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Abstract In order to obtain a robust performance, the estab-
lished approach when using radial basis function networks
(RBF) as metamodels is to add a posteriori bias which is
defined by extra orthogonality constraints. We mean that
this is not needed, instead the bias can simply be set a pri-
ori by using the normal equation, i.e. the bias becomes the
corresponding regression model. In this paper we demon-
strate that the performance of our suggested approach with
a priori bias is in general as good as, or even for many
test examples better than, the performance of RBF with
a posteriori bias. Using our approach, it is clear that the
global response is modelled with the bias and that the details
are captured with radial basis functions. The accuracy of
the two approaches are investigated by using multiple test
functions with different degrees of dimensionality. Fur-
thermore, several modeling criteria, such as the type of
radial basis functions used in the RBFs, dimension of the
test functions, sampling techniques and size of samples,
are considered to study their affect on the performance of
the approaches. The power of RBF with a priori bias for
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Box 408, 541 28 Skövde, Sweden

surrogate based design optimization is also demonstrated by
solving an established engineering benchmark of a welded
beam and another benchmark for different sampling sets
generated by successive screening, random, Latin hyper-
cube and Hammersley sampling, respectively. The results
obtained by evaluation of the performance metrics, the mod-
eling criteria and the presented optimal solutions, demon-
strate promising potentials of our RBF with a priori bias, in
addition to the simplicity and straight-forward use of the
approach.

Keywords Metamodeling · Radial basis function · Design
optimization · Design of experiment

1 Introduction

With exponentially increasing computing power, design-
ers have today the possibility by simulation driven product
development to create new innovative complex products
in a short time. In addition, simulation based design also
reduces the cost of product development by eliminating the
need of creating several physical prototypes. Furthermore,
a designer can create an optimized design with respect to
multiple objectives with several constraints and design vari-
ables. However, the models and simulations, particularly
those pertained in multidisciplinary design optimization
(MDO), can be very complex and computationally expen-
sive, see e.g. the multi-objective optimization of a disc
brake in Amouzgar et al. (2013). Surrogate or metamod-
els have been accepted widely in the MDO community to
deal with this issue. A metamodel is an explicit approxima-
tion function that predicts the response of a computational
expensive simulation based model such as a non-linear
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finite element model. It also develops a relation between
the input variables and their corresponding responses. In
general, the aim of a metamodel is to create an approxima-
tion function of the original function over a given design
domain. Many metamodeling methods have been developed
for metamodel based design optimization problems. Some
of the most recognized and studied metamodels are response
surface methodology (RSM) or polynomial regression (Box
and Wilson 1951), Kriging (Sacks et al. 1989), radial basis
functions (Hardy 1971), support vector regression (SVR)
(Vapnik et al. 1996) and artificial neural networks (Haykin
1998). Extensive surveys and reviews of different meta-
modeling methods and their applications are e.g. given by
Simpson et al. (2001a, b, 2008), Wang and Shan (2007) and
Forrester and Keane (2009).

Several comparative studies, investigating the accuracy
and effectiveness of various surrogate models, can be found
in the literature. However, one cannot find an agreement
on the dominance of one specific method over others. In
an early study, Simpson et al. (1998) compared second-
order response surfaces with Kriging. The metamodels were
applied on a multidisciplinary design problem and four
optimization problems. Jin et al. (2001) conducted a sys-
tematic comparison study of four different metamodeling
techniques: polynomial regression, Kriging, multivariate
adaptive regression splines and radial basis function. They
used 13 mathematical test functions and an engineering test
problem considering various characteristics of the sample
data and evaluation criteria. They concluded that in over-
all RBF performed the best for both large and small scale
problems with high-order of non-linearity. Fang et al. (2005)
studied RSM and RBF to find the best method for mod-
eling highly non-linear responses found in impact related
problems. They also compared the RSM and RBF models
with a highly non-linear test function. Despite the compu-
tation cost of RBF, they concluded dominance of RBF over
RSM in such optimization problems. Mullur and Messac
(2006) compared extended radial basis function (E-RBF),
with three other approaches; RSM, RBF and Kriging. A
number of modelling criteria including problem dimension,
sampling technique, sample size and performance criteria
were employed. The E-RBF was identified as the superior
method since parameter setting was avoided and the method
resulted in an accurate metamodel without a significant
increase in computation time. Kim et al. (2009) performed
a comparative study of four metamodeling techniques using
six mathematical functions and evaluated the results by
root mean squared error. Kriging and moving least squares
showed promising results in that study. In another study by
Zhao and Xue (2010), four metamodeling methods are com-
pared by considering three characteristics of quality of the
sample (sample size, uniformity and noise) and four per-
formance measures (accuracy, confidence, robustness and

efficiency). Backlund et al. (2012) studied the accuracy of
RBF, Kriging and support vector regression (SVR) with
respect to their capability in approximating base functions
with large number of variables and variant modality. The
conclusion was that Kriging appeared to be the dominant
method in its ability to approximate accurately with fewer
or equivalent number of training points. Also, unlike RBF
and SVR, the parameter tuning in Kriging was automati-
cally done during training process. RBF was found to be the
slowest in building the model with large number of train-
ing points. In contrast, SVR was the fastest in large scale
multi-modal problems.

In most of the previously conducted comparison studies,
RBF has shown to perform well in different test problem
and engineering applications. Therefore, in this paper, we
don’t recognize a need to compare RBF with other meta-
modeling techniques again. Instead we focus on a detailed
comprehensive comparison of our proposed RBF with a pri-
ori bias with the classical augmented RBF (RBF with a
posteriori bias). The factors that are present during the con-
struction of a metamodel (modeling criteria), range from
the dimension of the problem, the type of radial basis func-
tions used in RBF, the sampling technique and sample size.
The evaluation of the modeling criteria and their affect on
the accuracy, performance and robustness of a metamodel
will help the designer to chose an appropriate metamodeling
technique for their specific application. A recent compar-
ison study of these two approaches have been conducted
by the authors Amouzgar and Strömberg (2014). The pre-
liminary results revealed the potential of RBF with a priori
bias in predicting the test problem values. This potential is
evaluated in detail in this paper for nine established math-
ematical test functions. A pre-study on the performance of
our RBF with a priori bias in metamodel based design opti-
mization is also performed for two benchmarks. The results
clearly demonstrate that our RBF with a priori bias is most
attractive for the choice of surrogate model in MDO.

2 Radial basis functions networks

Radial basis functions were first used by Hardy (1971)
for multivariate data interpolation. He proposed RBFs as
approximation functions by solving multi-quadratic equa-
tions of topography based on coordinate data with interpo-
lation. A radial basis function network of ingoing variables
xi collected in x can be written as

f (x) =
N�∑

i=1

�i(x)αi + b(x), (1)

where f = f (x) is the outgoing response of the network,
�i = �i(x) represents the radial basis functions, N� is the
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Fig. 1 aA radial basis functions
network; b the Gauss function

(a) (b)

number of radial basis functions, αi are weights and b =
b(x) is a bias. The network is depicted in Fig. 1.

Examples of popular radial basis functions are

Linear: �i(r) = r,

Cubic: �i(r) = r3,

Gaussian: �i(r) = e−θi r
2
, 0 ≤ θi ≤ 1,

Quadratic: �i(r) =
√

r2 + θ2i , 0 ≤ θi ≤ 1, (2)

where θi represents the shape parameters and

r(x) =
√

(x − ci )T (x − ci ) (3)

is the radial distance. The shape parameters controls the
width of the radial basis functions. A radial basis function
with a small value of θi gives a narrower effect on the sur-
rounding region. In other words, the nearby points of an
unknown point will affect the prediction of the response
on that point. In this case the risk of overfitting will occur,
which means the sample points will influence only on a very
close neighbourhood. An overfitted response surface does
not capture the true function accurately, it rather describes
the noise, even in noise free data sets. ci is the center point
for each radial basis function. The number of center points
is commonly set equal to the number of sample points. We
have found that using the sample points as the center points
will usually result to a more accurate model.

In this work we consider the bias to be a polynomial func-
tion, which is considered to be known either a priori or a
posteriori. The bias is formulated as

b =
Nβ∑

i=1

ξi(x)βi, (4)

where ξi(x) represents the polynomial basis functions and
βi are constants. Nβ is the number of terms in the polyno-
mial function.

Thus, for a particular signal x̂k the outcome of the
network can be written as

fk = f (x̂k) =
N�∑

i=1

Akiαi +
Nβ∑

i=1

Bkiβi, (5)

where

Aki = �i(x̂k) and Bki = ξi(x̂k). (6)

Furthermore, for a set of signals, the corresponding outgo-
ing responses f = {fi} of the network can be formulated
compactly as

f = Aα + Bβ, (7)

where α = {αi}, β = {βi}, A = [Aij ] and B = [Bij ].

2.1 Bias known a priori

We suggest to set up the RBF in (1) by treating the bias
as known a priori. This is presented here. The established
approach by letting the bias be unknown is presented next.

The network in (1) is trained in order to fit a set of known
data {x̂k, f̂k}. We assume that the number of data is Nd

and we collect all f̂k in f̂ . The training is performed by
minimizing the error

ε = f − f̂ (8)

in the least squares sense. We begin by considering this
problem when the constants β = β̂ are known a priori. The
minimization problem then reads

min
α

1

2

(
Aα − (f̂ − Bβ̂)

)T (
Aα − (f̂ − Bβ̂)

)
. (9)

The solution to this problem is given by

α̂ =
(
AT A

)−1
AT

(
f̂ − Bβ̂

)
. (10)

An obvious possibility to define β̂ a priori, which is used
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in this work, is to use the following optimal regression
coefficients:

β̂ =
(
BT B

)−1
BT f̂ . (11)

2.2 Bias known a posteriori

If the bias is considered not to be known a priori, then (9)
modifies to

min
(α,β)

1

2

(
Aα + Bβ − f̂

)T (
Aα + Bβ − f̂

)
. (12)

Furthermore, if we also assume that N� + Nβ > Nd , then
the following orthogonality constraint is introduced:

N�∑

i=1

ξj (ci )αi = 0, j = 1, . . . , Nβ. (13)

This can be written on matrix format as

RT α = 0, (14)

where

R = [Rij ], Rij = ξj (ci ). (15)

In conclusion, for a bias known a posteriori, we have to
solve the following problem:

⎧
⎨

⎩
min
(α,β)

1

2

(
Aα + Bβ − f̂

)T (
Aα + Bβ − f̂

)

s.t. RT α = 0.
(16)

The corresponding Lagrangian function is given by

L (α, β,λ) = 1

2

(
Aα + Bβ − f̂

)T (
Aα + Bβ − f̂

)
+ λT RT α. (17)

The necessary optimality conditions become

∂L

∂α
= AT (Aα + Bβ − f̂ ) + Rλ = 0, (18)

∂L

∂β
= BT (Aα + Bβ − f̂ ) = 0,

∂L

∂λ
= RT α = 0.

The optimality conditions in (18) can also be written on
matrix format as
⎡

⎣
AT A AT B R

BT A BT B 0
RT 0 0

⎤

⎦

⎧
⎨

⎩

α

β

λ

⎫
⎬

⎭ =
⎧
⎨

⎩

AT f̂

BT f̂

0

⎫
⎬

⎭ . (19)

By solving this system of equations, the radial basis function
network with a bias known a posteriori is established.

If the center points ci are chosen to be equal x̂i , then
R = B, the network becomes an interpolation and (19) can
be reduced to
[

A B

BT 0

] {
α

β

}
=

{
f̂

0

}
. (20)

This is the established approach in setting the RBF in (1).
We suggest one can simply use (10) and (11), which are
nothing more than two normal equations; (10) is the nor-
mal equation to (9) and (11) is the normal equation to
the corresponding regression problem. Obviously, the two
approaches will produce different RBFs. This is demon-
strated in Fig. 2, where the biases are compared using both
approaches for the same benchmark problem. In the follow-
ing the performance of theses two approaches are studied in
detail. Further on in the present paper, RBF with the bias
known a posteriori is briefly called a posteriori RBF and
abbreviated by RBFpos , and radial basis functions with bias
known a priori is called a priori RBF and abbreviated by
RBFpri .

(a)
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Fig. 2 The bias plotted for test function 4 using both approaches: (a) RBF with a priori known bias, (b) RBF with a posteriori known bias
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3 Test functions

The comparison of the two RBF approaches are based on
9 different mathematical test functions presented below.
These test functions are commonly used as benchmarks for
unconstrained global optimization problems.

1. Branin-Hoo function (Branin 1972)

f1 = 2(x2− 5.1x2
1

4π2
+ 5x1

π
−6)+10(1− 1

8π
) cos(x1)+10.

(21)

2. Goldstein-Price function (Goldstein and Price 1971)

f2 = (
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1 − 14x2
+6x1x2 + 3x2

2

))

× (
30 + (2x1 − 3x2)2

(
18 − 32x1 + 12x2

1 + 48x2
−36x1x2 + 27x2

2

))
.

(22)

3. Rastrigin function

f3 = 20 +
N∑

i=1

x2
i − 10 cos(2πxi). (23)

In this study, the Rastrigin function with 2 variables is
used (N=2).

4. Three-Hump Camel function

f4 = 2x2
1 − 1.05x4

1 + x6
1

6
+ x1x2 + x2

2 . (24)

5. Colville function

f5 = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1).

(25)

6. Math 1

f6 = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7.

(26)

7. Rosenbrock-10 function (Rosenbrock 1960)

f7 =
N−1∑

n=1

(
100(xn+1 − x2

n)2 + (xn − 1)2
)

. (27)

In this study, the Rosenbrock function with 10 variables
is used (N=10).

8. Math 2 (A 10-variable mathematical function)

f8 =
10∑

m=1

(
3

10
+ sin(

16

15
xm − 1) + sin(

16

15
xm − 1)2

)
.

(28)

9. Math 3 (A 16-variable mathematical function) (Jin et al.
2001)

f9 =
16∑

m=1

16∑

n=1

amn(x
2
m + xm + 1)(x2

n + xn + 1), (29)

where a is defined in Jin et al. (2001).

The properties of the test functions are summarized in
Table 1.

4 Modelling and performance criteria for
comparison

Standard statistical error analysis is used to evaluate the
accuracy of the the two RBF approaches. Details of this
analysis are presented in this section.

4.1 Performance metrics

The two standard performance metrics are applied to the off-
design test points: (i) Root Mean Squared Error (RMSE)
and (ii) Maximum Absolute Error (MAE). The lower the
RMSE and MAE values, the more accurate the metamodel
will be. The aim is to have these two error measures as near
to zero as possible.

Table 1 Mathematical test functions

Function Function No. of Design

name variables range(s)

f1 Branin-Hoo 2 x1 : [−5, 10], x2 : [0, 15]
f2 Goldstein-Price 2 x1, x2 : [−2, 2]
f3 Rastrigin 2 x1, x2 : [−5.12, 5.12]
f4 Three-Hump Camel 2 x1, x2 : [−5, 5]
f5 Colville 4 xi : [−10, 10], i = 1, 2...4

f6 Math 1 7 xi : [−10, 10], i = 1, 2...7

f7 Math 2 10 xi : [−1, 1], i = 1, 2...10

f8 Rosenbrock-10 10 xi : [−5, 10], i = 1, 2...10

f9 Math 3 16 xi : [−1, 1], i = 1, 2...16
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The RMSE is calculated by

RMSE =

√√√√
∑n

i=1

(
f̂i − fi

)2

n
(30)

and MAE is defined by

MAE = max|f̂i − fi |, (31)

where n is the number of off-design test points selected to
evaluate the model, f̂i is the exact function value at the
ith test point and fi represents the corresponding predicted
function value.

RMSE and MAE are typically at the same order of the
actual function values. These error measures will not indi-
cate the relative performance quality of the RBFs across
different functions independently. Therefore, to compare the
performance measures of the two approaches over test func-
tions, the normalized values of the two errors, NRMSE and
NMAE, by using the actual function values, are calculated
by

NRMSE =

√√√√√√

∑n
i=1

(
f̂i − fi

)2

∑n
i=1

(
f̂i

)2 , (32)

NMAE = max|f̂i − fi |√
1
n

∑n
i=1

(
f̂i − f̄i

)2
, (33)

where f̄ denotes the mean of the actual function values at
the test points.

In addition, the NRMSE and NMAE of a priori RBF is
compared to the a posteriori RBF approach by defining the
corresponding relative differences. The relative difference
in NRMSE (DNRMSE) of a posteriori RBF is given by

DNRMSE
RBFpos

= NRMSERBFpos − NRMSERBFpri

NRMSERBFpri

×100%,

(34)

and the relative difference in NMAE (DNMAE) of a posteri-
ori RBF is defined by

DNMAE
RBFpos

= NMAERBFpos − NMAERBFpri

NMAERBFpri

×100%, (35)

where NRMSE and NMAE values of the RBFpos approach
are referred by NRMSERBFpos and NMAERBFpos ; and
NRMSERBFpri

and NMAERBFpri
are the corresponding

NRMSE and NMAE values of the RBFpri approach.

4.2 Radial basis functions

Several different radial basis functions can be used in con-
structing the RBF, as mentioned in Section 2. Each will
yield to a different result depending to the nature of the

problem. However, in real world applications, the math-
ematical properties of the problem is usually not known
in advance. Thus, a designer needs a robust choice of
radial basis function which is as independent as possible
to the nature of the problem and will result to a accept-
ably accurate metamodel. In this paper, four different radial
basis functions: (i) linear, (ii) cubic, (iii) Gaussian, and (iv)
quadratic, formulated in (2), are used to study the effect of
radial basis functions on the accuracy of metamodels.

4.3 Sampling techniques

Sampling techniques are used to create DoEs for which
the particular RBF then is fitted to. A robust sampling
technique is desired for a designer to avoid dependencies
to sampling techniques, as much as possible, for different
problems. In other words, one would like to have a meta-
modeling technique that is as independent as possible to
the sampling technique. In this study, three different sam-
pling techniques are chosen: (i) Random sampling (RND),
(ii) Latin hypercube sampling (LHS) and (iii) Hammersley
sequence sampling (HSS) and their effects on the accuracy
of the two approaches are investigated. For the optimiza-
tion problems studied at the end, we also compare these
sampling techniques to a successive screening approach for
generating appropriate DoEs.

In random sampling, a desired set of uniformly dis-
tributed random numbers within the variable bounds of each
test function is chosen. As expected there is no uniformity in
the created set of DoE. The Latin hypercube sampling tech-
nique creates samples that are relatively uniform in each sin-
gle dimension while subsequent dimensions are randomly
paired to fit a m-dimensional cube . LHS can be regarded as
a constrained Monte Carlo sampling scheme developed by
McKay et al. (1979) specifically for computer experiments.
Hammersley sequence sampling produces more uniform
samples over the m-dimensional space than LHS. This can
be seen in Fig. 3 which illustrates the uniformity of a set
of 15 sample points over a unit square, using RND, LHS
and HSS. Hammersley sequence sampling uses a low dis-
crepancy sequence (Hammersley sequence) to uniformly
place N points in a m-dimensional hypercube given by the
following sequence:

Zm(n) =
( n

N
, φR1 (n), φR2 (n), ..., φRm−1 (n)

)
, n = 1, 2, ..., N,

(36)

where R1, R2, ..., Rm−1 are the first m − 1 prime numbers.
φR(n) are constructed by reversing the order of the digits of
any integer, written in radix-R notation, around the decimal
points. In this work, HSS is coded in Matlab based on the
theory in the original paper by Kalagnanam and Diwekar
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Fig. 3 Uniformity of different sampling techniques: (a) RND, (b) LHS, (c) HSS

(1997), where detailed definition and theory of Hammersley
points can be found.

4.4 Size of samples

The DoE size (size of samples) has an important effect on
choosing an accurate surrogate model. In general, increas-
ing the size of DoE will improve the quality of metamodels
when using the RBF approach, however over fitting is an
critical issue in these approaches. Three different sample
size are used in this paper: (i) Low, (ii) Medium and (iii)
High. The number of samples for each sampling group is
proportional to a reference value for low and high dimension
problems. The number of coefficients k = (m+1)(m+2)/2
in a second order polynomial with m number of variables is
used as a reference. For all the test functions the number of
DoE is chosen as a coefficient of k. The sample size for low
dimension test function are: (i) 1.5k for low sample size, (ii)
3.5k for medium sample size equals, and (iii) 6k for high
sample size. High dimensional test functions have the size
of DoE defined as: i) 1.5k for low sample size, (ii) 2.5k for
medium sample size, and (iii) 5k for high sample size.

4.5 Test functions dimensionality

Dimension of a test function or the number of the vari-
ables in a problem, is one of the most important properties
in generating an accurate surrogate model. In order to
investigate the effect of this modelling criteria on the two
approaches we divided the test functions into two cate-
gories: (i) Low, where the number of variables are less
than or equal to 4, and (ii) High, for test functions with
the number of variables of more than 4. Labelling the sec-
ond group by “high”, implies the relative meaning of higher
number of variables compared to the first group. Otherwise,
high dimensional engineering problems generally consist
of considerable higher number of variables. The results
are grouped separately for low and high dimension test

functions in all modeling criteria. Our goal is that a final
conclusion can be drawn by studying the results.

5 Comparison procedure

In this section, we describe the procedure used to com-
pare the two metamodeling approaches (RBFpri , RBFpos)
under multiple modeling criteria mentioned in previous sec-
tions. The comparison is based on the 9 mathematical test
functions and the performance metrics described in previ-
ous sections. We summarize the comparison procedure into
6 steps as follow:

– Step 1: The number of DoEs is determined based on
the three sample size groups (low, medium and high) in
Table 2, for each test function.

– Step 2: The design domains are mapped linearly
between 0 and 1 (unit hypercube). The surrogate mod-
els are fitted on the mapped variables by using the two
approaches. For calculating the performance metrics the
metamodel is mapped back to the original space.

– Step 3: To avoid any probable sensitivity of metamodels
to a specific DoE, 50 distinctive sample sets are gener-
ated for each sample size of step 1 by using RND and
LHS described in the previous section. The sensitivity
of surrogate models to a specific DoE is avoided to a
great extent. Since HSS technique is deterministic, only
one sample set is generated by using this method for
each sample size. The Latin Hypercube sampling tech-
niques (LHS) is performed by using theMatlab function
“lhsdesign”. The Latin hypercube samples are created
with 20 iterations to maximize the minimum distance
between points. 50 different sets of sample points are
created for each sample size by using the LHS and the
random (RND) sampling technique. The Hammersely
(HSS) samples, are created from Hammersley quasir-
andom sequence using successive primes as bases by
using an in-house Matlab code.
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Table 2 Modeling criteria of test functions

Function Function No. of Problem Sample size No. of

name variables dimension Low Medium High test points

f1 Branin-Hoo 2 Low 9 30 60 1000

f2 Goldstein-Price 2 Low 9 30 60 1000

f3 Rastrigin 2 Low 9 30 60 1000

f4 Three-Hump Camel 2 Low 9 30 60 1000

f5 Colville 4 Low 23 75 150 1000

f6 Math 1 7 High 54 90 180 1000

f7 Math 2 10 High 99 165 330 1000

f8 Rosenbrock-10 10 High 99 165 330 1000

f9 Math 3 16 High 229 380 765 1000

– Step 4: Metamodels are constructed using the two RBF
approaches (RBFpri and RBFpos) with each of the
four different radial basis functions (linear, cubic, Guas-
sian and quadratic) to be compared for each set of DoE
generated by the three sampling techniques. Therefore,
for each test function 2 (RBF approaches) × 4 (radial
basis functions) × 3 (sampling techniques) × 3 (sample
sizes) × 50 (set of DoE) = 3600 surrogate models are
constructed.

– Step 5: 1000 test points are randomly selected within
the design space. The exact function value f̂i and the
predicted function value fi at each test point is calcu-
lated. RMSE, MAE, and the corresponding normalized
values are computed by using (30) to (33). The aver-
age of the normalized errors is calculated across the
50 sample sets. The average of the normalized root
mean squared and maximum absolute error are simply
shown by NRMSE and NMAE in this paper. Finally,
the relative difference measures of the computed aver-
age errors, NRMSE and NMAE for RBFpos are
calculated by using (34) and (35).

– Step 6: The procedure from step 1 to 5 is repeated for all
test problems. In addition to the mean normalized errors
(NRMSE and NMAE), the average of low dimen-
sion problems (the first five test functions) denoted by
“Ave. Low”, the average of high dimension problems
(test functions 6 to 9) expressed by “Ave. High” and the
average error metrics of all 9 test functions shown by
“Ave. All” are computed for the surrogate approaches
using different sampling techniques.

It should be noted that, because the variables are mapped
to a unit cube (in step 2), the parameter setting can be
done without considering the magnitude of the design
variables. Thus, the parameter θ used in the radial basis
functions in (2) is set to one (θ = 1). The bias chosen
for this study, in (4), is a quadratic polynomial with 6
terms.

6 Results and discussion

In this section, the results gathered from the metamodels
constructed according to the comparison procedure in pre-
vious section are presented. The effect of each modeling
criteria is discussed by comparing the two main error mea-
sures, NRMSE and NMAE, for the two RBF approaches
by presenting them in several tables and charts. Including
all modeling criteria in the comparison study of each cri-
teria for all test functions requires an extensive and very
detailed results section which should incorporate all 3600
surrogate models. This is out of scope of this work and can
be the topic of future studies. Therefore, for studying the
effect of each modeling criteria, a specific selection of other
criteria is chosen. They are mentioned in the forthcoming
sections.

Before presenting the results, it is worth mentioning that
the computational cost of the proposed RBFpri is less than
RBFpos . This has been investigated by calculating the train-
ing time of the two approaches for test functions 3 and 8
with 100 variables and 15453 sampling points by using the
cubic radial basis function and HSS sampling method. The
computational times related to f3 are 346.67 and 396.97
seconds for RBFpri and RBFpos , respectively. Test func-
tion 8 is trained in 350.48 and 591.76 seconds by using
RBFpri and RBFpos , respectively.

6.1 Effect of basis functions

Table 3 shows the NRMSE and NMAE values of high
sample size and LHS sampling technique of RBFpri and
RBFpos by using the four different basis functions across
all test problems. The bold faced values highlight the lowest
errors for each test function. It can be seen that the minimum
errors are varied through different basis functions between
the test functions. However, cubic basis function results in
lower values in both NRMSE and NMAE for f1, f8 and f9.
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Table 3 NRMSE and NMAE (LHS sampling with high sample size)

Test function RBF approach NRMSE NMAE

Linear Cubic Gaussian Quadratic Linear Cubic Gaussian Quadratic

f1 RBFpri 0.1908 0.0952 0.4538 0.1349 1.8655 0.8358 6.0043 1.5904

RBFpos 0.1951 0.0975 0.1979 0.4017 2.5765 0.9711 2.5429 6.3368

f2 RBFpri 0.3158 0.2594 0.1874 0.1620 3.0204 2.4426 1.9849 1.5635

RBFpos 0.3735 0.2496 0.3674 0.1769 3.6027 2.4930 3.5192 1.8219

f3 RBFpri 0.3080 0.4122 8.1544 8.1544 2.3752 4.7238 225.677 87.9028

RBFpos 0.3067 0.4162 0.3078 10.9940 2.4914 4.2085 2.4926 312.287

f4 RBFpri 0.3409 0.2634 0.1184 0.1521 2.0918 1.7894 1.3465 1.4218

RBFpos 0.4612 0.2709 0.4538 0.1473 3.0001 1.9679 3.0208 1.6017

f5 RBFpri 0.2012 0.1967 0.1590 0.1752 1.2435 1.2760 1.4980 1.3941

RBFpos 0.3220 0.2146 0.3219 0.1767 2.4984 1.5238 2.4598 1.6206

f6 RBFpri 0.4469 0.5012 0.6332 0.5617 2.1897 2.5543 3.3058 2.9341

RBFpos 0.6063 0.5254 0.7355 0.6154 3.1961 2.8564 4.1352 3.3001

f7 RBFpri 0.1249 0.1185 0.1247 0.1178 3.1090 2.9903 3.3601 3.0411

RBFpos 0.1162 0.1175 0.1162 0.1141 2.7253 2.9346 2.7001 2.9427

f8 RBFpri 0.1683 0.1646 0.1741 0.1659 1.1983 1.2398 1.3317 1.2620

RBFpos 0.1842 0.1653 0.1847 0.1697 1.4382 1.2617 1.5064 1.3617

f9 RBFpri 0.0211 0.0190 0.0215 0.0196 0.4572 0.3441 0.4860 0.3834

RBFpos 0.0329 0.0209 0.0388 0.0248 1.0555 0.4795 1.5252 0.7643

Also by studying and comparing the results obtained from
all 3600 constructed metamodels one can conclude that the
cubic basis function is the preferred choice, because of it’s
robust behaviour under different criteria, when there is no
prior knowledge on the mathematical property of the prob-
lem. This may be because of lack of any extra parameter in
the cubic radial basis function. Thus, parameter setting and

finding the optimal shape parameter is not required in cubic
radial basis function.

It is cumbersome to compare the two approaches under
each modeling criteria by using all the radial basis func-
tions. Therefore, for each test function and modeling criteria
a radial basis function is chosen, and the two metamodels
are constructed by using that radial basis function. Table 4

Table 4 Summary of chosen basis functions

Test function Sampling technique Sample size Problem dimension Overall accuracy

f1 Cubic Cubic Cubic Cubic

f2 Quadratic Quadratic Quadratic Quadratic

f3 Linear Cubic Cubic Linear

f4 Cubic Cubic Cubic Quadratic

f5 Quadratic Cubic Cubic Cubic

f6 Cubic Cubic Cubic Cubic

f7 Cubic Cubic Cubic Cubic

f8 Cubic Cubic Cubic Cubic

f9 Cubic Cubic Cubic Cubic
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summarizes the chosen radial basis functions for each test
function and modeling criteria.

In cases where the best performed basis function is dif-
ferent for the two approaches under a modeling criteria, the
basis function which performed better by using the RBFpos

is selected. This will enable a more reliable comparison
between the two approaches.

6.2 Effect of sampling technique

The error measures of surrogate models constructed by
the two approaches using the three sampling techniques
are shown in Table 5. The values are extracted based on
the basis functions chosen according to Table 4. Figure 4
depicts a summary of the results in Table 5 by compar-
ing the performance metrics of “Ave. Low”, “Ave. High”
and “Ave. All” rows. By observing the NRMSE values in
Fig. 4a, the lowest errors for both approaches correspond

to the HSS technique followed by the LHS and the ran-
dom sampling technique which has the highest values for
NRMSE. The only exceptions where the LHS generate a
better metamodel, are in test function 3 (f3) and the last high
dimensional test function (f9). Considering the NMAE val-
ues in Fig. 4b, the HSS method yields to the lowest errors.
Also, the low dimension problems perform better with ran-
dom sampling technique in comparison to LHS technique.
Both RBFpri and RBFpos perform better when LHS sam-
pling technique is used in high dimension problems (Fig. 4),
however this gain is marginal compared to the two other
techniques.

The “ave. all” bars in Fig. 4a and b along with the data
in Table 5, show 4.7 % and 6.8 % improve in NRMSE
and NMAE when using HSS technique instead of LHS
in RBFpri approach. While these values are 11.1 % and
14.3% for theRBFpos approach. The advantage ofRBFpri

over RBFpos , as being more robust in terms of NRMSE and

Table 5 NRMSE and NMAE of each sampling technique (high sample size)

Test function RBF approach NRMSE NMAE

RND LHS HSS RND LHS HSS

f1 RBFpri 0.1171 0.0952 0.0747 1.0179 0.8358 0.8646

RBFpos 0.1221 0.0975 0.0752 1.1759 0.9711 1.3284

f2 RBFpri 0.2365 0.1620 0.1397 2.0912 1.5635 1.9509

RBFpos 0.3110 0.1769 0.1602 3.1755 1.8219 2.3215

f3 RBFpri 0.3164 0.3080 0.3144 2.5913 4.7238 2.1904

RBFpos 0.3117 0.3067 0.3098 2.5876 4.2085 2.4636

f4 RBFpri 0.3250 0.2634 0.1126 2.2031 1.7894 0.7961

RBFpos 0.3270 0.2709 0.1260 2.2347 1.9679 1.1646

f5 RBFpri 0.1853 0.1752 0.1649 1.3390 1.2760 1.3270

RBFpos 0.1863 0.1767 0.1730 1.6783 2.8564 1.6052

Average Low RBFpri 0.2361 0.2008 0.1613 1.8485 2.0377 1.4258

RBFpos 0.2516 0.2058 0.1688 2.1704 2.3652 1.7767

f6 RBFpri 0.5021 0.5012 0.4839 2.5461 2.5543 2.6711

RBFpos 0.5300 0.5254 0.5090 2.8477 2.8564 2.7938

f7 RBFpri 0.1196 0.1185 0.1138 3.0491 2.9903 2.9283

RBFpos 0.1186 0.1175 0.1134 2.9861 2.9346 2.8446

f8 RBFpri 0.1669 0.1646 0.1586 1.2700 1.2398 1.3377

RBFpos 0.1674 0.1653 0.1615 1.2915 1.2617 1.4356

f9 RBFpri 0.0192 0.0190 0.1586 0.3513 0.3441 2.0628

RBFpos 0.0209 0.0209 0.0233 0.4878 0.4795 0.6263

Average High RBFpri 0.2020 0.2008 0.2287 1.8041 1.7821 2.2500

RBFpos 0.2092 0.2073 0.2018 1.9032 1.8831 1.9251

Average all RBFpri 0.2209 0.2008 0.1913 1.8288 1.9241 1.7921

RBFpos 0.2328 0.2064 0.1835 2.0517 2.1509 1.8426
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(a) (b)

Fig. 4 Comparison of different sampling techniques: (a) normalized root mean squared error (RMSE); (b) normalized maximum absolute error
(NMAE)

NMAE with regards to the change of sampling technique
can be seen in the aforementioned percentages.

6.3 Effect of sampling size

Figure 5a depicts the NRMSE values of “Ave. Low”, “Ave.
High” and “Ave. all” for the three different sample sizes
by using the LHS sampling technique, while Fig. 5b shows
the similar NMAE values. Both metamodeling approaches
will improve in quality with increasing sample size, regard-
less of the problem’s dimension. Table 6 shows the relative
differences (in percentage) of NMRSE and NMAE com-
paring the RBFpri and RBFpos with regards to the dif-
ferent sample size. The RBFpos approach performs better
than RBFpri with low sample size considering both error
metrics, which the negative percentage values in Table 6
reveals the exact degree of superiority. However, by increas-
ing the sample size to medium and high the performance
changes and RBFpri appears to be the dominant approach.
This advantage is noticeable in the NMAE values, in con-
trast to the marginal improvement of NRMSE values when

usingRBFpri . Specially in high dimensional problems with
medium sample size the relative difference is less than one
percent (0.74 %). By looking at the “Ave. All” row of
Table 6 we can observe a 13.2 % improvement in NMAE
value by usingRBFpri with high sample size and 4 % better
accuracy in NRMSE value.

6.4 Effect of dimension

The effect of test function’s dimension on metamodel
performance can be studied by summarizing the average
NRMSE and NMAE values of low and high dimension
problems in Table 7. The values are obtained by averag-
ing the “Ave. Low” and “Ave. High” rows over all sam-
pling techniques in Table 5. Considering the NRMSE, the
RBFpri approach performs better with low dimensional
problems, while the RBFpos approach generates better per-
formance metrics in high dimensional problems. Although
the advantage of RBFpos in high dimensional problem
compared to low dimensional is only around 1 % for
NRMSE, it will increase to approximately 10 % for the

(a) (b)

Fig. 5 Comparison of different sample size using LHS technique: (a) normalized root mean squared error (RMSE); (b) normalized maximum
absolute error (NMAE)
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Table 6 Relative differences of NRMSE and NMAE comparing RBFpri and RBFpos considering sampling size

Error metrics DNRMSE(%) DNMAE(%)

Sample Size LOW MED HIGH LOW MED HIGH

Average Low 9.10 6.64 4.47 16.36 9.68 13.40

Average high −17.61 0.74 3.41 −12.84 6.83 12.77

Average All −2.77 4.02 4.00 3.38 8.42 13.12

NMAE metric. The RBFpri has a superiority in perfor-
mance of around 9.5 % in problems with low dimension
in comparison to high dimensional problems considering
NMAE. In addition, the last two rows in Table 7 com-
pares the performance of RBFpri with RBFpos for low and
high dimension problems separately. The results confirm
the advantage of RBFpri over RBFpos in low dimensional
problems with the superiority degree of 4.6 % and 17.2 %
with regards to NRMSE and NMAE respectively. On the
other hand, the better performance of RBFpos compared to
RBFpri in high dimensional test functions is marginal and
are around 2 % for both NRMSE and NMAE.

6.5 Overall accuracy

For the test functions with two input variables (the first
four test functions) the three-dimensional surface plots
are shown in Figs. 6–9, respectively. The plots depict the
actual function and the corresponding metamodels con-
structed by using RBFpri and RBFpos . The metamodel
surfaces in Figs. 6, 7, 8 and 9 are generated by using the same
set of DoE, created with HSS technique and high sample
size, for each test function. The overall accuracy compari-
son ofRBFpri andRBFpos can be studied by observing the
surface plot figures and using Table 8. The table presents
the relative difference in NRMSE and NMAE (as percent-
age) and the average values of low and high dimensional of
all test functions. The values are extracted for each meta-
modeling approach by using the basis function mentioned
in Table 4, the three sampling technique with high sample
size. With regards to NRMSE relative differences, 6 out of
9 test functions by using LHS and 7 out of 9 test functions

by using RND and HSS have a positive percentage, which
clearly reveals the advantage of the new approach over
RBFpos . This advantage is more recognizable for NMAE,
with 8 test functions with a positive relative difference val-
ues for all sampling techniques. The average rows show
approximately 3 % related to RND and LHS and 16 %
related to HSS better performance of RBFpri in NRMSE
values regardless of the dimension of the test functions,
while this superiority is around 16 %, 13 % and 23 % when
considering the NMAE for RND, LHS and HSS respec-
tively. This difference, demonstrates the leverage of RBFpri

in predicting the local deviations of functions, which is pro-
vided by MAE metric. On the other hand, the superiority of
RBFpri in measuring the global error, by using RND and
LHS, is minor compared to the RBFpos approach.

7 Optimization examples

RBF is a most attractive choice for surrogate models in
metamodel based design optimization. This is demonstrated
here by studying two examples using our approach of RBF
with a priori bias. We begin our study with the following
non-linear example:
⎧
⎪⎨

⎪⎩
min
xi

√

1000

(
4

x1
− 2

)4

+ 1000

(
4

x2
− 2

)4

s.t. (x1 − 0.5)4 + (x2 − 0.5)4 − 2 ≤ 0.

(37)

The analytical optimal solution is (1.5, 1.5) and the min-
imum of the unconstrained objective function is found at
(2, 2). The objective function is plotted in Fig. 10.

Table 7 NRMSE, NMAE and their related relative differences values averaged over all sampling techniques

Performance metrics RBF approach Average Low Average high

NRMSE RBFpri 0.1994 0.2105

RBFpos 0.2087 0.2061

NMAE RBFpri 1.7707 1.9454

RBFpos 2.1041 1.9038

DNRMSE(%) RBFpos 4.59 −2.12

DNMAE(%) RBFpos 17.21 −2.16
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Fig. 6 Test function 1: Branin function (a) actual function; (b) RBFpri ; (c) RBFpos
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Fig. 7 Test function 2: Goldstein-Price function (a) actual function; (b) RBFpri ; (c) RBFpos
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Fig. 8 Test function 3: Rastrigin function (a) actual function; (b) RBFpri ; (c) RBFpos
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Fig. 9 Test function 4: Three-Hump Camel function (a) actual function; (b) RBFpri ; (c) RBFpos
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Table 8 Overall accuracy performance of RBFpri over RBFpos

RBFpos

Test functions RND LHS HSS

DNRMSE(%) DNMAE(%) DNRMSE(%) DNMAE(%) DNRMSE(%) DNMAE(%)

f1 4,18 15,52 2,39 16,18 0,75 53,64

f2 27,21 51,85 8,85 16,53 13,64 19,00

f3 −1, 50 −0, 14 −0, 42 4,90 −1, 48 12,47

f4 0,61 1,43 −3, 18 12,65 4,05 9,93

f5 12,59 25,35 8,71 19,42 14,55 20,97

Ave. Low 8,62 18,80 3,27 13,93 6,30 23,20

f6 5,40 11,84 4,72 11,83 5,06 4,59

f7 −0, 85 −2, 07 −0, 84 −1, 86 −0, 37 −2, 86

f8 0,30 1,69 0,42 1,76 1,78 7,33

f9 9,76 38,85 9,35 39,34 59,91 79,85

Ave. High 3,65 12,58 3,41 12,77 16,59 22,23

Ave. All 6,41 16,04 3,33 13,42 10,88 22,77

Fig. 10 Analytical “black-box”
function (a) contour plot; (b)
four successive iterations
generating 12 sample points; (c)
contour plot of the RBF of the
objective for the DoE with 12
sample points; (d) contour plot
of the augmented DoE with
12+3 sample points. The three
augmented points are marked
with a cross
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Fig. 11 Successive quadratic response surface screening generating 45 sampling points. The plots are showing the same DoE from two different
views

The problem in (37) is now solved by performing a DoE
procedure and setting up corresponding RBFs which in turn
define a new optimization problem that is solved using a
global search with a genetic algorithm and a local search
with sequential linear and/or quadratic programming. First,
a set of sampling points are generated by successive lin-
ear response surface optimization of the problem in (37)
using four successive iterations with automatic panning and
zooming (Gustafsson and Strömberg 2008). This screening
generates 12 sampling points according to Fig. 10. Then,
RBFs are fitted to this DoE and an optimal point is identi-
fied. The DoE is then augmented with this optimal point and
the RBFs are set up again. This procedure is repeated three
times generating in total a DoE with 12 sampling points
from screening and three optimal points from RBFs. Finally,
meta model based design optimization using our RBFs for
this DoE of 12+3 sampling points is performed. The optimal
solution generated with this procedure is (1.4962, 1.5049),
which is very close to the analytical optimum of (37).

The DoEs presented in Fig. 3 are also studied for this
example. The corresponding RBFs are set up and the
optimal solutions for the random, LHS and HSS DoEs
are obtained as (1.7842, 1.8003), (1.5618, 1.5076) and
(1.5698, 1.553), respectively. It is clear that not only the
choice of meta model will influence the result but also
the choice of DoE. The solution from the random DoE is
poor. The solutions from LHS and HSS DoEs are similar
and acceptable. Thus, the successive screening procedure
and optimal augmentation for generating DoE is for this
problem superior and performs best. This is a general obser-
vation we have found for many examples. We have also
used this strategy in order to solve reliability based design
optimization problems using meta models. This is dis-
cussed in a most recent paper by Strömberg (2016), where
also this first example is formulated as an reliability based

design optimization (RBDO) problem and is solved for
variables with non-Gaussian distributions using a SORM-
based RBDO approach. We also consider the following
well-known engineering benchmark of a welded beam:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
xi

1.10471x2
1x2 + 0.04811x3x4(14 + x2)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

τ(xi) − 13600 ≤ 0
σ(xi) − 30000 ≤ 0
x1 − x4 ≤ 0
0.125 − x1 ≤ 0
δ(xi) − 0.25 ≤ 0
6000 − Pc(xi) ≤ 0,

(38)

where definitions of shear stress τ(xi), normal stress σ(xi),
displacement δ(xi) and critical force Pc(xi) can be found
in e.g. the recent paper by Garg (2014), where also several
solutions obtained by different algorithms are presented. In
addition, the variables are bounded by 0.1 ≤ x1, x4 ≤ 2
and 0.1 ≤ x3, x4 ≤ 10. We obtain the following ana-
lytical solution (0.24437, 6.2175, 8.2915, 0.24437), which
is more or less identical to the solution obtained by Garg:
(0.24436, 6.2177, 8.2916, 0.24437).

Now, we solve this problem instead by generating a set
of sampling points for which RBFs are fitted and then
optimized. The procedure is similar to the one presented
above. First, 45 sampling points are generated by quadratic
response surface screening. This set of points are presented
in Fig. 11. The choice of quadratic instead of linear screen-
ing depends on the non-linear constraint domain. Linear
screening might result in an empty feasible domain. After
screening, 15 additional points are added which are gen-
erated by optimum from sequentially augmented RBFs.
Finally, for 45+15 sampling points, we set up the cor-
responding RBFs and we obtain the following optimal
solution (0.414710, 3.925900, 6.620100, 0.414710). This
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solution satisfies almost all constraints in (38). The first con-
straints is slightly violated τ(xi) = 13729 > 13600, but
the five other constraints are fully satisfied. The value of the
cost function is 3.113586, which is very close to the analyt-
ical optimum value of 2.381. This solution could of course
be improved further by augmenting the DoE with additional
optimal points.

8 Concluding remarks

In this paper, a new approach for setting up radial basis
functions network is proposed by letting the bias be defined
a priori by a corresponding regression model. Our new
approach is compared with the established treatment of
RBF, where the bias is obtained by using extra orthogonal-
ity constraints. It is numerically proven that our approach
with a priori bias is in general as good as the performance
of RBF with a posteriori bias. In addition, we mean that our
approach is easier to set up and interpret. It is clear that the
bias capture the global behavior and the radial basis func-
tions tune the local response. It is also demonstrated that
our RBF with a priori bias performs excellent in metamodel
based design optimization and it captures both coarse and
dense sampling densities simultaneously of DoEs generated
from successive screening and optimal augmentation most
accurately. In conclusion, the paper shows that our new RBF
approach with a priori bias is a most attractive choice for
surrogate model. We believe that our approach has a promis-
ing potential and opens up new possibilities for surrogate
modelling in optimization, which we hope to be able to
explore in a near future.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.
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