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Abstract—We develop Bayesian learning methods for low-
rank matrix reconstruction and completion from linear measure-
ments. For under-determined systems, the developed methods
reconstruct low-rank matrices when neither the rank nor the
noise power is known a-priori. We derive relations between
the proposed Bayesian models and low-rank promoting penalty
functions. The relations justify the use of Kronecker structured
covariance matrices in a Gaussian based prior. In the methods,
we use expectation-maximization to learn the model parameters.
The performance of the methods is evaluated through extensive
numerical simulations on synthetic and real data.

I. INTRODUCTION

Reconstruction of a low-rank matrix from few measure-

ments is a challenging problem. The low-rank matrix re-

construction (LRMR) problem is inherently under-determined

and have been receiving considerable attention due to its

generality over popular sparse reconstruction problems along

with many application scopes [1]–[6]. A special case of

LRMR is the popular low-rank matrix completion problem

[1], [2], [5], [7]–[20]. Consider a matrix X ∈ R
p×q with

rank(X) � min(p, q). In the LRMR setup [1]–[6], the low

rank matrix X is measured by

y = A(X) + n ∈ R
m×1, (1)

where A : Rp×q → R
m can be viewed as a known sampling

(or sensing, or measurement) operator representing the LRMR

sensing process and n is additive measurement noise (typically

assumed to be zero-mean Gaussian with covariance Cov(n) =
β−1Im). The sensing operator A is linear and has the form:

A(X) =

⎡
⎢⎣

〈X, A1〉
...

〈X, Am〉

⎤
⎥⎦ , (2)

where {Ak}mk=1 is known and 〈X, Ak〉 � trace(A�
k X).

Hence we can write (1) in the following form

y = Avec(X) + n, (3)

where A ∈ R
m×pq is the effective linear measurement matrix

and vec(·) is the standard vectorization operator. In the case of

low-rank matrix completion [1], [2], A has a special structure
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where each row of A contains a (single) 1 and all other

elements of the row vector are zeros, with the constraint that

the rows of A are linearly independent; such a special A
works as an element selection operator. For X ∈ R

p×q and

rank(X) = r, the number of free scalars in X is pr+ qr− r2

[1]. With pr+qr−r2 < m < pq, the setup is underdetermined

and the task is the reconstruction (or estimation) of X from y.

To deal with the underdetermined setup, a typical and much

used strategy is to use a regularization in the reconstruction

cost function. Regularization brings in the information about

low rank priors. A typical estimator is

X̂ = argmin
X

{
β||y −Avec(X)||22 + g(X)

}
, (4)

where β > 0 is a parameter and g(·) is a fixed penalty function

that inculcates regularization by promoting low rank in X̂.

Common low-rank promoting penalties in the literature [1],

[3], [7] are

g(X) = ||X||∗ = tr((XX�)1/2), (nuclear norm)

g(X) = tr((XX�)s/2), (Schatten s-norm)

g(X) = log |XX� + εIp|, (log-determinant penalty)

where tr(·) denotes the matrix trace, | · | denotes determinant,

s > 0, ε > 0, Ip denotes the p × p identity matrix and (·)c
denotes the c’th symmetric power of a semidefinite matrix.

Typically 0 < s ≤ 1 is used to promote low-rank. Among

the above three penalties, we mention that the nuclear norm

penalty is a convex function.

Following the literature, LRMR algorithms can be catego-

rized in three main types: convex optimization based [1]–[3],

[8], [9], [19], [21], greedy solvers [4], [7], [10], [22], [23] and

Bayesian learning methods [11]–[18]. Many of these existing

algorithms are motivated from analogous algorithms used for

standard sparse reconstruction problems, such as compressed

sensing (in compressed sensing, we use a sparse vector in (3)

instead of vec(X). Using convex optimization we can solve

(4) when g(X) is convex (e.g. the nuclear norm). Further,

greedy algorithms, such as iteratively reweighted least squares

[7] solves (4) using algebraic approximations. While convex

optimization and greedy solvers are popular, they often need

more prior information than knowledge about the structure

of the signal under reconstruction; for example, convex op-

timization algorithms need information about the strength of

the measurement noise n to fix the parameter β, and greedy

algorithms need information about rank of X. In absence of

such a-priori information, Bayesian learning is a preferred

strategy. Bayesian learning methods are typically capable of
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estimating the necessary parameters from data. In Bayesian

learning we evaluate the posterior p(X|y) with the knowledge

of prior p(X). If X has a prior distribution p(X) ∝ e−
1
2 g(X)

and the noise is distributed as n ∼ N (0, β−1Im), then the

maximum-a-posteriori (MAP) estimation of X takes the form

of (4). As the MAP estimation requires additional information

(such as β), type II estimators are often more useful (fol-

lowing [24], type II estimators are also known as empirical

Bayes [25], [26], generalized maximum likelihood, evidence

approximation, etc.). Type II estimation techniques use hyper-

parameters with appropriate prior distributions, and provide an

approximation of the posterior distribution of the variable of

interest. While for sparse reconstruction problems, Bayesian

learning via type II estimation in the form of relevance vector

machine (RVM) [27], [28] and sparse Bayesian learning (SBL)

[29], [30] have gained significant popularity, the endeavor to

design type II estimation algorithms for LRMR is found to be

limited. To the authors’ knowledge, a major difficulty arises
due to a non-trivial task of defining a low-rank promoting
prior. There are some efforts in the literature, discussed in
section I-A.

Our objective in this paper is to develop new type II

estimation methods for LRMR. Borrowing ideas from type

II estimation techniques for sparse reconstruction, such as the

RVM and SBL algorithms, we model a low-rank matrix by

a multiplication of precision matrices and an i.i.d. Gaussian

matrix. The use of precision matrices helps to realize low-rank.

The main contributions of this paper are as follows.

• We introduce one-sided and two-sided precision matrix

based models for priors of X.

• We show how the Schatten s-norm and log-determinant

penalty functions are related to priors of the precision ma-

trices, establishing a connection with the MAP estimator

(4).

• We design type II estimation algorithms based on

expectation-maximization. The new estimation algo-

rithms are referred to as relevance singular vector ma-
chine (RSVM) due to conceptual and technical similari-

ties with the RVM.

The proposed RSVM algorithms are compared to several

existing methods via simulations, for synthetic and real data

(MovieLens data [20]).

A. Relevant Prior Work

One of the most popular convex optimization based algo-

rithm for LRMR is nuclear norm minimization [1]–[3], [8],

[9], [21], defined as follows

X̂ = argmin
X

||X||∗ , s.t. ||y −Avec(X)||2 ≤ δ, (5)

where δ is the allowable model fit error due to measurement

noise n. A standard choice is δ = β−1
√
m+

√
8m accord-

ing to the suggestion in [31]. Henceforth the nuclear-norm

minimization estimator (5) is referred to as NN. We note that

NN requires a-priori knowledge of δ. The NN estimator (5)

can be easily represented in the form of (4) via Lagrangian

(where g(X) = ||X||∗). We will show in section II-A that

there exists a prior for which RSVM is equivalent to the MAP

estimator (4) with a nuclear norm regularization. Another

convex optimization based method [19] uses a weighted trace

norm that is exclusively used for low-rank matrix completion.

In Bayesian learning algorithms for LRMR, a prominent

approach is to use variational Bayes techniques [11], [15],

[16]. Typically the variational Bayes approach uses a fac-

torization based matrix model as X = FB� and then uses

appropriate priors for F and B. In [11], F and B use (block)

sparsity inducing priors to promote low-rank in X. A similar

approach was adopted in [15]. By using Gaussian priors

for F and B, probabilistic matrix factorization (PMF) [17]

formulates the inference problem as an optimization problem.

Next, sampling schemes, such as Markov Chain Monte Carlo

(MCMC) methods, have been used to approximate the pos-

terior distribution [13], [18]. All methods have varying levels

of trade-off between complexity and performance. Further, to

the best of authors’ knowledge, except [16], there is no effort

to relate the priors of F and B to g(X) in (4) (and in turn

to low-rank promoting distributions p(X)). In this paper, we

establish such kind of relations for the proposed method. We

also evaluate the performance of the algorithms for LRMR

vis-a-vis NN and a generalization of the variational Bayes

method of [11]. Further, for low-rank matrix completion, we

also compared with the variational Bayes method of [15], PMF

[17] and the weighted trace norm (WTN) method [19].

II. ONE-SIDED PRECISION BASED MODEL

In this section, we propose suitable priors for low-rank

matrices and establish a relation with the MAP estimator (4).

Typically coefficients of each column vector of a random low-

rank matrix X are highly correlated. To model the correlation,

we set

X = α−1/2U, (6)

where the components of U ∈ R
p×q are i.i.d. N (0, 1)

and α ∈ R
p×p is a positive definite precision matrix (the

distribution of α will be described later). Note that, if α
is given then each column vector of X has a distribution

N (0,α−1). The factorization in (6) is equivalent to using a

matrix variate Gaussian distribution [16], [32] as follows

p(X|α) =
|α|q/2
(2π)pq/2

exp

(
−1

2
tr(X�αX)

)
. (7)

Denoting Z = XX�, we find that

p(X) =

∫
α�0

p(X|α) p(α) dα

=

∫
α�0

e−
1
2 tr(αZ) |α|q/2

(2π)pq/2
p(α)dα, (8)

where we used that tr(X�αX) = tr(αXX�) = tr(αZ).
This gives that p(X) = Ce−

1
2 g(X) = C ′e−

1
2 g̃(Z) for some

functions g(·), g̃(·) and constants C, C ′. Estimating X with

the marginal distribution p(X) thus leads to the MAP estimator

(4) with g(X) = g̃(Z) + constant.
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A. Relation between priors and the MAP estimation

The motivation of investigating the relation is to bring

connection between the priors – p(X) and p(α) – and the

MAP estimator (4). From (8), we note that p(X) is the

matrix Laplace transform of |α|q/2p(α)/(2π)pq/2 at Z/2 [33],

which establishes the relation between priors. For ease of

readability, we report the standard definition of matrix Laplace

transform and its inverse in Appendix A. This gives us that

we can calculate p(α) from p(X) = C ′e−
1
2 g̃(Z) by the inverse

Laplace transform [33] as follows

p(α) ∝ |α|−q/2

∫
ReZ=α∗

e
1
2 tr(αZ)e−

1
2 g̃(Z)dZ, (9)

where the integral is taken over all symmetric matrices Z ∈
C

p×p such that ReZ = α∗ where α∗ is a real matrix such that

the contour path of integration is in the region of convergence

of the integrand. While the Laplace transform characterizes

the exact relation between priors, the computation is non-

trivial and often analytically intractable. In practice, a standard

approach is to use the Laplace approximation [34] where

typically the mode of the distribution under approximation is

found first and then a Gaussian distribution is modeled around

that mode. Let us write p(α) as p(α) ∝ e−
1
2K(α); then the

Laplace approximation becomes

g̃(Z) =min
α�0

{tr(αZ)− q log |α|+K(α)}
− log |H|+ constant,

where H is the Hessian of tr(αZ)−q log |α|+K(α) evaluated

at the minima. The derivation of the Laplace approximation is

shown in Appendix B.

Denoting K̃(α) = q log |α| − K(α) and neglecting the

Hessian we get

g̃(Z) = min
α�0

{
tr(αZ)− K̃(α)

}
,

where we absorbed the constants into the normalization factor

of p(X). We find that g̃(Z) is the concave conjugate of K̃(α)
[21]. Hence, for a given g̃(Z) we can recover K̃(α) as

K̃(α) = min
Z�0

{tr(αZ)− g̃(Z)} (10)

if K̃(α) is concave (which holds under the assumption that

K(α) is convex). Further, we can find K(α) from K̃(α)
and solve for the prior p(α) ∝ e−

1
2K(α). Using the concave

conjugate relation (10), we now deal with the task of finding

appropriate functions K(α) for two examples of low-rank

promoting penalty functions, as follows.

1) For Schatten s-norm: The Schatten s-norm based penalty

function is g(X) = tr((XX�)s/2). We here use a

regularized Schatten s-norm based penalty function as

g(X) =tr((XX� + εIp)
s/2), (11)

where the use of ε > 0 helps to bring numerical stability

to the algorithms in Section IV. For the penalty function

(11), we find K(α) as

K(α) = Cs tr(α
− s

2−s ) + q log |α|+ ε tr(α), (12)

where Cs =
2−s
s

(
2
s

)− s
2−s . We thus find that

p(α) =
Dp,q,s

|α|q/2 e
− 1

2Cstr(α
− s

2−s )− ε
2 tr(α)

where Dp,q,s is a normalization constant. The derivation

of (12) is given in Appendix E. For s = 1 and ε = 0 we

note that g(X) becomes the nuclear norm of X.

2) Log-determinant penalty: For the log-determinant based

penalty function (a scaled version)

g(X) = ν log
∣∣XX� + εIp

∣∣ , (13)

where ν > q − 2 is a real number, we find K(α) as

K(α) = ε tr(α) + (q − ν) log |α|. (14)

The derivation of (14) is shown in Appendix F. As

p(α) ∝ e−
1
2K(α), we find that the precision matrix α is

Wishart distributed. We also find that p(X) ∝ e−
1
2 g̃(XX�)

is a matrix t-distribution [32].

At this point we mention that the model (6) is based on

matrix factorization. The recent method of [16] also used a

matrix factorization model where Gaussian priors are used for

all factorized matrices. The important aspect of our work is

that we used a Gaussian prior for U and non-Gaussian priors

for α as p(α) ∝ e−
1
2K(α) where K(α) is given by (12) or

(14).

B. Left and right-sided precision based models

For a low-rank matrix, components of each column vector

are correlated as well as components of each row vector. In (6),

the precision matrix α−1/2 is used in the left side of U. We

refer to this as the left-sided precision based model, that helps

to bring correlation between the components of each column

of X. Instead to bring correlations between the components

of each row vector of X, we can use

X = Uα−1/2, (15)

which is defined as the right-sided precision based model.

Then a natural question arises, which model to use? Our

justification is that a user choice stems from the aspect of

minimizing the number of variables to estimate. If the low-

rank matrix is fat then the left-sided model should be used,

otherwise the right-sided model. A further question arises on

the prospect of developing a two sided precision based model

– where both left and right precisions are used – that brings

correlation between components of each column as well as

components of each row. Such a two sided precision based

model is described in the next section.

III. TWO-SIDED PRECISION BASED MODEL

In this section, we propose to use precision matrices from

two sides to model a random low-rank matrix, referred to as

the two-sided precision based model. We set

X = α
−1/2
L Uα

−1/2
R (16)

where αL ∈ R
p×p and αR ∈ R

q×q are positive definite

random matrices. Our hypothesis is that the two-sided pre-

cision based model helps to inculcate correlations between
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column vectors as well as row vectors, and hence promotes

low-rank in a stronger manner than the one-sided precision

based model of section II. Using the relation vec(X) =

(α
−1/2
R ⊗α

−1/2
L ) vec(U) = (αR ⊗αL)

−1/2 vec(U), we find

that

p(X|αL,αR)

=
|αR ⊗αL|1/2

(2π)pq/2
exp

(−vec(X)�(αR ⊗αL)vec(X)/2
)

=
|αL|q/2|αR|p/2

(2π)pq/2
exp

(−tr(X�αLXαR)/2
)
. (17)

To promote low-rank, we use a prior distribution p(αL,αR).
The marginal distribution of X then becomes

p(X) =

∫
αL�0
αR�0

p(X|αL,αR) p(αL,αR) dαR dαL. (18)

To the best of authors’ ability, the evaluation of (18) for

(17) is analytically intractable for relevant priors p(αL,αR).
Thus it is non-trivial to establish a direct connection between

p(X|αL,αR) of (17) and the MAP estimator (4). Instead of

a direct connection we establish an indirect connection by an

approximation.

When marginalizing over αL for fixed αR, we find that

p(X|αR) is a function of XαRX
� alone. Following the

discussion of section II-A, we find that the corresponding

MAP estimator cost function for fixed β becomes

min
X

β||y −Avec(X)||22 + g̃L(XαRX
�), (19)

for some function g̃L(·). A similar cost function can be found

for a fixed αL and β by marginalizing over αR. Fixing

αR thus promotes low-rank in Xα
1/2
R and fixing αL thus

promotes low-rank in α
1/2
L X. When the prior is such that p(α)

is small when α is approximately rank-deficient, we find that

the method promotes low rank in X since it is improbable that

α has small eigenvalues. In the next section we show that the

key to promoting low-rank in X is to make many eigenvalues

of α large. We discuss the roles of αL and αR in the next

section.

A. Interpretation of the precision matrices

For a low-rank matrix, a column vector can be represented

by a linear combination of few column vectors. Alternatively,

we can state that the column vectors of a low-rank matrix

lie in a low-dimensional subspace. Hence the objective of

this section is to show that the proposed model (17) helps to

establish such an argument when the inverse precision matrices

have few dominant eigenvalues.

Let us denote (i, j)’th component of α−1
R by [α−1

R ]ij and

i’th column vector of X by xi, respectively. From (17) we

find that the covariance matrix of xi is

E [xix
�
i ] = [α−1

R ]ii α
−1
L . (20)

The covariance matrix of xi is α−1
L times the scaling constant

[α−1
R ]ii. Let λL,k denotes the k’th largest eigenvalue of α−1

L

and λR,k denotes the k’th largest eigenvalue of α−1
R . The

eigenvalues of α−1
L and α−1

R are real and non-negative.

Assumption 1. We assume that either α−1
L or α−1

R has
r dominant eigenvalues. That means that λL,r

λL,r+1
� 1 or

λR,r

λR,r+1
� 1.

Under assumption 1, α−1
L can be closely approximated by a

positive semi-definite covariance matrix of rank r. This matrix

approximation also holds for the covariance matrix of xi due

to the relation (20). A natural qualitative argument is that xi

approximately lies in the subspace spanned by the eigenvectors

corresponding to the r dominant eigenvalues, resulting in

promoting low-rank in X. A mathematical argument follows

next. Let PL denotes the orthogonal projection onto the

subspace spanned by the r eigenvectors of α−1
L corresponding

to the r largest eigenvalues, and let P⊥
L denotes the orthogonal

projection onto the subspace spanned by the eigenvectors

corresponding to the p − r smallest eigenvalues. Note that

P⊥
L = Ip − PL, and ||xi||22 = ||P⊥

L xi||22 + ||PLxi||22. For

a scalar 0 ≤ ς < 1, we now endeavor to establish that

the probability of the event
(||P⊥

L xi||22 ≤ ς||PLxi||22
)

is high

under assumption 1. First we state the following relation

Pr
(||P⊥

L xi||22 ≤ ς||PLxi||22
) ≥ 1− B

(
r
2 ,

n
2 , ε1

)
B
(
r
2 ,

n
2

) (21)

≥ 1− Cp,rε
r/2
1 , (22)

where B(·, ·, ·) is the incomplete beta function, B(·, ·) =
B(·, ·, 1) is the beta function, C−1

p,r = r
2B
(
r
2 ,

n
2

)
and

ε1 =
1

1 + ς
λL,r

λL,r+1

.

The derivation of (21) and (22) is given in Appendix C. Under

some technical conditions and assumption 1, we have that

Cp,rε
r/2
1 � 1 and therefore Pr

(||P⊥
L xi||22 ≤ ς||PLxi||22

)
is

high. Similar arguments also can be put forward by con-

sidering a row vector of X where the eigenvalues of α−1
R

will play role under assumption 1. Next we show role of

both precision matrices in promoting low-rank. Using (17)

we note that covariance of vec(X) is (α−1
R ⊗ α−1

L ). We use

Xr to denote the best r-rank approximation of X (in the

sense of Frobenius norm). Then we find that probability of

event
(||X−Xr||2F ≤ ς||X||2F

)
is high. We state the following

relation

Pr
(||X−Xr||2F ≤ ς||X||2F

)
≥ 1−

B
(

r2

2 ,
(p−r)(q−r)

2 , ε2

)
B
(

r2

2 ,
(p−r)(q−r)

2

) (23)

≥ 1− Cp,q,rε
r2/2
2 , (24)

The derivation of (23) and (24) is given in Appendix C. In

(23) and (24), C−1
p,q,r = r2

2 B
(

r2

2 ,
(p−r)(q−r)

2

)
and

ε2 =
1

1 + ς
1−ς

λL,r

λL,r+1

λR,r

λR,r+1

.
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Under some technical conditions and assumption 1, we

have Cp,q,rε
r2/2
2 � 1, and Pr

(||X−Xr||2F ≤ ς||X||2F
)

is

high. We provide a numerical example in Figure 1 where

Pr
(||X−Xr||2F ≤ ς||X||2F

)
and the two lower bounds of (23)

and (24) are shown. For the numerical experiments we used

p = q = 25, r = 3, ς = 0.05 and
λL,r

λL,r+1
=

λR,r

λR,r+1
. In

the simulation we used λL,i = λR,j for 1 ≤ i, j ≤ r and

λL,k = λR,l for r + 1 ≤ k ≤ p and r + 1 ≤ j ≤ q. We com-

puted Pr
(||X−Xr||2F ≤ ς||X||2F

)
as an empirical probability

in a frequentist manner via Monte Carlo simulations.
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Fig. 1. Plots of empirical probability of ||X−Xr||2F ≤ ς||X||2F in red solid
line, the bound (23) in blue dotted line and the bound (24) in green dashed

line, versus the value of
λL,r

λL,r+1
.

IV. PRACTICAL ALGORITHMS

Considering the two-sided precision based model in

section III, we denote the model parameters as Θ �
{αL, αR, β}. The optimal inference problem is

X̂, Θ̂ = argmax
X,Θ

p(X,y,Θ)

which is the MAP estimator for X and Θ. We here assume

that p(Θ) = p(αL) p(αL) p(β) for computational simplicity.

It is natural that the optimal inference problem for the one-

sided precision based model (6) is a special case of the

inference problem for two-sided precision based model (16)

with the deterministic choice αR = Iq . Direct handling

of the optimal inference problem is limited due to lack of

analytical tractability. Therefore various approximations are

used to design practical algorithms. This section is dedicated to

design new algorithms (type II estimators) via the expectation-

maximization (EM) approach [24], [35]. Here we assume that

the noise precision β has a Gamma distribution as

p(β) = Gamma(β|a+ 1, b) =
ba+1

Γ(a+ 1)
βae−bβ ,

with a > −1, b > 0 and β ≥ 0. We here set the shape
parameter to be a + 1 (rather than the standard convention

of using a) since we later use approximately flat distributions

(a, b ≈ 0), giving the Gamma prior minor influence on the

inference problem. However, in simulations we set the param-

eters a and b to small non-zero values to provide numerical

stability (typically 10−5).
The objective of EM is to solve the following problem

max
Θ

log p(y,Θ) = max
Θ

{log p(y|Θ) + log p(Θ)}, (25)

which is an approximation of the optimal inference problem.

We refer to X as a latent variable in EM, and denote the EM

help function by

Q(Θ,Θ′) = EX|y,Θ′ [log p(y,X|Θ)]

=

∫
X

p(X|y,Θ′) log p(y,X|Θ) dX,

where E [·] denotes the expectation operator. The iterative

formulation of EM guarantees a locally optimum solution

of (25) through the following steps.

1. Initialize the method with the parameter values

Θ′ = {α′
L, α

′
R, β

′} = {Ip, Iq, 1}.

2. E-step: Evaluate p(X|y,Θ′) where Θ′ is the value of Θ
from the previous iteration. We find that

p(X|y,Θ′) = N (vec(X); vec(X̂),Σ′),

where

vec(X̂) = β′Σ′A�y, (26)

Σ′ =
(
(α′

R ⊗α′
L) + β′A�A

)−1
.

3. M-step: Update Θ as

Θ = argmax
Θ

{
Q(Θ,Θ′) + log p(Θ)

}
, (27)

where for our model

Q(Θ,Θ′) = EX|y,Θ′ [log p(y,X|Θ)] = constant

− β

2
||y −Avec(X̂)||22 −

1

2
tr(αLX̂αRX̂

�)

− 1

2
tr(Σ−1Σ′) +

q

2
log |αL|+ p

2
log |αR|

+
m

2
log β, (28)

and Σ =
(
(αR ⊗αL) + βA�A

)−1
.

By maximizing (27) for the noise precision β, we find

the update equation

β =
m+ 2a

||y −Avec(X̂)||22 + tr(AΣ′A�) + 2b
. (29)

The left and right precisions are updated as follows.

a) For Schatten s-norm: Using the Schatten s-norm prior

(12) gives us the update equations

αL = cs

(
X̂α′

RX̂
� + Σ̃L + εIp

)(s−2)/2

,

αR = cs

(
X̂�α′

LX̂+ Σ̃R + εIq

)(s−2)/2

,

(30)

where cs = (s/2)s/2 and Σ̃L ∈ R
p×p and Σ̃R ∈ R

q×q

are matrices with elements

[Σ̃L]ij = tr(Σ′(α′
R ⊗E

(L)
ij )),

[Σ̃R]ij = tr(Σ′(E(R)
ij ⊗α′

L)),
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and E
(L)
ij ∈ R

p×p, E
(R)
ij ∈ R

q×q are matrices with

ones in position (i, j) and zeros otherwise.

b) Log-determinant penalty: For the log-determinant prior

(14) the update equations become

αL = ν
(
X̂α′

RX̂
� + Σ̃L + εIp

)−1

,

αR = ν
(
X̂�α′

LX̂+ Σ̃R + εIq

)−1

.

(31)

The derivations of (30) and (31) are given in Appendix D.

4. Stop iterating if X̂ does not change significantly. Other-

wise go to step 2.

A. Balancing the precisions

We have found that in practical algorithms, there is a

chance that one of the two precisions becomes large and the

other becomes small. A small precision results in numerical

instability in the Kronecker covariance structure (17). To

prevent the imbalance we rescale the matrix precisions in

each iteration such that 1) the a-priori and a-posteriori squared

Frobenius norm of X are equal,

E [||X||2F |αL,αR] = tr(α−1
L )tr(α−1

R )

= E [||X||2F |αL,αR, β,y] = ||X̂||2F + tr(Σ),

and 2) the contribution of each precision to the norm is equal,

tr(α−1
L ) = tr(α−1

R ).

The rescaling makes the algorithm more stable and often

improves estimation performance.

B. Nomenclature

Here we explain the nomenclature used for the RSVM

algorithms throughout the rest of the paper. We use the name

left-sided RSVM for the left-sided model where αL is random

and αR = Iq and right-sided RSVM for the right-sided model

where αR is random and αL = Ip. We refer to the model

where both αL and αR are random as the two-sided RSVM

or simply as RSVM. Throughout the paper we assume that αL

and αR are independent with distributions p(α) ∝ e−
1
2K(α).

We refer to the RSVM method with priors related to the log-

determinant penalty function (14) as RSVM-LD and to the

RSVM method priors related to the Schatten s-norm penalty

function (12) as RSVM-SN. For example, left-sided RSVM-

LD is RSVM with log-determinant prior (14) and a left-sided

precision.

C. Complexity analysis

One motivation for the RSVM algorithm is that it can

infer low-rank directly without factorizing the matrix X.

However, one disadvantage of this is that for given precision

matrices, the estimation of X is a Gaussian inference problem

with pq variables, requiring computationally demanding matrix

inverses. To study how the problem size affects the runtime,

we here study the (asymptotic) computational complexity of

the algorithm.

The most computationally demanding operation of the

RSVM algorithm is the computation of Σ. A direct approach

to computing Σ is to invert a pq × pq matrix, this requires

O((pq)3) multiplications. However, this does not use the fact

that rank(A�A) ≤ m � pq. By using the fact and following

Woodbury matrix inversion formula [24] we can write

Σ = (α−1
R ⊗α−1

L )− (α−1
R ⊗α−1

L )A�C−1
y A(α−1

R ⊗α−1
L )

where

Cy = β−1Im +A(α−1
R ⊗α−1

L )A�.

The computation of Σ thus reduces to computing (α−1
R ⊗α−1

L )
(requiring O(p3+q3+p2q2) multiplications), A(α−1

R ⊗α−1
L )

and A(α−1
R ⊗α−1

L )A� (requiring O(mp2q2) multiplications)

and C−1
y (requiring O(m3) multiplications). Therefore the

total complexity is

O(p3 + q3 + p2q2 +m3 +mp2q2) ≈ O(mp2q2),

where O(mp2q2) dominates other terms. As m � pq, we note

that O(mp2q2) � O((pq)3), and hence the use of Woodbury

matrix inversion helps to reduce computational complexity in

contrast to direct matrix inversion. Further we note that the

complexity does not depend on the rank of X. This is because

RSVM, in contrast to factorization based methods [11], does

not use rank information as an a-priori information.

V. SIMULATION EXPERIMENTS

A. Simulations setup

Here we describe datasets, performance measure, exper-

imental setup, competing algorithms and computational re-

sources. First, we used synthetic data for low-rank ma-

trix reconstruction (LRMR) and low-rank matrix completion

(LRMC). For real data we used the MovieLens dataset [20].

Second, to compare the algorithms for synthetic data, we use

the normalized-mean-square-error

NMSE � E [||X̂−X||2F ]/E [||X||2F ]
as the performance measure. The NMSE is evaluated by aver-

aging over many instances of n, A and X using Monte-Carlo

simulations. Third is the experimental setup. For experiments

with synthetic data, we evaluated the NMSE as follows.

1) For LRMR, the random measurement matrix A ∈ R
m×pq

was generated by independently drawing the elements

from N (0, 1) and normalizing the column vectors to unit

norm. For LRMC, each row of A contains a 1 in a random

position and zero otherwise with the constraint that the

rows are linearly independent.

2) Matrices F ∈ R
p×r and B ∈ R

q×r with elements drawn

from N (0, 1) were randomly generated and the matrix X
was formed as X = FB�. Note that X has rank r.

3) Generate the measurement y = Avec(X)+n, where n ∼
N (0, β−1Im) and β−1 is chosen such that the signal-to-

measurement-noise ratio is

SNR � E [||Avec(X)||22]
E [||n||22]

= β
rpq

m
,

for LRMR and SNR = βr for LRMC.

4) Estimate X̂ using competing algorithms and calculate the

error ||X̂−X||2F .
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5) Repeat steps 2− 4 for T1 times.

6) Repeat steps 1− 5 for T2 times.

7) Then compute the NMSE by averaging.

In the simulations we chose T1 = T2 = 10, which means

that the averaging was done over 100 realizations. Fourth, we

evaluate the performance of RSVM vis-a-vis other methods for

LRMR and LRMC. For LRMR, we compared with NN and

the variational Bayes method of [11] (referred henceforth as

VB-1). The use of VB-1 for LRMR was not addressed in [11]

and hence we derive the algorithm in Appendix G. Further,

we also compare with the performance of the Schatten Norm

Algorithm (SNA) where X̂ is the solution to

min
X

tr((XX�)s/2) s.t. ||y −Avec(X)||2 ≤ δ, (32)

with s = 0.5 and δ = β−1
√

m+
√
8m as in (5), where

β denotes the true noise precision. Both NN and SNA thus

require knowledge of the noise power. The SNA problem

is non-convex and we use a gradient search method to find

the solution; to initialize the method, we used vec(X̂) =
A�(AA�)−1y. Then, for LRMC, we compare with NN, VB-

1, PMF [17], WTN [19] and the variational Bayes method

of [15] (referred to as VB-2). Finally, we mention our com-

putational resources. For the experiments, we used a Dell

Latitude E6400 laptop computer with a 3GHz processor and

8GB memory.

B. Experiments using synthetic data for LRMR

The objective of our first experiment is to compare the

performance of the two-sided precision based model the one-

sided precision based models. For the one-sided model, we

also have two choices – left-sided and right-sided – and hence

it interesting to know which choice is better for a particular

setup. In this experiment, we fixed rank(X) = r = 3, p = 15,

q = 30, SNR = 20 dB and varied m. The results are shown

in Figure 2 where NMSE is plotted against the normalized

number of measurements m/(pq). We note that for RSVM-

LD, the right-sided model performs best for m/pq < 0.6, the

left-sided model performs best for m/pq > 0.6 and that the

two-sided RSVM-LD gives a good compromise between the

left- and right-sided RSVM-LD. For RSVM-SN we find that

the left-sided model performs better than both the right- and

two-sided model for m/pq �= 0.7. However, the two-sided

model has a more consistent performance improvement with

increasing m/pq while the left and right-sided models show

performance degradation for m/pq = 0.7 and m/pq = 0.8,

respectively. Henceforth we use the two-sided models because

of their reasonable good performance. It is possible that the

one-sided models are preferable in other scenarios. We men-

tion that, for RSVM-SN, it was empirically found that s = 0.5
provides good performance. The same trend also repeats for

LRMC, reported in section V-C. Henceforth RSVM-SN with

s = 0.5 is used unless stated otherwise.

In the second experiment we report the LRMR performance

of RSVM-LD and RSVM-SN vis-a-vis NN, VB-1 and SNA.

We mention that NN and SNA know the measurement noise

power (see (5) and (32)), and VB-1 knows the rank of X.

The results are shown in Figure 3. With the parameters of
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−22
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left−sided RSVM−LD

right−sided RSVM−LD

two−sided RSVM−LD
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right−sided RSVM−SN

two−sided RSVM−SN

Fig. 2. NMSE vs. m/(pq) for LRMR at SNR=20 dB.

the first experiment (rank(X) = r = 3, p = 15, q = 30,

SNR = 20 dB), we show NMSE vs. m/(pq) in Figure 3 (a).

We observe that RSVM-LD provides the best performance for

m/pq < 0.9, whereas NN, SNA and RSVM-SN are close to

each other with NN performing better than SNA and RSVM-

SN. In Figure 3 (b), we report performance NMSE vs. SNR

while rank r = 3 and m/(pq) = 0.7 are fixed. We find that

RSVM-LD shows best performance in the middle SNR region

(15 < SNR < 35), while NN and SNA perform best in the

low and high SNR regions. Next, in Figure 3 (c), we report

the NMSE vs. rank for m/(pq) = 0.7 and SNR = 20 dB. We

find that RSVM-LD is the best, and RSVM-SN and NN are

comparable. At this point it is interesting to investigate the

performance at higher SNR, shown in Figure 4 for SNR = 40
dB. While NN performs better for the case of NMSE versus

m/(pq) in Figure 4 (a) where r = 3, we notice that RSVM-

LD is promising when rank is higher as reported in Figure 4

(b). Finally, in Figure 5 we show the cpu execution times of

all competing algorithms for the setup reported in Figure 3

(c). From Figure 5, we conclude that NN, implemented using

the cvx toolbox [36], is the fastest algorithm followed by the

RSVM algorithms (implemented in Matlab).

C. Experiments using synthetic data for LRMC

For LRMC, the objective of the first experiment is to

empirically find a good choice of s for RSVM-SN. Like

the first experiment for LRMR in section V-B, we fixed

rank(X) = r = 3, p = 15, q = 30, SNR = 20 dB and

varied m. The performance of RSVM-SN for different s is

shown in Figure 6. We found that s = 0.5 is a good choice,

and decided to use that throughout all relevant experiments.

Like the second experiment for LRMR in section V-B, we

conducted the second experiment here to evaluate the LRMC

performance of RSVM-LD and RSVM-SN vis-a-vis NN, VB-

1, VB-2, PMF and WTN. We used Matlab codes for VB-1

and PMF from their respective authors. For other methods,

we used our own codes. We manually tuned the competing

algorithms to improve their performance. The results are
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Fig. 3. Comparison of algorithms for LRMR. (a) NMSE versus. m/(pq) at SNR=20 dB and r = 3. (b) NMSE versus SNR at rank r = 3 and m/(pq) = 0.7.
(c) NMSE versus rank r at m/(pq) = 0.7 and SNR = 20 dB.
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Fig. 4. Comparison of algorithms for LRMR at SNR = 40 dB. (a) NMSE
versus. m/(pq) for r = 3. (b) NMSE versus rank r for m/(pq) = 0.7.
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Fig. 5. Mean cputime versus rank r for the setup in Figure 3 (c).

shown in Figure 7. Figure 7 (a) shows NMSE vs. m/(pq)
at r = 3, p = 15, q = 30, SNR = 20 dB. We observe

that for m/pq ≤ 0.5, RSVM-LD, PMF and VB-2 provide

the best performance while for m/pq ≥ 0.6 VB-1 performs

0.3 0.4 0.5 0.6 0.7 0.8
−15

−10

−5

0

m/pq

N
M

S
E

 [d
B

]

 

 

RSVM−SN, s =  0.1
RSVM−SN, s =  0.3
RSVM−SN, s =  0.5
RSVM−SN, s =  0.7
RSVM−SN, s =  1

Fig. 6. LRMC performance: NMSE versus m/(pq) for RSVM-SN at different
choice of s.

the best. Then, in Figure 7 (b), we report performance NMSE

versus. SNR where rank r = 3 and m/(pq) = 0.7 are fixed,

and find that VB-1 shows best performance closely followed

by PMF and RSVM-LD. Next, in Figure 7 (c), we report the

NMSE versus rank for fixed m/(pq) = 0.7 and SNR = 20 dB,

we find that VB-1 gave the best performance for rank ≤ 3
but then quickly degrades in performance. For higher ranks,

while PMF showed the best performance, the proposed RSVM

showed good performance.

D. Experiments using MovieLens data for LRMC - Movie
rating prediction

To evaluate the performance on real data we used the

MovieLens 100K dataset [20]. The dataset contains user-

movie pairs where in each pair, a user provides an integer

rating between 1 − 5 to a movie. Each user has only rated

a few movies according to the features of movies, and the

underlying assumption is that the rating matrix has a factorized

representation, leading to low-rank. Now let us assume that we

observe few ratings of the large rating matrix randomly. The
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Fig. 7. Comparison of algorithms for LRMC. (a) NMSE versus. m/(pq) at SNR=20 dB and r = 3. (b) NMSE versus SNR at rank r = 3 and m/(pq) = 0.7.
(c) NMSE versus rank r at m/(pq) = 0.7 and SNR = 20 dB.

TABLE I
RMSE OF ALGORITHMS FOR MOVIELENS

Algorithm RMSE
RSVM-LD 0.0410

RSVM-SN 0.0588

NN 0.0757

VB-1 0.0389

SNA 0.1255

VB-2 0.0389

PMF 0.1258

WTN 0.1249

goal is to infer the missing ratings from the observed ratings

and hence the problem is an LRMC problem.

In our experimental study, we used the u1 datasets (both

training and testing) from the MovieLens dataset. Then we

used a portion of the u1 datasets as X. The dimensions of X
are p = q = 100. According to the MovieLens dataset instruc-

tions, we used m = 307 measurements. The measurements

are collected via a pre-determined element picking matrix A.

Using the measurements and X from the u1 training data,

we learn the model parameters for all competing algorithms.

Then, using the learned parameters we perform LRMC for the

u1 test data. For performance comparison, we use root-mean-

square-error

RMSE =
1

|Jtest|
√ ∑

(i,j)∈Jtest

(Xij − X̂ij)2,

where Jtest denotes the set of unknown ratings, as this is

a standard performance measure for movie rating prediction.

The performance of all competing algorithms are shown in

Table I. It can be observed that RSVM algorithms provide

good performance.

E. Reproducible research

In the spirit of reproducible research, we provide code

necessary for reproducing the results in the website:

https://github.com/MartinSundin/rsvm simulation code and

https://www.kth.se/ees/omskolan/organisation/avdelningar/sp

/research/reproducibleresearch-1.433797. The code can be

used to reproduce the figures 2, 3, 6 and 7.

VI. CONCLUSION

In this paper we develop Bayesian learning algorithms for

low-rank matrix reconstruction in an under-determined setup.

The framework relates low-rank penalty functions (MAP

estimators) to type II estimators with either left- or right-

sided precisions through the matrix Laplace transform and the

concave conjugate formula. The model was further extended

to the two-sided precision based model. Using expectation-

maximization (EM) approach, we designed estimation algo-

rithms that are capable to learn relevant parameters from data.

Through simulations, for both real data and synthetic data, we

have shown that the new Bayesian learning algorithms provide

good performance vis-a-vis several existing methods.

APPENDIX

DERIVATIONS

A. The Laplace transform for positive definite matrices

We here summarize the definition of the Laplace transform

for positive definite matrices. Further details can be found in

[33]. Let Sn+ = {Z ∈ R
n×n : Z � 0} be the space of n × n

positive definite matrices and let f be a real valued function

on S
n
+. The matrix Laplace transform of f at Y ∈ S

n
+ is

Lf(Y) =

∫
Z�0

f(Z)e−tr(ZY)dZ, where dZ =
∏

1≤i≤j≤n

dZij .

The transform is defined for sufficiently nice functions [33]

for which it converges when ReY � Z∗ for some Z∗. The

inverse Laplace transform can be expressed as [33]

1

(2πi)n(n+1)/2

∫
ReY=Z∗

Lf(Y)etr(YZ)dY

=

{
f(Z) , if Z ∈ S

n
+,

0 , otherwise
.
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B. Derivation of the Laplace Approximation

The Laplace approximation is an approximation of the

integral

I =

∫
e−

1
2 f(a)da,

where the integral is over a ∈ R
n. The function f(a) is

approximated by a second order polynomial around its minima

a0 as

f(a) ≈ f(a0) +
1

2
(a− a0)

�H(a− a0),

where H = ∇2f(a)|a=a0
is the Hessian of f(a) at a0.

The term linear in a vanishes and H � 0 at a0 since we

expand around a minima. With this approximation, the integral

becomes

I ≈
∫

e−
1
2 f(a0)− 1

4 (a−a0)
�H(a−a0)da =

√
(4π)n

|H| e−
1
2 f(a0).

In (8), the integral is given by

I =
1

(2π)pq/2

∫
α�0

e−
1
2 [tr(αZ)−q log |α|+K(α)]dα.

Set f(a) = tr(αZ) − q log |α| +K(α), where a = vech(α)
and vech(·) is the half-vectorization operator for symmetric

matrices, e.g.

vech

(
a b
b c

)
=

⎛
⎝ a

b
c

⎞
⎠ .

Let α0 � 0 denote the minima of f(a) and H the Hessian

at α0. Assuming that α0 and H are “large” in the sense that

the integral over α � 0 can be approximated by the integral

over α ∈ R
p×p we find that

I ≈ 1

(2π)pq/2

∫
e−

1
2 f(a0)− 1

4 (a−a0)
�H(a−a0)da

=
(4π)p

2/2

(2π)pq/2|H|1/2 e
− 1

2 f(a0),

where a0 = vech(α0).

C. Derivation of (21), (22), (23) and (24)

Let P1 � Pr
(||P⊥

L xi||22 ≤ ς||PLxi||22
)

and assume that

1 ≤ r < p and let n = p − r. The random variables PLxi

and P⊥
L xi are independent zero-mean Gaussian variables. Let

w1, w2, . . . , wr, z1, z2, . . . , zn be i.i.d. N (0, 1) variables. For

the proofs of (21), (22), we find that

P1 = Pr
(

λL,r+1z
2
1+λL,r+2z

2
2+...λL,pz

2
n

λL,1w2
1+λL,2w2

2+···+λL,rw2
r

≤ ς
)

(a)

≥ Pr
(

λL,r+1(z
2
1+z2

2+···+z2
n)

λL,r(w2
1+w2

2+···+w2
r)

≤ ς
)

= 1− Pr
(

λL,r+1(z
2
1+z2

2+···+z2
n)

λL,r(w2
1+w2

2+···+w2
r)

≥ ς
)

= 1− Pr
(

(w2
1+w2

2+···+w2
r)/r

(z2
1+z2

2+···+z2
n)/n

≤ nλL,r+1

ςrλL,r

)
(b)

≥ 1− B( r
2 ,

n
2 ,ε1)

B( r
2 ,

n
2 )

(c)

≥ 1− Cp,rε
r/2
1 ,

(33)

where B(·, ·, ·) is the incomplete beta function, B(·, ·) =
B(·, ·, 1) is the beta function and

C−1
p,r =

r

2
B
(r
2
,
n

2

)
, and ε1 =

1

1 + ς
λL,r

λL,r+1

.

In (a),
λL,r+1z

2
1+λL,r+2z

2
2+...λL,pz

2
n

λL,1w2
1+λL,2w2

2+···+λL,rw2
r

≤ λL,r+1(z
2
1+z2

2+···+z2
n)

λL,r(w2
1+w2

2+···+w2
r)

is

used. In (b) we note that
(w2

1+w2
2+···+w2

r)/r

(z2
1+z2

2+···+z2
n)/n

is F-distributed.

Then, in (c), we use the following relation

B
(
r
2 ,

n
2 , ε1

)
=
∫ ε1
0

tr/2−1(1− t)n/2−1dt

= ε
r/2
1

∫ 1

0
ur/2−1(1− ε1u)

n/2−1du

≤ 2
r ε

r/2
1 .

(34)

This shows (22).

Suppose P2 � Pr
(||X−Xr||2F ≤ ς||X||2F

)
. To show (24)

we introduce the projection PR onto the subspace spanned

by the r eigenvectors of α−1
R corresponding to the r largest

eigenvalues and P⊥
R = Iq−PR. Using the projection operators

PL and PR, we have the following relation

||X||2F = ||PLXPR||2F + ||PLXP⊥
R ||2F

+||P⊥
LXPR||2F + ||P⊥

LXP⊥
R ||2F .

Next, Xr can be found using singular value decomposition

of X because Xr is the best rank-r approximation of X.

If P1 and P2 are two projection operators with properties

rank(P1) = p − r and rank(P2) = q − r, then we have the

following relation

||X−Xr||2F = min
P1,P2

||P1XP2||2F
≤ ||P⊥

LXP⊥
R ||2F .

We now find following relation

P2 � Pr
(||X−Xr||2F ≤ ς||X||2F

)
≥ Pr

(||P⊥
LXP⊥

R ||2F ≤ ς||X||2F
)

≥ Pr
(||P⊥

LXP⊥
R ||2F ≤ ς

(||PLXPR||2F + ||P⊥
LXP⊥

R ||2F
))

= Pr
(
||P⊥

LXP⊥
R ||2F ≤ ς

1−ς ||PLXPR||2F
)
� P3

The random variables PLXPR and P⊥
LXP⊥

R are independent

zero-mean Gaussian variables. Let {wi,j}, and {zk,l} be i.i.d.

N (0, 1) variables, where 1 ≤ i, j ≤ r, 1 ≤ k ≤ p − r and

1 ≤ l ≤ q − r. This gives us that [32]

P3 = Pr

(∑p−r
k=1

∑q−r
l=1 λL,r+kλL,r+lw

2
k,l∑

1≤i,j≤r λL,iλR,jz2i,j
≤ ς

1− ς

)
.

Using that∑
1≤i,j≤r

λL,iλR,jz
2
i,j ≥ λL,rλR,r

∑
1≤i,j≤r

z2i,j ,

p−r∑
k=1

q−r∑
l=1

λL,r+kλR,r+lw
2
k,l ≤ λL,r+1λR,r+1

p−r∑
k=1

q−r∑
l=1

w2
k,l,

we find that

P3 ≥ Pr

(∑p−r
k=1

∑q−r
l=1 w2

k,l∑
1≤i,j≤r z

2
i,j

≤ ς

1− ς

λL,rλR,r

λL,r+1λR,r+1

)
.
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Since
1

(p−r)(q−r)

∑p−r
k=1

∑q−r
l=1 w2

k,l

1
r2

∑
1≤i,j≤r z

2
i,j

is F-distributed, we find that

P2 ≥ P3 ≥ 1−
B
(

r2

2 ,
(p−r)(q−r)

2 , ε2

)
B
(

r2

2 ,
(p−r)(q−r)

2

) ≥ 1− Cr,p,qε
r2

2
2 ,

where

C−1
r,p,q = r2

2 B
(

r2

2 ,
(p−r)(q−r)

2

)
,

ε2 = 1

1+ ς
1−ς

λL,r
λL,r+1

λR,r
λR,r+1

.

D. The EM help function

The EM help function Q(Θ,Θ′) is given by

Q(Θ,Θ′) = EX|y,Θ′ [log p(X|y,Θ)] = c+
m

2
log β

− β

2
E [||y −Avec(X)||22 −

1

2
E [tr(αLXαRX

�)]

+
q

2
log |αL|+ p

2
log |αR|,

where c is a constant. Using that

E [||y −Avec(X)||22] = ||y||22 − 2y�Avec(X̂)

+ tr(A�A(vec(X̂)vec(X̂)� +Σ′))

= ||y −Avec(X̂)||22 + tr(A�AΣ′),

and

E [tr(αLXαRX
�)]

= tr((αR ⊗αL)(vec(X̂)vec(X̂)� +Σ′))

= tr(αLX̂αRX̂
�) + tr((αR ⊗αL)Σ

′),

we recover the expression (28) for the EM help function.

E. Details for the RSVM with the Schatten s-norm penalty

We here set S = εIq to keep the derivation more general.

The regularized Schatten s-norm penalty is given by

g̃(Z) = tr((X�X+ S)s/2).

For the concave conjugate formula (10) we find that the

minimum over Z occurs when

α− s

2
(Z+ S)s/2−1 = 0.

Solving for Z gives that

K̃(α) = −tr(αS)− 2− s

s

(
2

s

)−2/(2−s)

tr(α−2/(2−s)),

which results in (12).

Using (28), we find that the minimum of (27) for the

Schatten s-norm occurs when

X̂αRX̂
� + Σ̃R −

(
2

s

)−s/(2−s)

α
−2/(2−s)
L = 0

By solving for αL we get (30). The update equation for αR

is derived in a similar manner.

F. Details for RSVM-LD

The log-determinant penalty is given by

g(X) = ν log |Z+ S|.
For the concave conjugate formula (10) we find that the

minimum over Z occurs when

α− ν(Z+ S)−1 = 0.

Solving for Z gives that

K̃(α) = −tr(αS) + ν log |α|+ νp− ν log ν.

By removing the constants we recover (14).

Using (28), we find that the minimum of (27) with respect

to αL for the log-determinant penalty occurs when

X̂αRX̂
� + Σ̃R + SL − να−1

L = 0

Solving for αL gives us (31). The derivation of the update

equation for αR is found in a similar way.

G. Update equations of VB-1 for LRMR

Here we generalize the update equations of the Variational

Bayes method from [11] to LRMR, referred to as VB-1 in

section V-A. Similar methods were used in [15]–[18]. The

VB-1 method factorizes the matrix X ∈ R
p×q as

X = FB�,

were the column vectors of F = [f1 f2 . . . fr] ∈ R
p×r, B =

[b1 b2 . . . br] ∈ R
q×r (r ≤ min(p, q) is a user parameter)

are given Gaussian priors as

p(F|γ) =
r∏

i=1

N (fi|0, γ−1
i Ip),

p(B|γ) =
r∏

j=1

N (bj |0, γ−1
j Iq),

where γi > 0 are the precisions of fi and bi. We usually

set r = rank(X) when the rank is known, otherwise r can

be used to upper bound the rank of X̂ = F̂B̂�. The additive

noise in (3) is modeled as a zero-mean white Gaussian with the

unknown precision β > 0. The precisions are given Gamma

and Jeffreys priors as

p(γi) ∝ γa−1
i exp(−bγi),

p(β) ∝ β−1.

In the variational Bayes framework, blocks of variables are

assumed to have independent posterior distributions allowing

to approximate the posterior. Assume that we want to approxi-

mate a distribution p(z) using variational Bayes. Let zI denote

the variables with indices’s in a set I , the variational Bayes

approximates the distribution p(zI) by q(zI) as [24]

log q(zI) = EzIc |zI
[log p(zI , zIc)] + constant.

Different choices of blocks of parameters can be made, we

here chose to use independent rows in F and B (as in [11])

since it gives good (empirical) performance. We here use Ak

to denote the k’th sensing matrix in (2), [Ak].i to denote the
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i’th column vector of Ak, [Ak]i. to denote the i’th row vector

of Ak and [Ak]ij to denote the (i, j)’th component of Ak.

We also set Γ = diag(γ1, γ2, . . . , γr).

Given means γ̂, β̂ of γ and β, that bk ∼ N (b̂k,Σ
(B)
k ) for

all k and fj ∼ N (f̂j ,Σ
(F )
j ) for all j �= i, we find that

log q(fi) = − β̂

2

(
m∑

k=1

y2k − 2f�i B̂�[Ak]i.yk

+2
∑
j 
=i

f�i E [B�[Ak]i.[Ak]
�
j.B
]
f̂j

+f�i E [B�[Ak]i.[Ak]
�
i.B
]
fi
)− 1

2
f�i Γfi + constant.

where

E [B�[Ak]i.[Ak]
�
j.B
]
=B̂�[Ak]i.[Ak]

�
j.B̂

+
∑
c

[Ak]ic[Ak]jcΣ
(B)
d .

This gives us that fi ∼ N (f̂i,Σ
(F )
i ) with

f̂i = β̂Σ
(F )
i

(
B̂�∑

k

yk[Ak]i.

−
∑
j 
=i,k

E [B�[Ak]i.Ak]
�
j.B
]
f̂j

⎞
⎠ ,

Σ
(F )
i =

(
β̂
∑
k

E [B�[Ak]i.[Ak]
�
i.B
]
+ Γ

)−1

.

Similarly, when the distributions of the other variables are

fixed, we get that bi ∼ N (b̂i,Σ
(B)
i ) with

b̂i =β̂Σ
(B)
i

(
F̂�∑

k

yk[Ak].i

−
∑
j 
=i,k

E [F�[Ak].i[Ak]
�
.jF
]
b̂j

⎞
⎠ ,

Σ
(B)
i =

(
β̂
∑
k

E [F�[Ak].i[Ak]
�
.iF
]
+ Γ

)−1

,

where now

E [F�[Ak].i[Ak]
�
.jF
]
=F̂�[Ak].i[Ak].jF̂

+
∑
d

[Ak]di[Ak]djΣ
(F )
d .

We also find that the precisions γi are Gamma distributed

with posterior parameters

âi =
p+ q + 2a

2
,

b̂i =
1

2

(
||f̂i||22 + ||b̂i||22 + tr(Σ

(F )
i ) + tr(Σ

(B)
i ) + 2b

)
.

The posterior mean of γi is γ̂i = âi/b̂i. Similary we find that

the posterior distribution of β is Gamma(ĉ, d̂) with

ĉ = m/2,

d̂ =
1

2

⎡
⎣||y − vec(F̂B̂�)||22 +

∑
i,k

(
f̂�i AkΣ

(B)
i A�

k f̂i

+b̂�
i A

�
k Σ

(F )
i Akb̂i + tr(Σ

(F )
i AkΣ

(B)
i A�

k )
)]

.

The posterior mean of β is thus β̂ = ĉ/d̂.
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