbo),albino_elephant (dumbo)->false \~-
false 1

CALL 532 12 arl \\- true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
CALL 540 15 arl \\- true;albino_elephant (dumbo) \- false 1

CALL 553 18 arl \\- true \- false 1

FAIL 553 18 arl \\- true \- false 1

FAIL 540 15 arl \\- true;albino_elephant (dumbo) \- false 1

CALL 575 15 arl \\~- true \- albino_elephant (dumbo) 1

CALL 583 18 arl \\- true \- false 1

FAIL 583 18 arl \\- true \- false 1

FAIL 575 15 arl \\- true \- albino_elephant (dumbo) 1

FAIL 532 12 arl \\~- true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
CALL 608 12 arl \\- true,albino_elephant (dumbo)~>false \- false 1

CALL 620 15 arl \\- true \- albino_elephant (dumbo) 1

CALL 628 18 arl \\~- true \- false 1

FAIL 628 18 arl \\- true \- false 1

FAIL 620 15 arl \\- true \- albino_elephant (dumbo) 1

FAIL 608 12 arl \\- true,albino_elephant (dumbo)->false \- false 1

FAIL 520 9 arl \\- true;albino_elephant (dumbo), albinc_elephant (dumbo)->false \~-
false 1

+ FAIL 26 6 arl \\- elephant(_47),albinc_elephant (_47)~->false \- false 1

+ FAIL 15 3 arl \\~- elephant(_47), (albino_elephant (_47)->false) \- false 1

+ FAIL 1 0 arl \\- grey(47) \- false 1

B L T T T S R A S S I

no
| 2=

- Vi-

Appendix C

This appendix contains the output from the tracer for the query es \\- grey(p) \-
false.

?- es \\~- grey(P) \- false.

|

+ CALL 1 0 es \\~ grey(_45) \- false 1

+ CALL 16 5 es \\- elephant(_45), (albino_elephant (_45)->false) \- false 1

+ CALL 28 10 es \\- elephant(_45),albino_elephant (_45)->false \- false 1

+ CALL 41 15 es \\- elephant{_453) \- albino_elephant (_45) 1

+ CALL 47 18 es \\~ elephant (jumbo) \- true 1

+ EXIT 47 18 es \\- elephant (jumbo) \- true 1

+ EXIT 41 15 es \\- elephant (jumbo) \- albino_elephant (jumbo) 1

+ CALL 54 15 es \\- elephant (jumbo), false \- false 1

+ EXIT 54 15 es \\- elephant (jumbo),false \- false 1

+ EXIT 28 10 es \\- elephant (jumbo),albino_elephant (jumbo)->false \- false 1
+ EXIT 16 5 es \\~- elephant (jumbo), (albino_elephant {jumbo)->false) \- false 1
+ EXIT 1 0 es \\- grey(jumbo) \~ false 1

P = jumbo ? ;

+ REDO 1 0 es \\- grey(jumbo) \- false 1

+ REDO 16 5 es \\~ elephant (jumbo), (albino_elephant (jumbo)~>false) \- false 1
+ REDO 28 10 es \\- elephant (jumbo), albinc_elephant (jumbo)~->false \- false 1
+ REDO 54 15 es \\- elephant (jumbo), false \- false 1

+ FAIL 54 15 es \\- elephant{jumbo),false \~ false 1

+ REDO 41 15 es \\- elephant (jumbo) \- albino_elephant (jumbo) 1

+ REDO 47 18 es \\- elephant(jumbo) \- true 1

+ FAIL 47 18 es \\- elephant(jumbo) \- true 1

+ FAIL 41 15 es \\~ elephant(_45) \~- albino_elephant (_45) 1

+ CALL 69 15 es \\- true;albino_elephant (dumbo),albino_elephant (dumbo)~->false \~-

CALL 82 20 es \\~ true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
CALL 88 23 es \\=- true;albino_elephant (dumbo) \- false 1
CALL 102 28 es \\- true \- false 1
FAIL 102 28 es \\- true \- false 1
FAIL 88 23 es \\- true;albino_elephant (dumbo) \- false 1
FAIL 82 20 es \\- true;albino_elephant (dumbo) \- albino_elephant (dumbo) 1
125 20 es \\- true,albino_elephant (dumbo)->false \- false 1
CALL 138 25 es \\- true \- albino_elephant (dumbo) 1
CALL 144 28 es \\- true \- false 1
FAIL 144 28 es \\- true \- false 1
FAIL 138 25 es \\- true \- albino_elephant (dumbo) 1
FAIL 125 20 es \\- true,albino_elephant (dumbo)->false \~- false 1
FAIL 69 15 es \\=- true;albino_elephant (dumbo),albino_elephant (dumbo)->false \-
false 1
+ CALL 170 15 es \\~ true;albino_elephant (clyde),albino_elephant (clyde) ->false \-
false 1
+ CALL 183 20 es \\- true;albino_elephant(clyde) \- albino_elephant (clyde) 1
CALL 189 23 es \\- true;albino_elephant(clyde) \- false 1
CALL 203 28 es \\~- true \~- false 1
FAIL 203 28 es \\- true \- false 1
FAIL 189 23 es \\~ true;albino_elephant (clyde) \- false 1
FAIL 183 20 es \\- true;albino_elephant (clyde) \- albino_elephant (clyde) 1
CALL 226 20 es \\- true,albino_elephant (clyde)->false \- false 1
CALL 239 25 es \\- true \- albino_elephant (clyde) 1
CALL 245 28 es \\- true \- false 1
FAIL 245 28 es \\- true \- false 1
FAIL 239 25 es \\~ true \- albino_elephant (clyde) 1
FAIL 226 20 es \\~- true,albino_elephant{(clyde)~->false \~- false 1
FAIL 170 15 es \\~ true;albino_elephant (clyde),albino_elephant (clyde)->false \-
false 1
+ FAIL 28 10 es \\~ elephant(_45),albino_elephant(_45)->false \- false 1
+ FAIL 16 5 es \\- elephant(_45), (albino_elephant (_45)->false) \- false 1
+ FAIL 1 0 es \\~- grey(_45) \- false 1

B T T S S S S S A S
Q
>
=
=

+ o+ + + + + + o+ F

-vii -

- vill -

