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Abstract

This PhD thesis is devoted to investigate weighted differential Hardy in-
equalities and Hardy-type inequalities with kernel when the kernel has an
integrable singularity, and also the additivity of the estimate of a Hardy
type operator with a kernel.

The thesis consists of seven papers (Papers 1, 2, 3, 4, 5, 6, 7) and an
introduction where a review on the subject of the thesis is given.

In Paper 1 weighted differential Hardy type inequalities are investi-
gated on the set of compactly supported smooth functions, where neces-
sary and sufficient conditions on the weight functions are established for
which this inequality and two-sided estimates for the best constant hold.

In Papers 2, 3, 4 a more general class of a - order fractional in-
tegration operators are considered including the well-known classical
Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard operators. Here
O<a<l

In Papers 2 and 3 the boundedness and compactness of two classes of
such operators are investigated namely of Weyl and Riemann-Liouville
type, respectively, in weighted Lebesgue spaces for 1 <p < g < ooand 0 <
g < p < oo. As applications some new results for the fractional integration
operators of Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard are
given and discussed.

In Paper 4 the Riemann-Liouville type operator with variable upper
limit is considered. The main results are proved by using a localization
method equipped with the upper limit function and the kernel of the
operator.

In Papers 5 and 6 the Hardy operator with kernel is considered, where
the kernel has a logarithmic singularity. The criteria of the boundedness
and compactness of the operator in weighted Lebesgue spaces are given
forl1<p<g<ooand0 < g <p < oo, respectively.

In Paper 7 we investigated the weighted additive estimates

1K= flly < C(llpflly + IlwH=f1l,), f =0 (*)
for integral operators K™ and KK~ defined by

X e

K0 = [ K90, K= [ Koo
0 X
It is assumed that the kernel K = K(x, s) of the operator K* belongs to
the general Oinarov class. We derived the criteria for the validity of the
inequality (+) when 1 <p < g < oo.






Preface

This PhD thesis is mainly devoted to introduce and study weighted differ-
ential Hardy inequalities and new Hardy type integral inequalities involv-
ing Riemann-Liouville type operator and its conjugate Weyl type operator.
Further we investigate boundedness and compactness of Hardy type op-
erators with variable upper limit and integral operators with a logarithmic
singularity in weighted Lebesgue spaces. Moreover, we have found addi-
tive estimates of a class of integral operators, which is much wider than
previously studied. We also present some applications, which cover much
wider classes of integral operators than studied before.

The thesis consists of an introduction and the following seven papers:

[1] A.M. Abylayeva, A.O. Baiarystanov and R. Oinarov, A weighted dif-
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[3] A.M. Abylayeva, R. Oinarov, and L.-E. Persson, Boundedness and com-
pactness of a class of Hardy type operators, Research report 2016 (sub-
mitted).

[4] A.M. Abylayeva, Boundedness and compactness of the Hardy type operator
with variable upper limit in weighted Lebesgue spaces, Research report
2016-04, ISSN: 1400-4003, Department of Engineering Sciences and
Mathematics, Luled University of Technology, Sweden. Submitted to
an International Journal.

[5] A.M. Abylayeva and L.-E. Persson, Hardy type inequalities with log-
arithmic singularities, Research report 2016-05, ISSN: 1400-4003, De-
partment of Engineering Sciences and Mathematics, Luled University
of Technology, Sweden.

[6] A.M. Abylayeva, Compactness of a class of integral operators with log-
arithmic singularities, Research report 2016-06, ISSN: 1400-4003, De-
partment of Engineering Sciences and Mathematics, Luled University
of Technology, Sweden.

[7] A.M. Abylayeva, A.O. Baiarystanov, L.-E. Persson and P. Wall, Addi-
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Introduction

Integral operators are a wide class of linear operators that have applica-
tions in various fields of science, such as physics, economics, technical
sciences and many others. Therefore the study of integral operators take
an important place in modern mathematics.

In the last decades the issues of finding necessary and sufficient condi-
tions for the weighted inequality

K fllgu < Cll fllp0 (0.1)

and two-sided estimates for the best constant C in (0.1) are intensively
studied for various integral operators K, where

1
4

||f”p,v = If(x)l’”v(x)dx < 00,
/

In the case when one of the parameters p and g is equal to 1 or oo,
there is a general result ([28] Chapter XI, §1.5, Theorem 4, see also [18],
Theorem 1.1) establishing the exact value of the best constants in (0.1).
However, when 1 < p,q < oo in the general case this problem remains
open. Therefore a solution of this problem for various classes of integral
operators is urgent.

In 1925 G.H.Hardy [24] obtained the inequality (0.1) when p = g for the
Hardy operator defined by

Kf(x) = Hf (x) = fo F(t)dt

L

with the weighted functions u(x) = x7, v = 1 with the exact value C = P

for the best constant C in (0.1), i.e. the inequality

00 X p P 00
fo ()1_{ fo f(t)dt) dxs(%) fo fEdx, f>0, (02

holds which is called the classical Hardy inequality. In 1928 G.H.Hardy
[25] proved the first weight modification of inequality (0.2), namely the
inequality

f( ff(t)dt) adx<( )f Py, £20,  (03)



with the best constant C = ( p_Z_l )p, whenp > 1a > p—1(see [26], Theorem
330). Itisnowadays known that the inequalities (0.2) and (0.3) are in a sense
equivalent and also equivalent to some other power weighted variants of

Hardy’s inequality, see [56].

Since the middle of the last century the studing of a general weighted
form of inequality (0.1) with the Hardy operator H i.e. the inequality

(j:o u(x) j:f(t)dtrdx)}? < C(f:o |f(t)|pv(t)dt); 0.4

for p = g was initiated (see for instance [8] by P.R. Beesack, [27] by J. Kadlec
and A. Kufner, [57] by V.R. Portnov, [63] by V.N. Sedov and [76] by FA.
Sysoeva). However, for the case p = g the necessary and sufficient condi-
tion for the validity of inequality (0.4) was first obtained, independently, in
the works of G.Talenti [77] and G.Tomaselli [78]. In 1972 B.Muckenhoupt
in [42] gave a simple excellent proof of this result, even in the more gen-
eral case, when u7(x)dx and v”(t)dt were replaced by general Borel measures
du(t) and dv(t), respectively. A criterion for the inequality (0.4) to hold when
1 < p < g < oo was given independently by J.Bradley [10], V.Kokilashvili
[29] and B.Maz’ya [39]. And the case 1 < g < p < co was first described by
B.Maz’ya and A.Rozin in the late seventies, see [38] and [39]. These results
have been extended by G. Sinnamon [64] to the values of the parameters
0<g<p<oo,p>1, and the case 0 < g < p = 1 has been described
by G.Sinnamon and V.D.Stepanov [65]. G.Tomaselli [78] gave an alterna-
tive criterion for the weighted Hardy inequality (0.4) to hold when p =g,
which V. Stepanov and L.-E. Persson generalized this result to the cases
l<p<g<oandl<g<p<ooin[54]

There are studies on the description of the inequalities in other terms
[15] and [32], different from the above authors and also for negative values
of the parameters p, q see e.g. [61].

Let us sum up some of the results above in the following Theorem:

Theorem A. (i) If 1 < p < q < oo, then the inequality (0.4) holds for all
measurable functions f(x) > 0 on (a,b) if and only if

1

b g X L
Aq = sup (f u(t)dt) (f vl""(t)dt)p < o0
a<x<b \Jx a

2



or

t X q % t _%
Aps = s::g) [!w(x) [fvlp'(y)dy] dx] [fvl”'(y)dy] < oo,

0 0

(ii) If 1 < g < p < oo, then the inequality (0.4) holds if and only if

xr
7

Ay = [fab (fxb u(t)dt); (fax vl‘p'(t)dt)q vl”'(x)dx]1 < o0

or
o[t x 9 Ni[ t =5 -7
Bps := f [ f w(x) [ f vl”'(y)dyJ dx] [ f vl”'(y)dy] o' (Dt < oo,
o \0 0 0
where L =1 -1,
r g p

(ii)) If 0 < g < 1 < p < oo, then the inequality (0.4) holds if and only if

£
7

fa b ( f bu(t)dt); ( f xvl""(t)dt)p u(x)dx]1 < .

(iv) If 0 < q < 1 = p, then the inequality (0.4) holds if and only if

Ay = {j;) [5(9() fxb u(t)dt)

where 9(x) = ess sup
a<t<x
Itisnowadays known that the conditions in (i)-(ii) in fact can be replaced

by infinite many equivalent conditions, even by four different scales of
conditions, see [15] (the case (i)), [55] (the case (ii)) and for even more
information of this type the review article [34].

In connection with the investigation of operators in Lorentz spaces
since 1990 the Hardy-type operators were actively studied on the class
of monotone functions, see for example [18], [19], [20], [21], [22] and the
references therein. Moreover, operators including the supremum, has
began to be investigated recently, see for example [3], [16], [17], [53] and
the references therein.

A3 =

-1

S

1
1—

q u(x)dx] < 00,



The inequality (0.4) and its dual inequality are equivalent to the differ-
ential inequality

I9llu < CllY llp,o (0.5)

respectively for y(0) = 0 and for y(c0) = 0. We remark that P.Gurka [23]
described the inequality (0.5) under the condition

y(0) =0, y(e) = 0. (0.6)

Historical background, a review of the research, the main results and
their applications are given in the books [11], [12], [26], [31], [33], [41] and
[51].

The inequality (0.5) with condition (0.6) was considered in [51], [31],
but only in [51] an expanded version of the work of P. Gurka [23] was
considered and two-sided estimates for the best constant C of (0.5) was
stated.

The aim of this PhD thesis is to complement and extend several results
in the area described above which is today called Hardy type inequalities
and related boundedness and compactness results. Below we give a short
description and motivation for these new contributions presented in this
PhD thesis.

In Paper 1, using a new method, we obtained necessary and sufficient
conditions for the validity of the inequality (0.5) with condition (0.6) for
thecases 1 <p<g<ooand 0 < g <p < oo, p > 1. We also derived
two-sided estimates for the best constant C of (0.5), which are better than
those in [51].

In 1979 O.D.Apyshev and M.Otelbaev [7] considered the inequality
(0.5) for higher order derivative, namely the inequality

Iyllgu < Clly"llpo, n>1 (0.7)

y(0)=0, i=0,1,..n—1. (0.8)

But a criterion for the inequality (0.7) to hold was obtained only under
certain restrictions on the weight functions. We mention that Chapter 4 of
the book [31] is devoted only to such higher order Hardy type inequalities.
We remark that the possible boundary values (of type (0.8)) are very crucial
to make such investigations possible (see [31]).

The inequality (0.7) with the condition (0.8) is equivalent to the inequal-
ity (0.1), when the integral operator K is equal to the Riemann-Liouville

4



operator I, defined by

Lf(x) = ﬁ f (= 9V f)dy, x>0, 0.9)
0
fora =mn,ie.
Vel < Cllf (0.10)

A satisfactory criterion for the inequality (0.10) to hold for the Riemann-
Liouville operator when o > 1 was obtained in the papers [67], [70] and
[69] of V.D.Stepanov.

An other generalization of (0.4) is a norm inequality of the form

f

for the Hardy-Volterra integral operator K given by

x q q o0 »
f k(x, y)f(y)dy] u(x)dx] <C [ f f”(y)v(y)dy] , f=z0, (0.11)
0

0

X

Kf(x) := fk(x, fydy, x>0, (0.12)

0

with kernel k(x, y), which is assumed to be non-negative and measurable
on the triangle {(x, y) : 0 < y < x < oo}. A number of authors have studied
in their works several different classes of such operators. In [37] it was
obtained a characterization of (0.11) in the case 1 < p < g < oo with the
special kernel k(x, y) = @(x/y), where ¢ : (0,1) — (0, o) is non-increasing
and satisfying that ¢(ab) < D(p(a) + ¢(b)) for all 0 < a,b < 1. Moreover, a
criterion of the L, , — L,,, boundedness was given in [71] and [72] by V.D.
Stepanov for the Volterra convolution operator (0.12) with k(x, y) = k(x — y)
for both the cases 1 < p < g <oand 1 < g < p < o0. An other class of
studied operators of the type (0.12) has kernels satisfying some additional
monotonicity and continuity conditions (see e.g. [9] by S. Bloom and R.
Kerman). In the nineties it appeared some important works (see e.g. [45],
[46] by R. Oinarov and [73], [74] by V.D. Stepanov) devoted to the class of
the operators (0.12) with so called Oinarov kernels. A kernel k(x,y) > 0
satisfies the Oinarov condition if there is a constant D > 1 independent on
x, Y,z such that

D 'k(x,y) < k(x,2z) + k(z,y) < Dk(x,y), 0<y<z<x (0.13)

5



Let the kernel k(x,y) > 0 of the operator (0.12) satisfy the Oinarov
condition (0.13). If

1 1

Ag(a) = s::g) [ f Ki(x, t)u(x)dx] [ f vl”'(y)dy] ,

0

Aq(a) := sup [fu(x)dx] pr'(t,y)vl”'(y)dyJ ,
>0

0

==

==

1
plg=1) q
= t P=q

By(a) := [ Kq(x,t)u(x)dx] vlp'(y)dy] o' (dt|
oo [

t 0

~
B

and
o ) % t % 5_%
Bi(a) := f[fu(x)dx] [pr'(t, y)vl”"(y)dy] u(t)dt ,
0 \t 0
then it is known that
KL, ~ Ao(@) + Ar(a), 1<p<q<oo, (0.14)
and
IKll.,, L, = Bo(@) + Bi(a), 1 <q<p <oo. (0.15)

Later on two-sided estimates of the types (0.14) and (0.15) were derived
for more general operators and spaces, see e.g. [37], [35], [75], [31], [14],
[12], [30], [47], [48] and [49].

The class of Oinarov kernels includes all above mentioned classes of
kernels except Riemann-Liouville kernels for 0 < a < 1.

The Riemann-Liouville operator is a weakly singular integral operator
when 0 < a <1 and behaves very differently than when o > 1.

For power weight function v(x) and u(y) = 1 the following classical
result [26], Theorem 402, is well known:

Ifp>1,0<a<l/pp<q<p/l—ap)ora>1/p,1<p<q< oo, then

[ f x f)q(x)dx] <C|| f||p. (0.16)

0



The inequality (0.16) has been generalized in the following way in paper
[6] of K.F.Andersen and E.T.Sawyer:

1 —_r
Let0<a<;and1 <P<4= G Then

lutauf], < |1l

if and only if K < oo, where

a+h % a pl*f
1 1 ,
K:= sup |- f wl(x)dx| | = f u? (x)dx
O<h<a h h
a a—h

Moreover, in [59] D.V.Prokhorov and V.D.Stepanov proved the follow-
ings result:

1 —_r
LetO<a <. and1<p<g= g5 Then

g, < £, 0.17)

if and only if
[[9]]e0 < 0.

When a > 1, p = g = 2 and v = 1 the inequality (0.17) has been
characterized by S. Newman and M. Solomyak within the spectral theory of
pseudo-differential operators on the half-axis, see [44] and also references
therein.

A criterion for the inequality (0.10) to hold for 1 < p < g < oo was
derived by M.Lorenti [36]. However, due to implicitness of the conditions
the criteria in [36] make them difficult to verify. Therefore, we set a goal
to derive explicit L, , — L, criteria for the boundedness of the Riemann-
Liouville operator in subsequent works.

Inthecase0 < g <o0,1<p<oo,a> % and v(-) = 1 explicit criteria
for L,, — L,;, boundedness of the Riemann-Liouville and Weyl operators
are obtained independently in works of A.Meskhi [40] and D.V.Prokhorov
[58], see also [66]. A generalization of these results to the case when the
function u(-) is not increasing was claimed in the paper [13] of S.M.Farsani.
In the paper [59] of D.V.Prokhorov and V.D.Stepanov criteria for L,, —
L,,, boundedness and compactness of the Riemann-Liouville operator are
given for 1 < p < g < oo in the following cases:

a) 1< %ﬁ < a <1 and the function v is not decreasing;
b) 1<% <a <1and the function u is not increasing.

7



A generalization of these criteria for L, — L, boundedness of the

Riemann-Liouville operator in the case of convolution type operator K,
defined by

X

Kf(x) :== v(x) fK(x —s)u(s)f(s)ds, x>0,

0

are given in the papers of N.A.Rautian [52] and R.Oinarov [50]. For the
case when the kernel of the operator K, defined by (0.12) is k(x, y) = k(x—y)
and the function k(-) has an integrable singularity in zero like the Riemann-
Liouville operator the results in [52] were generalized by D.V.Prokhorov
and V.D.Stepanov [59] in the case of inequality (0.11). Moreover, R.Oinarov
[50] proved a general result of the type claimed by S.M.Farsani [13].

In addition to the Riemann-Liouville and Weyl operators the Erdey-
Kober and Hadamard operators are important both in mathematics and
for several applications.

One of the generalizations and unifications of these operators is the
fractional integration operator Iy defined by:

(H)g'(t)dt
oz)f ) - 3T = x>0, a>0, (0.18)

where g(-) is a local absolute continuous and increasing function on I =
(0, 00). In [62] the operator I3 is called a fractional integral of the function ¢
with respect to the function g of order a. In particular, in (0.18) when g(x) =
x, g(x) = x°,0 > 0and g(x) = Inx, we obtain the fractional integral Riemann-
Liouville, Erdelyi-Kober type and a Hadamard operator, respectively.

In Papers 2 and 3 of this PhD thesis we consider the more general
operators K, 3 and T, g defined as follows:

b
[ us)WP(s)f(s)w(s)ds
Koot [ WE - W@y

and

._ ( u(s)WP(x) f(s)v(s)ds
Ta,ﬁf(x) = f (W(S) _ W(x))l—a



where 0 < a <1, €R, I = (a,b), —c0o <a <b < ocoand W() is locally

absolutely continuous and monotonically increasing function on I, dw(t)
w(x) and u(-) - non-negative measurable function in I.

In Paper 2when 0O <a <1,p > i,ﬁ <0< %—a,ifW(b) = o0) and
u > 0 is a non-decreasing function we obtained necessary and sufficient
conditions for the boundedness and compactness of the operator K, s from
L, into L, for the cases i <p<g<owand0<g<p<oo,whenb < oo
and for the case 1 < g <p < co when b = co.

Consequently, from these statements we obtain necessary and sufficient
conditions for the boundedness and compactness of the weighted Weyl
operator I, defined by

Lf(x) = w(x )f S)Sﬁf S)ds , x>0, 0<a<1,

from L, to L,.
Note that from these results it seems that Theorems 3, 4, 7 and 8 of
paper [13] are not true in general.

Similarly, in Paper 3 when 0 < a < 1,p > 1, 8 < 0 and u is a non-
increasing function we derived necessary and sufficient conditions for the
boundedness and compactness of the operator T, from L, into L,,, for
the cases 1 <p <g<ocoand 0 < g <p < oo, when b < oo and for the case
1<g<p<ocowhenb = co.

Consequently, we obtained in particular necessary and sufficient con-
ditions for the boundedness and compactness of the weighted Riemann-
Liouville, Erdelyi-Kober and Hadamard operators from L, into L,, which
generalize the well known results for these operators when p > 1.

In Paper 4 we considered the problem of boundedness and compactness
of the operator K, ,, defined in the following way

(x)

Ko f(x) := f(s)w(s)ds

(W(x) — W(s)' ™

O<ax<l,

from L,, into L,,, where ¢(x) is a strictly increasing locally absolutely
continuous function, which satisfies the following conditions

lim (x) = a, hr?, @(x)=b, and p(x) < x.

9



Obviously, the results presented in this paper clearly generalizes the results
in [1] and [4].

In Papers 5 and 6 we considered the operator K, with a logarithmic
singularity defined by

K, f(x) := v(x) fu(s)sV‘1 In ﬁf(s)ds, x> 0.
0

When y = 0, v(-) = u(-) = 1 this operator is called a fractional integration
operator of infinitesimal order and it has wide applications in mathematical
biology, see [43].

In Paper 5 we assumed that the function u is non-increasing and derived
necessary and sufficient conditions for the boundedness of the operator K,
from L, into L, when1 <p<g<ooand 0 <g <p < oo, p > 1. Moreover,
the compactness of the operator K, from L, into L, was proved in Paper 6
whenl <p <g<oco.

We remark that the results in papers 5 and 6 clearly generalizes the
main results in [5] and [2], respectively.

In Paper 7 we considered the weighted additive estimates

luIK* fll, < C(loflly + IlH*fll,), f >0 (0.19)

for the integral operators K* and K~ defined by

X [e)

K* f(x) := fK(x,s)f(s)ds, K™ f(x) :== fK(x,s)f(s)ds,

0 x

where the special cases H" and H™ are the usual Hardy operators defined
by

(o]

H* f(x) := f f(s)ds, H f(x):= f F(s)ds.
0

X

We assumed that kernel of the operators K* and K~ belong to the
generalised Oinarov class [48] and thus found exact criteria for the validity
of the inequality (0.19) when 1 < p < g < oo in much more general cases
than previously known.

10
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§1. Introduction

Assume thatI = (a,b), —0 <a<b < 00,0<p,g < oo, % +’% =1, p,vand
pl"”, = % are nonnegative locally summable functions on I and v # 0.

Let0O <p <ooandletL,, =L,,(I) be the space of measurable functions
f on I such that the norm

W, | frotora

is finite. The symbol W, , = W,(p,I), p > 1, stands for the collection of f
locally absollutely continuous on I and having the norm

Al =11, + 7o (20)

finite, where ¢, € I is a fixed point. Assume that lim;.. f(t) = f(a),
lim;_,— f(t) = f(b), and AOCp(p,I) = {f € W;,p s f(a) = f(b) = O},ACpll(p, I) =
{[feW!, : fa)=0}, AC,.(p,l) = {f e W], : f(b) =0O}.

The closures of Aon(p, 1), AC,(p,I)and AC, (p, I) under (20) are denoted
respectively by I/OVp(p, I, W, (p, 1) and W, .(p, ]).



We consider the weighted Hardy inequality in differential form on

AC,(p, D [11:
b i b ;
[ f u(t) |f(t)|"dt] <c[ f p(b) |f’(t)|”dt] . (21)

a a

Inequality (21) and its generalizations were the subject of investigations
of many specialists in the last 50 years, and so these are studied well on
AC,(p,I) and AC,(p,I). The history of the problem and the results can
be found in [1, 2, 3]. In the recent years numerous equivalent criterions,
ensuring this inequality, are obtained (for instance, see [4, 5]). But (21) is

not studied adequately on AC,(p,I). Some results can be found in [1, 2]
and only in the article [1] two-sided estimates for the best constant C > 0
of (21) are given.

Various applications of (21) in the qualitative theory of differential equa-

tions (see [6, 7, 8, 9]) necessitate studying it on AC,(p, I) with sharper es-
timates for the best constant.

In the present article by a method different from that in [1] we establish
a more genaral result generalizing those in the above papers and give
sharper two-sided estimates for the best constant C > 0 in (21).

§2. Necessary Notations and Statements

We study (21) on AC,(p,I) in dependence on the behavior of p at the
endpoints of I. The weighted function p may vanish at the endpoints of I
and thus we have

Theorem A. Let 1 < p < co. Then

(i) if pl‘p, € Ly(I) then, for every f € W, (p, I), there exist lim; ., f(t) = f(a),
limy_,— f(t) = f(b), and

Wolp,D) = {f € Wip, D) : (@) = £(b) = 0} = AC,(p, );
(ii) ifpl‘*’, € Li(a,c) and pl‘P' ¢ Li(c,b),c €1, then, for every f € W; (p, D),

there exist f(a) and
Wo(p, D) = W', (p,1) = {f € Wi(p, D) : fla) = 0} = AC,, (p, I);

(iii) ifpl"’/ ¢ Li(a,c) and pl‘p/ € Li(c,b), ¢ €1, then, for every f € W; (p, 1),
there exist f(b) and



Wylp, 1) = W2, (p,1) = (f € Wi(p, D) : f(b) = 0} = AC,, (p, Io);

(iv) ifpl‘p/ ¢ Li(a,c) and pl‘f” ¢ Li(c,b),c € I, then
Wy, D) =W, (p, 1) = W, (p, 1) = f € W, (p,]).

Generally speaking, the statements of Theorem A are known and they
can be deduced from the results in [10, 11, 12]. We present the proof of
(if). The remaining statements are proven by analogy.

Assume that pl"’, € Li(a,c) and pl‘f” ¢ Li(c,b),c € I. Then for f €
W, (p,I) we have

c c ;7 b %
f f <t>|dts[ f p”'] [ f p(t)If'a)I”dt] <o,

Therefore, f(a) is defined.
Let f € W;/l (p,I). Then there exists a sequence {f,} € AC,;(p,I) such

that ||f _f””wl — 0asn — oo. Since
to
£~ £,(0)] < f IF/6) = £16)|ds + | £(to)  fulto)

fora <t <ty < b, the Holder inequality yields

|f(t) —fn(t)| < max 1,[fplp'] ”f_f””w;,p‘

Hence, f(a) = 0.
Leta < a <ty < b. In this case

|f(@)] < [ f p“’/]p/ [ f p®)|f [ dt]

a a

==

or
;

If(a)l[ f p“"]p < [ f p®)|f [ dth

a a



Let a point a* = a* (a, a) € (a, @) satisfy the relation

a o
1—p/ _ 1—;7,
f prr = f P
o a

Introduce a function

O/ a<t< Oé*,

t a -1
fa(t) = { f(a) (af pl"")(af pl"") , a'<t<a,
f(@), a<t<b.

Obviously, f, € AC,;(p,I). We have

sl f -1

o[ Jovr] v f o] <o) [

and so ||f - f; wi — 0asa — 0. Hence f € W), (p,]) and W/, (p,I) =
1 , ,
{feWl(p,]): fa)=0].
Demonstrate that VOVP (p, 1) = W;,z (p,I). Since I/OVP (p, 1) C W;/l (p, D),
it suffices to establish that I/i/,, (p,I) W;,z (p,I). Let f € W;J (p,I) and

1
p
7

b
a<a<t)<p<b. Since f p'™P ds = oo, for every B € I there exists a point

B =B (B,b) € (B,b) such tl;at

noyE (e :
£8)| f I f pt)|fo] at| .
B p



Construct f, 3 € AC, (p,I) such that

fa(t)/ a<t<p,
I / -1 I /
Jap®) =1 f(B) [fpl"’) [pt7r, p<t<p,
B t
0, B <t<b.

In this case

1 - Fuslhg, [f plr - farJ [f plr - faﬁ|] [f plrT
s(1+2;')[ f p|f’|p]p+2[ fh p|f'!p]p+|f(ﬁ)| fp“"]p,
s(mé)[ | p|f'r7]p +s[ [y

Hence, ”f_f“'ﬁ”Wl},, — 0asa — 0and B — b. There fore, f € I/OV,, (p, D).

Theorem A is proven.
Leta <a <p<b. Put

Ar (o, B,x) = [ f plp’];][ fﬁ v(t)dt]i,
ool o [l
Al (B, x) = [ f p”"]; [ f v(t)dt]; ,

| —
==

==




9 N\

B (B 8
A (a,B,x) = fpl_”/ fv(t) fpl_”/ at| ,a<x<p;
x X t
Ai (0(, ﬁ) = Sup Ai (0[, ﬁ/ x) 7
a<x<f
Al (a,B) = sup Al (a,B,x),i=1,2,
a<x<p

yi=min(pt (¢)"qt (7)) 72 =p
The best constants C in (21) on AOC,, (p, (a, B)), AC,,; (p, (v, B)) and

AC,, (p,(a,p)) are denoted by C = Jy(a, ), C = Ji(, ), and C = ], (e, B),

respectively.
In view of [3, 13], we can say that

Theorem B. Let 1 < p < g < co. Then
max {A; (a, ), Az (a, )} < Ji (a, B) < min{y14s (a, B), 7242 (2, )},

’

(22)

max {A1 (@,B), A5 (a, ﬁ)} < J,(a, ) < min {y1A§ (a,B), 7245 (a, ﬁ)} (23)

Assume that

B(a,B) = fﬁ fv : [fp] B p(x)dx|

2% X

P=q
plg=1) I

B (a,p) = fﬁ [ f ] fﬁ p p(x)dx

Since pl"’/ is locally summable on I, we by [3, 14] have (see [14], Re-

mark)
Theorem C.Let 0 < g <p < oo, p > 1. Then

wB(a,p) <Ji(a,p)<p'B(e,p), wB(a,p)<](ap)<p"B(ap),

where y~ = (%)%/ ut = (p)ﬁ q% forl<qg<p<ooand u- = q% (P)”i %,
p=a

‘u+:pfl”(p/)/(ﬁ)wf0r0<q<1<p<oo.

==



§3. The Main Results
3.1. The case of 1 <p < g < 0. Let

b
f PV (s)ds < 0. (24)

Definition 1. A point¢; € [,i = 1,2, is called a midpoint for (Ai, Al) if
Ai (ﬂ, Ci) = Af (Cir b) = TC,‘ (ul b) < OO,i = 1r 2.

Theorem 1. Assume that 1 < p < g < oo and (24) holds. Then (21) is

fulfilled on AOCp (p, 1) if and only if there exits a midpoint ¢; € I for (Ai,A;) at
least for one of the numbers i = 1,2 and the best constant ], (a,b) in (21) in this
case satisfies the estimate

qu’%?pnmx{Tc1 (a,b), T, (a,b)} < Jo(a,b) <min{yiT,, (a,b),y.T,, (a,b)}. (25)

Corollary 1 [9]. In the case of p = q, we have

1
7

max{T., (a,b), T, (a,b)} < Jo(a,b) < min {p% (p')” T, (a, b),p'Tc2 (a, b)}.

To prove Theorem 1, we use
Lemma 1. Let 1 < p < g < oo and assume that (24) holds. Then a midpoint

for (Ai, Al) ,1=1,2, exists if and only if, for a given c € I, there exist

limsup A; (a,c, x) < oo, linl} supA;(c,b,x) <o, i=1,2. (26)

X—a

Proof of Lemma 1. Sufficiency: (26) yields

c—a

lim A; (a,c) < o, linl}Aj (c,b) <0, i=1,2.

Demonstrate that
lirrb1A,- (a,c) > lir?Aj (c,b), i=1,2. (27)

Indeed, if
lin;Ai (a,c) < lin% Al(c,b) <o (28)



then (24) implies that
b

fv(t)dt <oo, cel.

Cc

Hence,
lir?Alf (c,b)=0, i=1,2. (29)

For i = 1, (29) is obvious and, for i = 2, it follows from the inequality

that
b (b b q b ,,i b
fpl”/ fv(t) fpl”/ dt| < fpl"’/ fv(t)dt
c c t c c

Since A; (a,c) is a nonnegative nondecreasing continuous function in
c € I, from (28) and (29) it follows that A; (a,b),i = 1,2. Thus, v (t) = 0 on
I and the latter contradicts the conditions on v. Hence, (27) holds. In the
same way, we justify the inequality

lim A; (c, b) > hmA (a,¢), 1,2. (30)
In view of (27) and (30), the continuity and monotonicity of A; (a,c) and
Al (c,b) in ¢ € I imply the existence of points ¢; € I such that A;(a,¢;) =
Al(ci,b), i=1,2.
Necessity: Let a midpoint ¢; € I for (Al-, A;), i=1,2, exist. The definition
of ¢; yields
Ai (ﬂ, Ci) = A: (Ci/ b) < oo, i= 11 2.

If ¢ > ¢; then (24) implies that

t—a a<x<t

x Ea 7
11m sup A (a, ¢, x) = lim sup fplp/] fv(t)dt

a X

x pir o]
< sup fpl‘p, fv(t)dt +11m sup fpl 4 fv (Hdt
a<x<cy t—a a<x<t
a X
1
t 4 c

p
= Ay (@,c1) +lim f o f v(t)dt

a C1

1
q

O

’I

=A(a,c) <o




1 1

b v X q
hmsupA (c,b,x —11nl'715up (fp ] {fv(t)dt]
)
b
< sup [fpl ] [ v(t)dt] = Aj(c1,b) < co.
c1<x<b

In the case of ¢ < ¢; we similarly have

limsup A; (a,¢,x) < Aq(a,c1) < oo,
X—a

s Vs
hm sup Aj (c,b,x) = ltmbl sup [f plp/} [f v(t)dt]
Y t<x<b

b pi’ 1
< A; (Cl, b) + ltlm [fplp,] [fl)(t)dt

t c

= A (c1,b) < oo.

In the case of A; and A} we have

[y

X

b q
11msupA2 (a,c,x) = 11m sup [fpl P] fv(t)[fplp'] dt
@ gex<t /
X _;7 X b q %
< sup [fpl’"l] fv(t) [fpl”l] dt| =As(a,c) < oo

t

for every ¢ € I and similarly
lirrb1 sup A5 (c,b,x) < A5 (cp,b) < o0

Lemma 1 is proven.

Proof of Theorem 1. Necessity: Let (21) hold on Aon (p,I) with the best
constant C = [y (a,b) . Assume thata < ¢ <c¢ < c¢* < b. Put
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_1t

fpl‘p/ fpl‘p/, a<t<c,
fo) =11, cC<t<ch (31)

b
[p*#| [p*#, c*<t<b.
ct t

The function f; is locally absolutely continuous on I and

b c ct

b
[eoliola= [polrel s+ [oolnel s+ [ooliof s

a a c ct

—Up”’l]pjpp’”(”/) [ f p ] f pp(7)
= [jplp,]lp +[fp1p'] < o0. (32)

Hence, fy € W; (p,I) and
}i,r}lf()(t) = fo(a) =0, tlirbrlfo(f) = fo(b) =0

by construction. In this case f, € AC, (p,I). Inserting f; in (21), we have

1

b q
( IRGIGH dt]
Jo(a,b) = ”b ; (33)
[f p® |fy ) dt]
The direct calculation yields
b c ¢t b
[rolaola= [volsolas [volsolds [ooluol

a a a

- [f pw’]q fv(o [ f I ]q dt
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b

+fv(t)dt+[ fb p'? /]q fb v(t)[ f Plp,]q dt. (34)

ct t

By (32) - (34), we obtain the inequalities

7 p

c” - t q b B b q
Gl il

Ji(a,b) > == ’ — + -,
- 1-p b 1-p\» = 1-p b 1-p\»
(o) ol (] (o))
a C a C (35)
fcv(t)dt + Cfv(t)dt
Ji(a, b) > — - . (36)

RN

Multiplying the numerator and denominator of the right-hand sides in

c. )\
(35) and (36) by ( f pir ] , we derive

(38)

Jo(a,b) >

(T e

Since the left-hand sides of (37) and (38) are independet of ¢~ € (a,c),
passing to the limit as ¢~ — a on the right-hand sides, we infer
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1 _
lim su 1 v(t)dt + lim = | o(h)dt
pfp lim| ['p

X—a
X

- =1y 1-p
(1 + lim [f pl‘P,] (f pl—}”) ]

9
X p’ C
= lim sup [fplp,] fv(t)dt = limsup A (a,¢,x). (40)

Ji(a,b) >

TR | ——
<=

Multiplying the numerator and denominator of the right-hand sides in

b Y
(35) and (36) by ( f p'r ] and passing to the limit as c* — b, we obtain

C+

b - o - t q
el ol

Ji(a,b) > -

b p=1 /.- 1-p r
; 1-p 1-p
[}z%[cfp ) ) ”]
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_1
4

b b q
11msup(fp1 F’] fv(i.‘)[fp1 ’”)

X

ol 1) ]

+

b

b P b q
= hrr;}sup [fplp,] fv(t) [fplp,] dt = lirrblsup (A5 (c,b,x)?, (41)
t

X X

q

-

) oc b ,
lim (fpl 7”] C[v(if)dt‘ + E:rl} sup [xfpl"’) fv(t)dt

+—
ct—b v

el ]

= hm sup [Jﬁp1 ’”] fv(t dt = hm sup (A (c, b, x)) . (42)

Relations (39) - (42) ensure (26). By Lemma 1, there exist midpoints
¢; € Ifor (Ai, A;) ,i=1,2. Definition 1 yields the equality A; (a,¢;) = A’ (c;, b) =
T, (a,b) <o0,i=1,2.

Since A; (a, ¢, x) and A: (c;, b, x) are continuous in x on (a,c;] and [c;, b),
respectively, and

J (a,b) >

Ai(a,c)) =2 limsup A;(a,ci,x), Ai(c,b)> lirrbl sup A (c;, b, x),

the two possibilities are open: If A;(a,c;) = lim,.,supA;(a,ci,x) or
A’ (ci, b) = lim,_,, sup A? (c;, b, x) then (39) - (42) imply the estimate ], (a, b) >
T, (ab),i = 1,2, ie., the left part of (25) holds. Otherwise, there ex-
ist points c;,cf, a < ¢; < ¢, ¢; < ¢ < b, such that ¢f # ¢, ¢] # cy,
Ai(a,c)=A; (a i, C ) and A: (c;, b) = A? (ci, b, cl’f)

To justify the left estimate in (25), we estimate T, (a,b) and T., (a,b)
separately. First, we examine T, (a,b).

Let c™ = ¢; in (35). Estimate (37) yields
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o) Tl el

(i M 1]

ool o]
prprl+[;pppl]

(we take the expressions for A, (a, Cy, cg) and A; (c2, b, c;) into account)

17 (a,b) >

==

<=

q

o

+ (A; (cz, b, c;))q [fz pl—p']p

b p-1 G p-1 %
(T )

(by the definition of c;, we have A, (a,¢) = Az (a, C2,C; ) and A (a,¢c;) =
A, (02, b, c;))

9
7
r

C+

(locus)[f

(AgaQJV{pr

(A @Lb)q[fplp]

R
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(since c; is a midpoint for (Az, Az))

b (G v

(f pl""]p +{f pl"")p
b p-1 G p-1 %
i) (o]

Estimate T¢,(a,b). Similarly, putting ¢ = ¢1, ¢™ = ¢, and ¢* = ¢] in (36), in
view of (38) we obtain

= (Tcz (61, b))q

> 20 (T, (@, b)) . (43)

J=

a 1 1
o " a b ' b " o
(f pl—p’]” fv(t)dt [f pl_p' 4 [f pl_p']” o(b)dt [f p1_p' p
11t >~ 0 T —
b p-1 ¢ p=1\» b p-1 G Py
T T
1 1
o b ) g e v
([ (e 1)

+
1

b
(A1 (a,c1,)) [f Pl_p/

C.

= (TC‘I (El, b))q

> 20 (T, (@, b)) . (44)
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The left estimate in (25) results from (43) and (44). The necessity is proven.
Sufficiency: Assume the existence of a midpointc; € I for (A;, AY),i=1,2.
In this case we have A;(a,¢;) = Al(c;,b) = T, (a,b) < oo, i = 1,2. Since

f(a) = f(b) =0for f € AOC,, (p,I), the restriction of AOC,, (p, ) to (a,c;) and

(ci, b) belongs to AC,; (p, (a,¢;)) and AC,, (p, (ci, b)), respectively.
Theorem 8 implies that

b Ci b

f o) |[f)]" dt = f o) [f)|" dt + f o) |f)|" dt

a a ¢

Ci % b
< (yidi(a,c)" [ f p©)|f 6 ds] + (7i; (i, b))’ [ f pe)|f ) ds]

q
p

¢ b P
< (yiT., (a, b))’ [ f pG)|f )| ds + f pGs)| f’(s)|”dsJ

b ;
= (yiT,, (a,c)" [ f pG)|f ) ds] ,

i.e., (21) holds and the best constant C = J; (g, b) in (21) meets the estimate

]0 (a/ b) < min {lecl (ﬂ, b)/ VZTCZ (ﬂ, b)}/

which defines the right-hand side of (25). Theorem 1 is proven.

Remark 1. Theorem 1 improves the estimate for J, (a,b) in [1]. For ex-
ample, in Theorem 8.8 of [1], under the assumption A, (a,a) = A] (b,b) = 0
(the latter is equivalent to the conditions lim,.,A;(a,¢,x) = 0 and
lim,,; A] (¢, b, x) = 0), it is established that

o) )
27A< Jo@b) <[1+—=| |1+=]| A,
p q
where A = inf,. ., max {Al (a,c), A (c, b)}.
Under our conditions, it is easily seen that A = Ty (a,b) .

Let
c b

fpl_”’ (s)ds < oo, fpl_”, (s)ds =00, c€1, (45)

a [
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or b
fpl—p' (s)ds = oo, fpl‘??' (s)ds < oo, cel. (46)

Theorem 2. Let 1 < p < g < co. If (45) or (46) holds then the best constant
Jo (a, b) in (21) meets the estimate

max {A; (a,b), Az (a,b)} < Jo(a,b) < min{y1A; (a,b),v2A: (a,b)} 47)

max {A; (a,b), A3 (a,b)} < Jo (a,b) < min{)14] (a,b),724; (a,b)]  (48)

PROOF OF THEOREM 2. Since AOCp (p,I) is dense everywhere in
WP (P ’ I)r

b ; b 3
( IEGIGH dt] ( IEGIGH dt]

Jo(a,b) = sup T = sup - (49)
feAG)(p) (f o(t) |f,(t)|ﬁ dt] feW,(p1) (fp(l‘) |f’(t)|p dt]

P

Let (45) hold. In view of item (ii) of Theorem A, I/Cilp (p,I) =
1 feW(p,D): f(a) = 0} = AC,(p, ). Hence, Jo(I) = Ji(I) and (47) follows
rom Theorem B. By analogy we justify (48) in the case (46). Theorem 2 is
proven.

Finally, let

c b
fpl"“, (s)ds = oo, fpl"”, (s)ds = o0, c€l. (50)

Theorem 3. Assume that 1 < p < g < oo and (50) is valid. Then (21) fails
on the set IR/,, (p,1),1ie., Jo(a,b) = co.

PROOF OF THEOREM 3. By condition, (50) holds. By Theorem A (item
(iv)) I/OV,, (p, ) = W, (p,I). Since f(x) =1 € W, (p,I), (49) yields ], (a,b) = co.

Theorem 3 is proven.

3.2. Thecaseof 0 < g <p < o0.
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Definition 2. A point ¢ € [ is called a midpoint for (B, B*) if B(a,c) =
B*(c,b) =T (a,b) < co.

Obviously, for a midpoint for (B, B) to exist, it is necessary and sufficient
that B(a,f) < oo,pel,and B (a,b) < o0, a € I.

Theorem 4. Assume that 0 < g < p < oo, p > 1, and (24) holds. Then (21)

is fulfilled on AOCp (p, 1) if and only if there exists a midpoint ¢ € I for (B, B*); in
this case the best constant ], (a, b) in (21) satisfies the estimate

7 (%) T(a,b) < Jo(a,b) <27 1T (a,b). (51)

PROOFE. Necessity: Assume that0 < g <p < oo,p > 1, and (21) holds on

AC, (p,I) with C = Jo(a,b). Leta < a < f < b. In view of the conditions on
the weighted functions v and p, the quantities B (a,c), ¢ € (a,b),B (¢, ),
and c € (a,p) are finite. Hence, there exists a midpoint ¢ = c(a, B) € (a,p)
for B(a,B) and B’ (o, B), i.e.,

P » 2a-h
cf ¢ i x B¢ x N\ B p=q
f[fv] [fplp,] plp,(x)dx—f[fv] fpl‘p, pl‘p,(x)dx.

@ (52)

plg=1)
P=q

Introduce the function

folt) =

where
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Obviously, f, € AOCP (p,I). For a function f; we have

1
1

b P
[f OlOl] dt] = (% (B(at, €))7 + %(B*(C,ﬁ))fﬂq]
! 2

a

1

= (T(a, )7 (% + %) , (53)

1 2

b c B
f o® [0 dt = f o) () dt + f o() (fo() dt

o [

t

c Cc ﬁ
=g f £ ()™ f v(s)dsdt + q f (-f®) ()™ f v(s)dsdt.  (54)

C
Since

fo(t) > bll[fcv]plq f[fplp’]M P! (x)dx = blllr;%q [fcv]”lq [fxplp,]f,q
i Y a

for a <t < c and similarly

for c <t < B, we infer

c

C - 1’7*1 P
[ foGor [ s > (%H) (B(a, )7,

B

| —q\"" 2]
I R e

c C

Hence, (54) yields

1

; ; )
[ f v<t)|fo<t>|"dt] >q3(z Z) [ (B(a,c»w—(B ) :]

2
a
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1
L1 1
ince £ 141) 141
Smceq > 1, we have [[+ + = > | + 7] - Hence,
1 2

b q 1
1(p—q\7 (1 1Y)
[ f v(f)|fo(f)|th] > g (rTl) (T(@, B))" [b—,;+b—,,] NG

2
a

Relations (21), (53) and (55) imply that

7 (;’ - ‘f) T(a, ) < Jo(@,b). (56)

The absolute continuity of the integral ensures the continuity of T (a, f) in
aand f fora < a < f < b. In view of the independence of the right-hand
side (56) of wand B, a < @ < B < b, we have

7 (:%) T(a,b) < Jo(a,b), (57)

i.e., there exists a midpoint ¢ € [ for (B, B*) and (57) is true.

Sufficiency: Let a midpoint ¢ € I for (B, B*) exist, i.e., B(a,c) = B*(c,b) =
T(a,b) < co. Arguing as in the sufficiency part of Theorem 1 and involing
Theorem C, we derive that

b c

B
f o) |[f)]" dt = f o) [f)|" dt + f o) [f)|" dt

a o C

q

c v b P
< (u*B(a, ) [f p(s) |f’(s)|p ds) +(u*B'(c, b))q[ p(s) |f, (S)|p dsJ

1
4

c B
< (4 T(a, b)) 27 f pe) |f )| ds + f p©)|f G ds|

i.e., (21) is fulfilled and Jy(a,b) < y*Z%q T(a,b); the last estimate and (57)
ensure (51). Theorem 4 is proven.
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Remark 2. The comparision of (51) and the estimate

2 bt (5 - ;7)” B < Jola,b) < 25 () ' B,

where B = min,.., max {B(a, c), B(b, ¢)}, obtained in the case of 1 < g < p <
oo in Theorem 8.17 of [1], shows that the estimate in (51) is better than that
of [1].

Theorem 5. Let 0 < g < p < oo,p > 1. If (26) or (27) holds then the best
constant Jo(a, b) in (21) satisfies the estimate u~B(a,b) < Jo(a,b) < u*B(a,b) or
u~B(a,b) < Jo(a,b) < u*B*(a,b), respectively.

Theorem 6. Assume that 0 < q < p < oo,p > 1, and (50) holds. Then (21)

fails on AOC;, (p,1); 1e., Jo(a,b) = co.
Theorems 5 and 6 are proven by analogy with Theorem 2 and 3.
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Abstract. We establish criteria for the boundedness and compactness for
a class of operators of fractional integration involving the Weyl operator.

1 Introduction

Letl = (a,b),0<a<b<o,0<gq,p< oo,%+}% = 1. Let u, v be almost
everywhere positive and locally integrable functionson 1. By L, ,, = L,(u,I)
we denote the set of all measurable functions f on I such that

1
P

b
1fll = f FoPu@ix| < oo.

In the case u = 1 we write L, = L,(I). Let W be a positive strictly increasing

and locally absolutely continuous function on I. Suppose dl;‘l/(x) = w(x) for
almost everywhere x € I.
Let1 > a > 0. We consider the operator

b
[ us)WP(s)f(s)w(s)ds
Kuaf0 = | we-way

(1)

In the case p = 0, u =1 the dual operator to operator (1) has the form

d
o= [ G v .
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Operator (2) is called [15] the operator of fractional integration of the
function f of the function W. Weighted estimates for operator (2) were
previously considered in [12], [1].

When W(x) = x, u =1, = 0 operator (1) is the Weyl operator

(s)ds
f Lo el ®
which is dual to the Riemann-Liouville operator
2 (x)dx
Log(s) = f(sg_wf sel (4)

Operators (3) and (4) acting from the weighted space L, , to the weighted
space L,, are investigated in papers [3], [3], [7], [15], [20], [21] and others,
where necessary and sufficient conditions for their boundedness, com-
pactness are obtained for various relations between the parameters «, p, q
and under various assumptions regarding the weight functions u and v.
Two-sided estimates of their norms are also obtained.

We investigate operator (1) acting from the space L, , to L,,. From the
obtained results new assertions follow, in simple terms, for operators (3)
and (4), generalizing the results of [7], [15], [20].

The positivity and monotonicity of W implies the existence of the non-
negative limit Yh_)rgl W(x) = W(a). Futher, we assume W(a) = 0 and other-

wise, we consider the operator K, in the form, where function W(x) is
replaced by the function Wy(x) = W(x) — W(a),x € I.

Further, the norm of the linear operator T from a normed space to
another one is denoted briefly by ||T||. Which spaces are meant will be
clear from the context.

Throughout the paper the products of the form 0 - co are supposed be
equal to zero. Relations A < B, A > B mean A < ¢B with a constant
¢ depending only on p,q, @ which can be different in different places. If
A < B and A > B then we write A ~ B. By Z we denote the set of all
integer numbers, xr denotes the characteristic function of the set E.

2 Auxiliary assertions

To prove the main results we need some well-known assertions.
Along with operator (1) we consider the Hardy operator
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b

Hogf ) = [ W) St 1)

X

It is easy to see that for f > 0
Kopf(x) = Hopf(x), Yx €l 2)

Issues of boundedness and compactness of operator (1) in weighted
Lebesgue spaces were studied quite completely. A summary of the
results can be found in [5]. The following Theorem A and Theorem B are
corollaries of Theorem 5 and Theorem 6 in [5].

Theorem A. Let 1 < p < q < co. The operator H, g is bounded from L, to Ly,
if and only if

1 1
z 7 b v

Asp = sup f o(x)dx f u? (s)WP @ PV (s)w(s)ds | < oo.

z€l
a z

Moreover, ||[Hppll = Agp.
Theorem B. Let 0 < q <p < oo, p > 1. The operator H, g is bounded from L, ,,
to Ly, if and only if

9(p=1)
b b P9

B.g = f f u” (s)WF' @B=Dyp(s)ds

a z

X ( f ) v(x)dx)w v(z)dz] < oo,

Remark 2.1. In the case 1 < q < p < oo, p > 1 the value B, g is equivalent to the
value

Moreover, ||Hagll = Byg.

plg=1)
b b r=q

Bap(a,b) = f f u? (s)WP @D (s)e(s)ds

a z

X ( f ) v(x)alx)M w” )WV P D wz)dz| .
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Remark 2.2. Note that a function u non-decreasing on I and such that uWP+=1 e
Ly (2, b), for all z € I, exists if and only if WF**! € L, (2, b) forall z € 1.

3 Boundedness of the operator K, g

Theorem 3.1. Let 0 <a <1, ; <p <qg<ocoand f <0 (B < —a when

W(b) = o). Let u be a non-decreasing function on 1. Then the operator K, g is
bounded from Ly, to L, , if and only if A, g < 0o. Moreover, |[Ku4ll = Aqp.

Proof. Necessity. Let the operator K, g be bounded from L, , to L, .. Then, in
view of (2), the operator H, g isbounded from L, , to L, , and ||K, gl > [|[H,gll,
therefore by Theorem A the value A, g < oo and

”Ka,ﬂ” > Aa,ﬂ' (1)

Sufficiency. Since the function W is continuous and strictly increasing on
I and W(a) = 0, then for any k € Z the set {x :W(x) <28 x e I} is non-

empty. Denoting x; = sup {x :W(x) <25, x€ I} we obtain a sequence of

points {x}icz such that 0 < xx < xy41, Vk € Z, and if x; < b, then W(x;) = 2k
Xge

2F < W(x) < 281 for xp < x < Xpp1, f w(s)ds = 251, and if xi.; = b, then

Xk-1
Xk+1

f w(s)ds < 2%. These facts will be used below without reminders. We

Xk
assume that Iy = [xy,xx41), k € Z, Zy =k : k€ Z, Iy # 0}. Then Zy C Z

andI = J Iy = U I Since Iy = 0, Vk € Z \ Z,, and integrals over these
keZ keZy

intervals are equal to zero, then in the sequel, without loss of generality,
we suppose that Z = Z,.
Let A, g < co. We need to prove that the inequality

||Ta,ﬁf||q,v < Aa,,B”f”p,w/ f € Lp,w/ (2)
holds, which means ||T, 4| < A,p and, together with (1), gives
I Tapll = Aagp-

It suffices to prove inequality (2) for f > 0. So let f > 0. Using the relation
I = I, we have
k

q

X b
o u(s)WF(s) f(s)w(s)ds
1K s fIIL ; f o(x) J WG - Wy



Boundedness, compactness of a class fractional integration operator of Weyl type 5

SRR

u(s)WP(s) f(s)w(s)ds
<) f”( )[f (W) - W) J .

q
u(s)WP(s) f(s)w(s)ds
L f o )[_ (W) - We)

Xk-1

u(s)WF(s) f(s)w(s)ds qu
(W(s) = W(x))!-«

=N+ 3)

We estimate the values J; and ], separately. Using Holder’s inequality,
nondecreasing of the function uand g < 0 and in view of change of variables
W(s) = W(x)t we have

u(s)WF(s) f(s)w(s)ds
h= Zf [f (WE) - W)= ]dx

(1w owreueds |
s; f v(x) [ f lf(s)IF W(S)ds] [x (W(S)W(x))ua)p'] ax

Xk-1 X

< Lf(s)Pw(s)ds | uT(xps1) U(X)W}%(V/ﬁ*ﬁ'(a—l))(x)
E{Jorvon] s |

k-1 X1

A
Wlx4q) v
Wx_1)

x W7 (x) f PBGE— 1)@ Vg | dx

Xk+1

-3/

k-1

q
p

| f(s)l”w(s)ds] w1 (Xr1)

q

Xk

4 P
xz%r”(ﬁmnxk”zﬂk[ f tv'ﬁ(t-w"“”dt] f o(dx. (4)
X

1 k-1
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4

By the assumptions of the theorem a > 1, therefore [#B(—-1) @Dt <
i

a
The expression F = 17 (xgs)2796+0-DE-D217* ig estimated as follows. Since
p+a—-1<0then

F = 7 (1023781106002 757 9 ()

q
Xi+2 4

_1-4
= 22T (3 )20 P+ f w(s)ds

k+1

s

Xk+2
—1-Z / /
< Ylbra-ii-F f WP E+a-D(5) i (s)eo(s)ds
k+1

Substituting this estimate in (4) we obtain

I <<Z f | (s)PPw(s)ds f o(x)dx
k —1 Xk-1

Xk+2

X f u” (s)WV E+a"Dyp(s)ds

k+1

==
=S

Xk+1 Xk+1

<AqﬁZ f|f(s)|ﬁw(s)ds SAZ/[; Zk:f|f(s)|i”w(s)ds

X1

9
< Al Al -

Now, we estimate J,.

b q

( u(s)WE(s) f(s)w(s)ds
IQZ;I f WE - W)

Xk b
u S)Wﬁ(s (s)w(s)ds
S;f o) f W)=

q

<=
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g q

u(s)WF(s) f(s)w(s
5) f OWOFwis)ds |
) (Wes) - W(xk+1)) -
q

< pa(l- a)Z f o(x) f u(s)WP(s) f(s)w(s)

(W)=

dx
b b q
<[ v(x)[ | u(S)W5+“1(S)f(S)w(S)dS] dx = [ fil. ()

a

Then, by Theorem A
Jo < AT IfIle 7)

Inequalities (3), (5) and (7) imply inequality (2). O

Theorem 3.2. Let0<a<1,0<g<p<oco,p>and <0 (< —ainthe
case W(b) = o0). Let u be a non-decreasing function on I. Then the operator K,
is bounded from L,,, to Ly, if and only if B, g < co. Moreover, ||Kqgll = B, .

Proof. Necessity and the estimate
[IKapll > Bag (8)

follows by relation (2) and Theorem B.
Sufficiency. Let B, 3 < oo. If the inequality
||Ka,/5f||q,v < Bzx,ﬁ”f”p,w/ (9)

holds then by (8) and (9) we obtain ||[K,4l| ~ B,,
To prove (9) we use relation (3) of Theorem 3.1. Estimate for ], directly
follows by (6) and Theorem B:

Jo < B} flIf1l} - (10)
By (5) we have
I < |f(s)Pw(s)ds v(x)dx
< froreen] |

s

b
X [fu”/(s)W’”/(ﬁ”‘”(s)w(s)ds]



8 AM. Abylayeva

(applying the Holder inequality with the exponents s, p%i)

p=q
9=\

Xk p% b P=q
< v(x)dx u” (s)WF B+ (5)w(s)ds
zlfo] |/ |

k-1 Xk

=S

k
X1

X[Z f f(s)”W(S)dsJ < Gllflfyr (1)

where

X ﬁ b =
G= v(x)dx uP’ (s)WP B+ () (s)ds
[ [ |

k-1 Xk

Using the relation

[.fk v(x)dx]ppq = ﬁ fv(x) [’f v(t)dt]pqq dx

k-1 Xk-1 k-1
we estimate G:

1
p=q

G < Zk‘jv(x)[’ f v(t)dt] dx

k—

3
4

9(p-1)

b p=q
X [ f u”'(s)W”/(ﬁ”D(s)w(s)ds]

Xk

=|

P
9(p-1) P

b p=q
X [ f u”'(s)W”/(f’g”‘D(s)w(s)ds] v(x)dx

X



Boundedness, compactness of a class fractional integration operator of Weyl type 9

< Bz,ﬁ. (12)

By (11) and (12) it follows that
Ji << B} flIf1} - (13)
Therefore, by (3), (10) and (13) it follows that inequality (9) holds. O

4 The compactness of the operator K, 4

Theorem4.1. Let0 <a <1, 1 <p<g<coandB<0(p < %—aifW(b) = 00).
Let u be a non-decreasing function on I. Then the operator K, g is compact from
Ly to Ly, if and only if A, p < 00 and

i Aesl) = Jip Aagl2) =0

where :

z q b

Anp(z) = f o(x)dx f 1w (s) WP E+a=D(s)au(s)ds

a z

~

Proof. Necessity. Let the operator K, 3 be compact from L, to L,,. Then
the operator is bounded and therefore, by Theorem 3.1, A, g < co. First, we
prove that liril Anp(z) = 0.
zZ—0"
b
Let F(t) = f u?' (s)WP Fra=D(s)uw(s)ds. Since A, p < oo and function u non-

t
decreasing then 0 < F(t) < oo for t € I. Consider the family of functions
{ fiter, where

F) = X @)~ @)W DERD () (F(1)) 7 (1)
Then

b b
f fi(x)Pw(odx = (F(t)™ f w” () WP E D (o (xdx = 1. (2)

We show that the family of functions {f;} weakly converges to zero in
Lyw. Let g € Ly i = (Lpw)™-
Applying the Holder inequality and using (2) we have

1
v

b b Pl b
f fi(x)g(x)dx < f | (o) P (x)dx [ f Ig(x)lplwl"”'(x)dx
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1
7

b 14
= [f|g(x)’”’w1”/(x)dx] .

Since g € L, v then the last integral converges to zero as t — b, which
means the weak convergence to zero the family of function {f;}. Then, by
the compactness of the operator K, 5 from L, ,, to L,

zlgllil ”Ka,ﬁﬁ”q,v =0. (3)

We have

(W(s) = W(x)' ™

t b q
u(s)WE(s) fi(s)w(s)ds
d
Z«IU(X)[J W) = W)™ ] x

t b q
> fv(x)dx(fu(s)wﬁ”1(s)ft(s)w(s)ds)

a t

b b g
IKap fillf,o = f (%) [ f u(s)Wﬂ(s)ft(S)w(s)ds] dx

b t

q
= (p(t))—? [ f uP'(s)V\ﬂ”(ﬁwD(s)w(S)dS] f v(x)dx = (Aa,ﬁ(t))q. 4)

t a

By (3) and (4) we obtain that thrzfl Agp(t) = 0.
Now, we show tlirr} Agp(t) = 0.

The compactness of the operator K, g : L, — L,, implies the compact-
ness of the adjoint operator

* B S g(x)dx
K;, 8(x) = u(s)WF(s)w(s) f (W(s) — W(x))L-=

from L, iy to L, .
We introduce the family of functions {g;}:c;, where

8i(x) = X(u,t)(x)[ f Z7(36)0196] 0(x).

a

<=
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Since almost everywhere v > 0 and A, g < oo then the function g; is well
defined.
In view of the equality

t

b T
f g ()7 01 (x)dx = f v(x)dx f v(x)de— 1

a a

for f € Ly» = (L, )" we have

ff(x ) (x)dx < f|f (0)|7v(x)dx flgt(x |70 (x)dx
| [ oo

b
Consequently tlinr} f f(x)gi(x)dx = 0 for any f € L,,, which means the

ey

weak convergence to zero the family of functions g;. Then by the compact-
rto L

ness of the operator K[ ; from L, -4 o
Lim (K 5 8illy 1 = O- (5)
We have
p/

b t
’ ’ 1(x)d L
IIK;,ﬁgtIIZ,,wl_p, = f|u(S)Wﬁ(S)w(s)|P f(w(sf_(xgv(g;))ra w7 (s)ds

p/
b t A r
7

> f u” (s)WP' B+ (s)ew(s)ds f o(x)dx f o(x)dx =(Aa,ﬁ(t))”. (6)

By (5) and (6) it follows that tlinl Agp(t) = 0. The necessity is proved.
Sufficiency. Let Ayp < co and lim A, 4(z) = liril Anp(z) =0
Yetfora<c<d<b

P.f = x@af, Peaf = Xeaf, Qif = Xupf-
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Then f = P.f+P.;f +Quf and by the equalities P.;K, Qs = 0, PaK,3P: =0,
QaK, P = 0, we have

Kaopf = PeaKopPeif + QiKopQaf + PeaKeopQaf + PcKopgf. (7)

We show that the operator P.;K, P is compact from L, to L, ,. Since
P4KygPeif(x) = 0when x € I\(c, d] then it suffices to show that the operator
P 4K, gPeq is compact from L, (¢, d) to Ly (c, d) and this is equivalent to the

d

compactness of the operator Kf(x) = f K(x,s)f(s)ds with the kernel

U(s)WF(S)07 (1)) (e (5 — )07 ()
(W(s) - W)™

K(x,s) =

from L, to L,.

Let {xJrez be a sequence of points introduces in the proof of Theo-
rem 3.1. There are the points x;_1,x,, x;-1 < x, such that x;1 < ¢ < x;,
X,-1 < d < x,. We assume that the number ¢, d are chosen so that x; < x,,_1.
Similarly to obtaining estimates of J;, J, in Theorem 3.1, we have

4 A
I d d 4

u” (s)WP'P(s)w(s)ds
f f ksors| o= fow)| [ o

c

~ P( Wﬁﬁ() d ?
) f @ f f O

Sum—i+ 1)AZ//3 < 0o,

where the constant u does not depend on i,n. Therefore, on the basis of
the theorem in Kantorovich and Akilov [2] (page 420), the operator K is
compact from L,(c, d) to L,(c,d), which is equivalent to the compactness of
the operator P;K, gPs from L, to Ly, .

By (7) we have

IKap = PeaKopPeall < 1QaKa,pQuall + 1PeiKa,gQall + IPcKagll- (8)

We shall show that the right-hand side of (8) tends to zero as ¢ — a7,
d — b~. This will imply that the operator K,; being a uniform limit of
compact operators, is compact from Lyw to Lyp.
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On the basis of Theorem 3.1, we have:

b b Y
WP d
1QK e pQafllgo = fv(x)[f ME:;‘/)V(S)(i){A(]S(lZ;J)(ls)aS] dx
d

X

1

z % b v
< ds(t;g) [}[v(x)dx) [fu"’ (s)Wr'B+a=l)(g) w(s)ds] £ 11,0

z
< sup A p@IIfllp,w-
d<z<b

Hence

11m 1QuKa pQufll < hril sup A p(z) = 11m 1 Anp(z) = 0; 9)
d<z<b
Let 1 > ¢ > 0. To estimate ||P;K,pQufll;,0 we introduce the functions v,
u, defined by v.(x) = v(x) for x € (a,d] and v.(x) = eTv(x) for x € I \ (a,d],
u.(s) = u(s) for s € (d,b) and u.(s) = eu(s) for s € I\ (d,b). Obviously, the
function u, is non-decreasing on I. Then by Theorem 3.1

d

b q :
p d
IPcaKepQufllgo = f (%) [ f u(s)WF(s) f(s)w(s) s] o
d

(W(s) = W(x))'-

c

b b q %
1.(s) WP (s) f(s)w(s)ds é
= f ”f(x)[f WG) - W) ]dx < Augll e (10)

a X

z % b %
s o] | [ romroman]

a z

where

We estimate AZ 5

z % d
A < sup [ f v(x)dx] [é‘p/ f u? (5) WP B (s)w(s)ds
a<z<d

b
+ | u (s)Wp'ﬁ(s)w(s)ds]
/

=
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d z % b l%
+ sup f v(x)dx + & f v(x)dx f u? (s)WFB(s)w(s)ds
d<z<b y p
<K 2(eAnp + Anp(d)).
Hence, by (10) we have

”Pcha,,BQdf”q,v < (SAa,ﬁ + Aa,ﬁ(d))”f”p,w- (11)

Where, due to the independence of the left-hand side of (28) of ¢ > 0, by
letting ¢ — 0%, we obtain

||Pcha,ﬁQdf”q,v < Aa,ﬁ(d)”f”p,m-

Then
lim [Pk pQull < lim Ao g(d) = 0. (12)

Similarly, we obtain

1
c b q

B u(s)WE(s) f(s)w(s)ds
”PCKa,ﬁ”q,v - fU(X) f (W(S) _ W(x))l_a dx

a X

< sup Agg@)|Iflly0-

a<z<c

Therefore

lirr} IPKapfll < lirr} sup A, p(z) = lirr} Aap(z) = 0. (13)

a<z<c

By (8), (9), (12) and (13) it follows that lirdn , IKap = PeaKopPall = 0. O
c—at,d—b~

Theorem4.2. Let0<a <1,p>land <0 (B < %—ain the case W(b) = o).

Let u be a non-decreasing function on I. If b < coand 0 < q < p < oo or

a=0,b=ocoand1 < g <p < oo, then the operator K, is compact from L, to

L, if and only if B, g < 0.

Proof. In the case b < o0 and 0 < g < p < oo the statement of Theorem 4.2
follows by Ando Theorem and its generalizations [10]. Therefore, we prove
Theorem 4.2 inthe casea =0,b=ccand1 <g<p < 0.
Necessity. Let the operator K, be compact from L,, to L,;,. Then the
operator is bounded. Hence, by Theorem 3.2 B, g < co.
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Suﬁiciency. Let Ba,ﬁ < oo. Here Ka/ﬁf = PdKa,ﬁPdf + PdKa,ﬁQdF + QdKa,ﬁf-
Therefore

IKea,p — PaKa gPall < [IP1K,pQull + 1QaKagll- (14)
Sinced < oo then the operator P;K, gP;is compact from L, ,(0, d) to L, (0, d),
which is equivalent to its compactness from L, to L,,. We show that the
right-hand side of (12) tends to zero as d — oco. Then the operator K,z is
compact from L, ,, to L, as the uniform limit of compact operators. On the
basis of Theorem 3.2

9(p=1)
o P=q

1QuK gl < f f W (&)W @ Dp()ds

d z
o =9

X ( j; i v(x)dx)p_q v(z)dz) .

1im QK gl = 0. (15)

Let 1 > ¢ > 0. To estimate ||[P;K,zQ.f|| we suppose as above, that
v.(x) = v(x) for x € (0,d] and v.(x) = €v(x) for x € (d, o), u.(s) = u(s) for
s € (d,00) and u.(s) = eu(s) for s € (0,d]. Obviously, the function u, is
non-decreasing on I = (0, ). Now, by Theorem 3.2, estimating the norm
IP:K,Qull as in (10), and then passing to the limit as ¢ — 0%, we obtain

Hence, since B, g < o, it follows that

1 1
d q ) I

1PoK. Qi < f o()dx f W WD sweds | = Augld).  (16)
0 d

By Remark 1 B, s ~ By (0, o). Since A, (d) < By(d, ) then by (14) it
follows that gim IP2K,Qull = 0. Hence by (13) it follows that the right-hand

side of (12) tends to zero as d — co. O
5 Dual case

We consider the operator

0(s)f(s)ds
(x) = W(s))'=

Toaf ) = W) [ o
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acting from L, , to Ly .
Assume that
z ,% b %
A o(2) = f v(x)dx f wI () WIE=D(x)w(x)dx |
a z

Ay p =supA, 4(2).

zel

Theorem 5.1. Let 0 <a <1, 1<p<q< i andp<0(p<1-_—ainthe
case W(b) = oo). Let u be a non-decreasing function on I. Then the operator T,

i) is bounded from Ly, to Ly, if and only if A;,ﬁ(z) < oo, moreover, || To4ll =
A;’ﬁ,
ii)is compact from Ly, to Ly if and only if A7 (z) < oo and

lim A}, ﬁ(z) = limA;,ﬁ(z) =0.

z—a K z—b

Proof. The operator T, acting from L, , to L, ,, is adjoint to the operator

2 u(s)WF(s) f(s)ds
(W(x) — W(s))'

Ko f(x) = 0(x)

X

acting from L., ;- to L, i, which is equivalent to the action of the oper-
ator K, g from L, , to L,/ ,. Consequently, the operator T, g is bounded and
compact from L, , to L, if and only if the operator K, is bounded and
compact from L, , to L, respectively. Since by the assumptions of Theo-
rem 5.1 it follows that 2 < g/ < p’ < co then on the basis of Theorems 3.1
and 4.1 the validity of the Statements i) and ii) of Theorem 5.1 follows. O

Similarly, on the basis of Theorem 4.2, we have

Theorem5.2. Yet 0 < @ < 1,1 <q <min{p, 7}, p > 1and < 0(B <1-;-a

in the case W(b) = oo). Let u be a non-decreasing function on I. Then the operator

Tap is bounded and compact from Ly, to Ly, if and only if B} ((z) < eo, where
P=q

b x =l = 7

= f f v(x)dx f wI(s) W Dyp(s)ds | v(x)dx

a a X
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6 Applications

We consider the weighted Weyl operator

R o [ EE

and the weighted Riemann-Liouville operator

~ d
LA = p) f SO, x50

acting from L, to L,, where the weight functions p and w are almost ev-
erywhere positive and locally integrable on I = (0, o). The actions of the
operator K,z from L, to L,, and the operator T,4 from L,, to L,, are
equivalent to the actions of the operators

% x)Wﬁ(x)wv (x)g(x)dx

Kagg(s) = )f (W) — W) @
v d

Topf(x) = wi () (x) W( )f ° (S)f S()S); = 2)

from L, to L, respectively.

Let w(s) = 01(s) in (1) and w(s) = 07 () in (2). If W(x) = x,a = 0,b = oo
and p(x) = u(x)x? then the operators (1) and (2) coincide with the operators
I, and I,,, respectively. Therefore, by Theorems 3.1- 4.2 we have

Corollary 6.1. Let 0 < a < 1, f < ’1—1 —a and p(x) = u(x)xP, where u is a

non-decreasing function on I = (0, co). Then the opemtor?*
z)forl <psq<ois bounded from L, to L, if and only zfA < oo,
moreover, ||I|| ~ Aa, and is compact from L, to L, if and only zfA < oo and
Zlirg} Aa( )= }Lrg A, «(z) = 0, where
o z i

Au(z) = f oF ()x"" @ Dx f aw(s)ds| , Za = sup;fa(z);

zel

<=

z 0
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ii) for 0 < max{q, 1} < p < co is bounded (compact) from L, to L, if b < oo

(for 1 < maxig, %} <p < oifb=o0)ifand only zfﬁa < o0, moreover, ||Z’;|| ~ B,,
where
r—q

q q(p=1) ra
[e] 4 P—q o r=q

| [ o] | [t we

0 0 z

l

o]

Remark 6.2. In the case p = 0, 0 < max {q, i] < p < oo the boundedness

and compactness of the operatorﬁlzk fram L, to L, was also studied in [7].
However, the assertions of Theorems 4.1 and 4.2 and Theorems 7 and 8
in [7] are not correct, because the given there criteria involves the integral

f (u(t)t“‘l)P dt for non-decreasing functions u which for % < a diverges for
2t
any such function.

Theorem 5.1 and 5.2 imply
Corollary 6.3. Let 0 <a <1, <1~ % — aand p(x) = u(x)xP, where u is a

non-decreasing function on I = (0, c0). Then the opemtorix

i) for 1 < p < q < = is bounded from L, to L, if and only zfga < o,

- 1-a
moreover, ||L,|| = A}, and compact from L, to L, if and only if A, < oo and
lir(l)t Al (z) = lim A} (z) = 0, where
z—0* z—00

1
z I

Al(z) = f p7(x)x7Dedx f W (s)ds| , Al =supAi(2);

z€el
0

ii) for 1 < g < minfp, 7=} < co, p > 1 is bounded(compact) if and only if
B:, < oo, moreover, ||I,|| = B}, where

p=q
P pg-1) ¥z
X X N P=q

E; = f f p7(x)x 1@ Ddx f W (s)ds o (2)dz

0 z 0

o=1

From (2) for W(x) = x7, 0 > 0a = 0, b = oo, p(x) = u(x)x*T, 0¥ (s) =
w(8)s7 ! we obtain the weighted Erdelyi-Kober operator

p oy+o-1 d
a0 = ) [ SO,
0
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where 7y is a real number, and for W(x) = In2, a > 0, p(x) = u(x)x_%(ln 5y,
vr%(s) = w(s)% we obtain the weighted Hadamar operator

( d
5,0 = p) [ DL

Corollary 6.4. Let0 <a <1,p<1- % —aand p(x) = u(x)x”ﬂ+%, where u is
a non-decreasing function on I = (0, c0). Then the operator E,,

i) for 1 < p < q < 1= is bounded from L, to L, if and only if Ay, < o,
moreover, ||E,, || = Afw and compact from L, to L, if and only if Afm, < oo and

Zlirg} A, (2) = Zh_)rg Ag,(2) = 0, where A;, , = s;g) Az, (2),

1 L
00 q z 7

Agy(2) = qu(x)xqa(a—l)dx pr’(s)sp'(ay+a—1)ds

z 0

ii) for 1 < q < min{p, 7=} < oo, p > 1is bounded (compact) from L, to L, if

and only if B;,y < oo, moreover, ||E, || = B;,y, where

N
o ( © p=q

o _ o(a—1)
B;, = fqu(x)xq Dix

0 z

plg=1) [
z P=q

f " (S)sp’(owo—l) ds o’ (Z)Zp’(ﬁyﬂf—l) dz

0

Corollary 6.5. Leta > 0,0 <a <1,8<0(f <1-—ainthecaseb = oo)and

p(x) = u(x)xfé(ln;—‘)ﬁ, where u is non-decreasing function on I = (a,b). Then the
operator J,

i) for 1 < p < g < = is bounded from L, to L, if and only if A}, < co,
moreover, ||[H,|| = A}, and compact from L, to L, if and only if AL < oo and
lim A (z) = lirl? Al(z) = 0, where Al = sup Al(z),

Zoa i zel

1 1
b q z '

Al) = f o1(2) (ln ;—‘)qm_l) dx f W ()5 ds|

z a
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ii) for 1 < q < min{p, 7=} < oo, p > 1is bounded (compact) from L, to L, if
and only if BL < co, moreover, ||H,|| ~ BL, where

b b
q(a=1)
B! = fqu(x)(ln;—c) dx

P
p=q
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Abstract. We establish characterizations both of boundedness and com-
pactness of a general class of fractional integration operators involving the
Riemann-Liouville, Hadamard and Erdelyi-Kober operators. In particular,
these results imply new results in the theory of Hardy type inequalities.
As applications both new and well-known results are pointed out.

1 Introduction

Let] = (a,b),0 <a <b < co. Let v and u be almost everywhere positive
functions, which are locally integrable on the interval I.
Let 0 < p < co and % + % = 1. Denote by L,, = L,(v,]) the set of all

b P
functions f measurable on I such that ||f]|,, := f [f()Po(x)dx| < oo.

a
Let W be a non-negative, strictly increasing and locally absolutely con-
tinuous function on I. Suppose that dv;/;x) =w(x), a.e. x €.

We consider the Hardy type operator T, defined by

_ [ HOWEf©u()ds
Tapf(x) .—f WD — W)™ xel

(1)

a

When u = 1 and g = 0 the operator T,; is called the fractional inte-
gration operator of a function f with respect to a function W ([15], p.248).
When u =1 and W(x) = x the operator (1) becomes the Riemann-Liouville
operator I, defined by

[ f()ds
L= | oo

a

)
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When u =1 and W(x) = In%, a > 0, this operator is the Hadamard operator
H, defined by

7 f(s)ds
S (ln’s—‘)l_a .

Moreover, when u = 1 and W(x) = x?, 0 > 0, we get the operator E, s of
Erdelyi-Kober type ([15], p.246) defined by

Haf(x) =

- f(s)soﬁ+o—1ds

Ea,ﬁf(x) = (xo ~ So‘)l_a .

a

There are a lot of works devoted to mapping properties of the Riemann-
Liouville operator I,. Two-weighted estimates of the operator I, of the
order o > 1 in weighted Lebesgue spaces were first obtained in the papers
[17] and [18]. The singular case 0 < a < 1 was studied with different
restrictions in [3], [7], [9], [15], [5], [21] and some others. The most general
results among them are given in [7] and [21] under the assumption that
one of the weight functions is increasing or decreasing.

In this work we investigate the problems of boundedness and compact-
ness of the operator T, g defined by (1) from L, to L,, when 0 < a < 1.
When a > 1 the results follow from the results in [11].

The operator T, was studied in [1] and [12] when u =1, = 0 and
u=1,p> —F%, respectively .

Due to non-negativity and monotone increase of the function W the
limit }11’2 W(x) = W(a) > 0 exists.

We also consider the Hardy type operator Tg,ﬁ defined by

X

0 — u(s)WH (s) f(s)w(s)ds
Topf () .—f Vo)~ Wa@) x e

a

where Wy(x) = W(x) — W(a).

Since we also suppose that § > 0, then for f > 0 we have T,zf(x) ~
Tg’ﬁ fx)+ W(a)Tg,O f(x), where the equivalence constants do not depend on
xand f. Therefore, without loss of generality, we can assume that W(a) = 0.
For short writing we denote by ||K|| the norm of a linear operator K acting
from one normalized space to another, since from the context we shall in
each case clearly see which spaces the operator is acting between.

The paper this organized as follows: In order not to disturb our discus-
sions later on some auxiliary statement are given in Section 2. The main
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results concerning the boundedness of operator T, including the corre-
sponding Hardy type inequalities, can be found in Section 3. The main
results about the compactness are presented in Section 4. Moreover, in
Section 5 some similar results for the dual operator Tg,ﬁ are given. Finally,
Section 6 is reserved for some applications (both new and well-known
results).

Conventions: the indeterminate form 0 - co is assumed to be zero. The
relations A < B and A > B respectively mean A < cB and A > cB, where a
positive constant ¢ can be dependent only on the parameters p, g, « and .
The relation A = B is interpreted as A << B < A. The set of all integers is
denoted by Z. Moreover, x (. (") is the characteristic function of the interval
(c,a) C L.

2 Auxiliary statements

To prove the main results we shall need some auxiliary results from the
standard literature on Hardy type inequalities (see [5] and [4]).

Together with the operator (1) we consider the following Hardy type
operator H, 4 defined by

X

Hopf(x) = w%x) f u(s)WE(s) f(s)w(s)ds. (1)

a

It is easy to see that for f > 0 we have

Topf(X) = Hopf(x), Yx el )

The problem of boundedness of operators of the form (1) in weighted
Lebesgue spaces have been very well studied. The history and develop-
ment of Hardy type inequalities with relevant references can be found in
[5].

In view [16] the following statements are consequences of Theorem 5
of [5]:

Lemma 2.1. Let 1 < p < q < oo and let the operator H, g be defined by (1). Then
the inequality

1

1
q P

b b
[ (Fagse0) o <c| [0y wis @)
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holds if and only if

z V(0 g
Anp = 5129 [ f u”'(s)l/\/p'ﬁ(s)w(s)ds) [ f Wq(“l)(x)v(x)dx] < oo,

a

=

Moreover, C = Agp.

Lemma 2.2. Let 0 < q < p < oo, p > 1 and let the operator H, g be defined by
(1). Then the inequality (3) holds if and only if

b b =
Bup = f [ f Wq(“l)(x)v(x)dx]

a z

pg=1)

X [ f u” (s)WP'B(s)w(s)ds W (2)WPP@)w(z)dz| < oco.

a
Moreover, C =~ B, .

Remark 2.3. In the case 1 < g < p < oo, p > 1 it is well known and easy to
prove that the value B, is equivalent to the value

b
FB’a,ﬁ = f

1
al

b ¥
f W‘7(“1>(x)v(x)dx]

x[ f u? (s)WFP(s)w(s)ds

qp-1) 7
p=q

WD (2)v(z)dz

a

3 Boundedness of the operator T, g

The main results in this Section reads:

Theorem 3.1. Let 0 <@ < 1,1 <p < g <ooand fp > 0. Let u be a non-
increasing function on 1. Then the operator T,y defined by (1) is bounded from
Ly to Ly, if and only if A, g < co. Moreover, || Togll = Anp.
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Theorem 3.2. Let 0 < @ < 1,0 <g<p <oo,p>Landp>0. Let ubea
non-increasing function on 1. Then the operator T, g is bounded from L, to Ly,
if and only if B, g < co. Moreover, || T, 4ll = B, p.

These two theorems can be reformulated as the following new infor-
mation in the theory of Hardy type inequalities:

Theorem 3.3. Let 0 < « < 1, B > 0 and u be a non-increasing function on I.
Then the inequality

1 1
b q b P

f (Tupf) v(@)dx| <C f (F(x)) w(x)dx (1)
holds if and only if

1) Agp < oo for the case 1 < p < q < oo,

b) Byg < oo for the case 0 < q <p < oo, p > 1.

Moreover, for the best constant C in (1) it yields that C ~ A, g in case a) and
C ~ B,gincaseb).

Proof of Theorem 3.1. Necessity. Let the operator T, be bounded from
L, to Ly,. Then, in view of (2), the operator H, g is bounded from L,
to Ly, and ||T,gll > ||[Hagll. Consequently, by Lemma 2.1 we have that
Aup < o0 and

[ITagll > Aap. (2)
Sufficiency. Since the function W is continuous and strictly increas-
ing on I and W(a) = 0, then for any k € Z we can define x; :=

sup {x :W(x) <25,xel } We obtain a sequence of points {x}._., such that
0 < xp < Xp41, Yk € Z, and if x; < b, then W(x;) = 2%, 2F < W(x) < 2H! for

Xg X1

X < X < Xps1, f w(s)ds = 21, and if x4 = b, then f w(s)ds < 2%, These
Xp-1 Xk

facts will be used below without reminders. We assume that I = [xx, X¢:1),

keZ Zoy=1tk:keZ I #0}. ThenZy C Zand I = I = U I Since
keZ keZy
Iy = 0,Vk € Z\ Zy, and integrals over these intervals are equal to zero, then

in the sequel, without loss of generality, we can suppose that Z = Z,.
Let A,p < co. We need to prove that the inequality

“Ta,ﬂf”q,v < Aa,ﬁ“f”p,wr f € Lp,w/ (3)
holds, which means [|T,g|| < A,z and, together with (2), this gives that
I Tapll = Aap.



6 AM. Abylayeva, R. Oinarov and L.-E. Persson

Let f > 0. Using the relation I = (J I, we have that
k

Xk+1 X q
. u(s)WP(s) f(s)w(s)ds
s fllow = Zk: f o [f (W(x) - W(s)' ™ ] ”
B Z fv(x) [[f f u(s)WP(s) f(s)w(s) dsl I

(W(x) = W(s) ™
u(s)WE(s) f(s)w(s)ds
= Zf f (W(x) = W(s))' ™ ] .

q
u(s)WF(s) f(s)w(s)ds N
+Z f [ f W - W ]dx T (4)

We now estlmate Ji and ], separately. Using the monotonicity of W we

find that
u(s)WF(s) f(s)w(s)ds
" Zf [f (W) - W)™ ]dx
q
u(s)WE(s) f(s)w(s)ds
<Zf [f (W) = Wik )™ de
q
1 \1d-a)
= 22~ o) | 57 u(s)WP(s) f(s)w(s)ds) | dx
i EEE) |

a

Xk+1 X q
< va(x)wq(“D(x)[fu(s)Wﬁ(s)f(s)w(s)ds)] dx < |Hapfll] -
Ky

a

Hence, by Lemma 2.1 we get that
Ji < AT I (5)

Moreover, by using Holder’s inequality and that the function u is in-
creasing, we obtain that

u(s)WF(s) f(s)w(s)ds
]Z_Zf [,f (W)~ W)™ ]dx
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q

T ' u? (s)Wr'B(s)w(s)ds !
< Zf [.ffl’(s)w s)ds] [f W@ - Wy ™ a)] dx

k-1

f?(s)zu(s)dsJ W(xe1)

Xt1

[ Wheweds |
dx.
f“”Ulwm—W@W”J v o

Xk

Xk+1

-3/

k-1

A change of variables W(s) = W(x)t in the last integral, implies that

WFE(syw(s)ds — WPPF(x)

1
"B(1 _ #\' (@-1)
(W(x) — W(s))P ™0 Wri-o(x) O P =P dt. (7)

1
Since B > 0, @ > %, then the Euler beta function f trE(1 — t)'e-Dgt
0
converges. Consequently, from (6) and (7) it follows that

ot ; i L/p+)
I <<Zk“[ffp(s)w(s)ds] uq(xk—l)fv(x)vz,/v?m(jc

Xk

k

SZ{. f f”(s)w(s)ds] WG )W P D () f () WO (x)dx

k-1 Xk

q

Xk+1 P
:22<qﬁ+,%>z f fP(s)w(s)ds
k k-1
X+1

mmnowW%%nojbme”mn

Xk

ﬁ
s
—~~
wn
p—
S
N —
==

s

Xk+1

xuq(xkl)[ f WV'B(s)w(s)ds] f o(x) WD (x)dx

Xk
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<=

Xk+1

< P d
< Zk', f F7(s)w(s)ds

k-1

<=

b

X f u” (s)WF'P(s)w(s)ds f (X)W1 D(x)dx

Xk

a Xk
1 [}
Ykl P Xiel 7
SAZ,ﬁZ[. f frew(s)ds| <A}, Z f fP(s)w(s)ds]
k k-1 k Xj—1
< AL - )

By combining (4), (5) and (8) we obtain (3). The proof is complete.

Proof of Theorem 3.2. Necessity. Similarly as in the proof of Theorem 3.1
and the estimate

||Ta,ﬁ|| > Ba,ﬁr (9)

follow from (2) and Lemma 2.2.

Sufficiency. Let B,p < oo. If we show that ||T,4l| < B,g, then this fact
and (9) imply that [|T, gl| & B, g. Next, we use relation (4). For the estimate
J1 we have obtained J; < [|H,pf ||Z,v. Hence, by Lemma 2.2 we obtain that

Ji < B (10)

Moreover, from Theorem 3.1, obvious estimates and Holder’s inequal-
ity it follows that

=
=
T
—
=S

Xi+1
X I (xe )W D (1) f oW () dx

Xk
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q
P

k

_ 23(q/5+,%)(2p’ﬁ+1 - 1);77 Z {ff”(S)w(s)ds]

k-1
. Xk+1
X u7(xk_1) (2(P’I5+1)(k—1) — z(p’ﬁ+1)(k—2))r7 fv(x)Wq("“l)(x)dx
Xk

xuﬂ(xkl)[ wp’ﬁ(s)w(s)ds] f ()W D (x)dx

Xk

x[ f uP’(s)wp’ﬁ(s)w(s)ds] f ()W D (x)dx

k-2 Xk

(we apply Holder’s inequality with the conjugate exponents s, %)

p=q
g Xk+1 p by
= 2;7 Zf,fp(s)w(s)ds < ]2; ||f||Z,ZUI (11)
k Xk-1
where

[l P

X1 p=q Xk+1 =7

Jo1 = Z ['f u”'(s)W”'ﬁ(S)w(s)ds] {fv(x)wq(al)(x)dx]
k k-2 Xk
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To estimate J[,; we use the relation

0
{' f u”’(s)W’”’ﬁ(s)w(s)ds]
- Xk-1 t %
< f [. f u”’(s)l/\/”’ﬁ(s)w(s)ds] u? (WPB(Hyw(t)dt.
Then
Xk-1 t %
J21 <<Z f [ f uP’(s)W'ﬁ(s)w(s)ds]
k X2 k-2
xu”'(t)W”'ﬁ(t)w(t)dt[ f v(x)W"(“l)(x)dx]
X-1f %
< u? (s)WP'B(s)w(s)ds
Al |

q

b
x[ f v(x)Wq(“l)(x)dx] u?’ (WP B(t)w(t)dt

t

P
=

ap

<Bl;. (12)
By substitution of (12) in (11) we obtain that
Jo < BLIfIlLo- (13)
Now, by combining (4), (10) and (13) we obtain that
I Tapfllg0 < Bagllfllp,w-

Consequently, [|Tall;0 < Bag. The proof is complete.
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4 Compactness of the operator T, 4

The main results in this Section reads:

Theorem 4.1. Let 0 < a« < 1,1 < p < g < ocoand B > 0. Let u be a non-
increasing function on I. Then the operator T, g is compact from L, to L, , if and
only if Ay p < oo and

lim A, g(z) = lim A, 4(z) = 0,

z—at z—b~
where

1
q

z

(b
Anp(z) = f u? (s)WFP(s)w(s)ds f WD (x)o(x)dx

a

Theorem 4.2. Let 0 < a < 1, p > 1 and B > 0. Let u be a non-increasing

functionon . If b < coand 0 < g <p <ooorb=ocoand1 < g <p < oo, then
the operator T, is compact from Ly, to Ly, if and only if B, g < 0.

Proof of Theorem 4.1. Necessity. Let the operator T, be compact from
L, to Ly,. Then it is bounded and consequently, by Theorem 3.1, we have
that A, g < oco. First we need to show that lim A,4(z) = 0. Consider the

z—at

family of functions {f;}:;, where

1
t p

Fi(%) = Xan @) )W DP(x) f W (sYWPB(s)w(s)ds| , xel. (1)

a

We note that

1

b P t
f lfi(x)Pw(x)dx| = f | f+(2)Pao(x)dx

1
p

1 1

t p t p

= f u? (s)WFP(s)w(s)ds f w” (s)WFP(s)w(s)ds | = 1. 2)

a a
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Next we show that the family of functions { f;},c; defined by (1) converges

weakly to zero in L,,. Let ¢ € L, v = (Lp,w)*. Then, by Holder’s
inequality and (2), we find that

—

fﬂ x)g(x)dx < [flﬂ X)|Fw x)dx] [f Ig(s)l” w'™ (s)ds]

1

o

[f|g<s Wl () ] . 3)

Since g € L, v, then the last integral in (3) converges to zeroast — a™,
which means weak convergence of the family of functions {f;} to zero as
t — a*. Therefore, from the compactness of the operator T,z from L, to
L, it follow that

tllg} ”Ta,ﬁﬁ”q,v =0. (4)
Moreover,

b

p q
9 _ u(s)WE(s) fi(s)w(s)ds ;
”Ta,ﬁft”q,v fv(X) [‘af (W(x) — W(s))l—a ] X

b t q
u(s)WE(s) fi(s)w(s)ds
> tf v(x)[ f . ]dx

- :
d 4 / 7 ,
qu(if)a)i(c ) [f 4 (s)W”ﬁ(S)w(s)ds] [fu” (S)W”ﬁ(s)w(s)ds]

a

= AT (0). (5)
From (4) and (5) it follows that tlin} A p(t) =
Now, we show that thrg} Anp(t) =0

From the compactness of the operator T,z from L, to L, it follows
compactness of the conjugate operator

g(x)dx
- W(s)'™

T ,8(5) = (e Wa(s) f e
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from L, ¢ to L, 1.
For t € I we introduce the family {g;};c; of functions:

81(X) = x1n (%) f WIeDo()dx | WD (@)o(x). (6)

==

The family {g;}:e; of functions defined by (6) is correctly defined, since
due to condition A, g < oo the involving integrals are finite. We show that
for all t € I the functions g; € L, - converges weakly to zeroast — b.

Indeed,

1
7

b
gl =| [ Il o o
t

1
7

b b
= f WD (x)o(x)dx f [WEDED (p(x)|7 0" (x)dx
t t

==

1
b 7

= f WD (x)o(x)dx f Wi D(x)o(x)dx| =1. (7)

t t

<=

b

By using (7) with f € L, = (Lq,,vwr ) we obtain that

f 8s(x) f(x)dx < f |g:(x)|7 0" Tr f £ (x)70(x)dx

1 1
q b q

b
<l oo | [ o] =| [ iforoces
t t

Since f € L,,, then the last integral tends to zero as t — b, that gives
the weak convergence to zero of {g;} in Lq/’vl—q’ ast — b~. By compactness
of T g " Ly gy = Ly v it follows that

Lim |IT;, p&tlly i+ = 0. (8)
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Furthermore, we note that

b
T gl e = f ()W ESw(s)

fb gi)dx w' ¥ (s)ds
J (W) - W)

t b I v

a t

1 1
v 7

t

P b q
> f u”'(s)W”'ﬁ(s)w(s)ds] f W"(“l)(x)v(x)dx]
t

a
q

= Aa,ﬁ(t)

( WEDE=D(x)p(x)dx
Wl—a(x)
t

Hence, according to (8) we have that lirgl Agp(s) = 0. The proof of the

necessity is complete.
Sufficiency. Fora < c < d < b we define

Pef = X@afs Peaf = xeafr Qaf = Xanf-
Then
f:PCf+PCdf+Qdf
and since P. T, P =0, P.To3Qq =0, PeyT,3Qq = 0, we have that
Toc,ﬁf = Pcha,ﬁPcdf + PcTa,ﬁpcf + Pcha,ﬁPCf + QdTa,ﬁf- (9)

We show that the operator P T, gP. is compact from L, to L, . Since
PeiTopPeaf(x) = 0for x € I\ (c, d), then it is enough to show that the operator
PeqTapPe is compact from L, ,(c, d) to L,(c,d). This, in turn, is equivalent
to compactness of the operator

d

Tf(x) = fK(x,s)f(s)ds

c
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from L,(c, d) to Ly(c, d) with the kernel

U(S)WE(S)0 " () X (x — )07 (5)
(W(x) — W(s)' ™

Let {xi}rez be the sequence of points defined in the proof of Theorem 3.1.
There are points x;, X,11, X; < X,41 such that x; < ¢ < xj41, X, < d < Xy41.
We assume that the numbers ¢, d are chosen so that x;;; < x,. Similarly to
obtaining estimates of [; and ], in Theorem 3.1, we have that

K(x,s) =

a
d( d 7 d x >

: Y (s)WPP(s)w(s)d
f flK(x,s)V” ds| dx= fv(x) (1/1[/\/(:() — Wfs)z;)p,s(l_j)

Cc C [ [

u” s)WVﬁ(s Yw(s)ds !
ol [« |oreg et o

< y(n—i+1)AZ,ﬁ < 00

Xk+1

where the constant y does not depend on i, 7.

Therefore, on the basis of Kantarovich condition ([2], p.420), the opera-
tor T is compact from L,(c, d) to L,(c, d), which is equivalent to compactness
of the operator P T, P4 from L, to L.

From (9) it follows that

||Ta,ﬁ - Pcha,ﬁPcd” < ||PcTa,ﬁPc“ + ”Pcha,ﬁPC” + ”QdTa,ﬁ”- (10)

We will show that the right hand side of (10) tends to zero at c — a and
d — b. Then the operator T, as the uniform limit of compact operators is
compact from L, to L.

By using Theorem 3.1 we find that

B(
P TopPefllgo = |f U(s)WF(s) f (s S)ds

S))l a

1 1
z g c

< sup f u” (s)WF'(s)ew(s)ds f o()WT D )dx | [ fllp

a<z<c
a z
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< sup Au @Il fllp,w-

a<z<c

Consequently, [|[P.T,gP.|| < sup A,z(z). Hence,

a<z<c
hm IPTopPcll < hm sup Ay p(z) = hm Aaﬁ(z) (11)
To estimate ||P;T,gP || we assume that v.(x) = v(x) for x € (¢, d] and
v.(x) = €Tv(x) for x € (a,c], u.(s) = u(s) for s € (a,c] and u.(s) = eu(s) for
s € (c,d], where 1 > ¢ > 0. Obviously, the function u, is non-increasing on
I. Then, according to Theorem 3.1 we obtain that
%
u(s)yWP(s) f(s)w s)ds
< ) f RILLLL P
(W(x) — W(s))
%
s)Wﬁ(s) s)w(s) ds
- E( ) f f 1—a dx
W(s))

< Aa,ﬁll f llp,cor (12)

”PchaﬁP ”qv =

where

1
z v

A= Wil d P (s)WF'P d
iljg [ f (x)v:(x) x] [ f ' (s) (s)w(s) s]

a

We estimate the expression A; ; from above as follows:

Ay < sup [ f WID(x)o(x)dx + &1 f Wit 1)(x)v(x)dx]

[ f u” (s)WH'P (s)w(s)ds]

a

RS

1

d q
+ sup [ f Wq(“l)(x)v(x)dx]
c<z<d

[ f u” (s)WFP(s)w(s)ds + ¥’ f u”'(s)l/\/p'ﬁ(s)w(s)ds]

a C

U
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d z
< sup f WD (x)o(x)dx f u” (s)WPP(s)w(s)ds | + €Ay
d % c %
+ sup f WD (x)o(x)dx f u? (s)WFP(s)w(s)ds +eAup
c<z<d
< 2(Aap(c) + £Anp). (13)

Since the left side of (12) does not depend on ¢ > 0, then substituting
(13) in (12) and letting ¢ — 0, we get that

IPeaTapPefll < Anp(O)llfllp,0-
Therefore ||Py T, Pl < Aqp(c) and we conclude that

lim [[Pog T gPell < lim A g(c) = 0. (14)
c—at c—at

Next, arguing as above we find that

b X q
u(s)WE(s) f(s)w(s)ds
”QdTa,ﬁf”q,v = U(X) |
df af

(W(x) — W(s))'™

< sup Aa,ﬁ(z)”f”p,w'

d<z<b
Consequently,
lim [|QiTapll < lim sup A, p(z) = lim A, g(z) = 0. (15)
d—b~ d—b" 4, p z—b~

From (11), (14) and (15) it follows that the right hand side of (10) tends
to zero as ¢ — a* and d — b~. The proof is complete.

Proof of Theorem 4.2. In the case b < 0o and 0 < g < p < oo the statement
of Theorem 4.2 follows from the Ando Theorem and its generalizations
[10]. Therefore, we only need to prove Theorem 4.2 in the casea = 0,b = oo
and1<g<p<oco.

Necessity. Let the operator T, be compact from L, to L,,. Then the
operator is bounded. Hence, by Theorem 3.2, B, g < 0.

Sufficiency. Let B, < 00. Here Ty gf = PyTopPif + QiT,pf. Therefore

| Tap — PaTapPall < 1QaTygll- (16)
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Sinced < oo, then the operator P;T, gP;is compact from L, ,(0, d) to L, ,(0, ),
which is equivalent to its compactness from L, ,, to L, ,. We show that the
right-hand side of (16) tends to zero as d — oo. Then the operator T,y is
compact from L, ,, to L, , as the uniform limit of compact operators.

Let 1 > ¢ > 0. To estimate [|Q;T.zfll we suppose that v.(x) = v(x) for
x € [d,o0) and v.(x) = Tv(x) for x € (0,d). Using the relations B, g ~ ga,ﬁ
(see Remark 2.3), in view of Theorem 3.2, we have that

u(s)Wh(s) f s)w(s)dsq
(W) = W)™

1QaTapfll < | | velx )‘f

< B gl fllyo
or
1Q4Tall < B, (17)

where

1

p=q

f f WD (x)v, (x)dx
) =
z P=q

X f w? (s)WFB(s)w(s)ds W1 (), (2)dz

a

Passing to the limit ¢ — 0%, from (17) it follows that

1
© P9

10, Togll < f f WD (o)
d z

9(p=1) ETE
z P=q

X f u? (s)WFP(s)w(s)ds W1 D(2)o(z)dz

a

Hence,
;52 1QaTapll = 0. (18)

Obviously, (18) implies that the right-hand side of (16) tends to zero as
d — oo. The proof is complete.
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5 Some dual results

Here we consider the dual operator K, ; defined by

b
. u(s)WF(s)g(x)ov(x)dx
K =
s80) f (W(x) — W(s)'™

S

and its mapping properties from L, , to L.
We define

1

=

4

q b
A 4(2) = f u(s)WP*(s)w(s)ds f WP D(yox)dx |
A;ﬁ = szlgj A;/ﬁ(z).

Our first main result here reads:

Theorem 5.1. Let 0 < a < 1,1 <p < g < ;=and p > 0. Let u bea
non-increasing function on I. Then the operator K, , defined by (1)

i) is bounded from Ly, to Ly, if and only if A7, ; < oo and
moreover, ||K;’ﬁ|| & A;,ﬁ;

ii) is compact from Ly, to Lq if and only if A, ; < co and
i 42,) = i 4) =0
Proof. The operator K., ; acting from L, to Ly, is conjugate to the operator

X

Kopf(x) = v(x) f

a

u(s)WF(s) f(s)ds
(W(x) - W(s))'™

acting from L, ,1-v to L, v, which is equivalent to the action of the op-
erator Ty from Ly to Ly,. Consequently, the operator K ; is bounded
and compact from L, , to L, if and only if the operator T, is respectively
bounded and compact from Ly ,, to L,y ,. Moreover, ”K;,ﬁ“ = ||Tapll- Since,
by the conditions of Theorem 5.1 we have 1 < g < p’ < oo, then the
statements i) and ii) in Theorem 5.1 follows directly from Theorem 3.1 and

Theorem 4.1. The proof is complete. m|

Similarly, in view of Theorem 3.2 we have the following:
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Theorem 5.2. Let 0 < a < 1,1 < g < min{p, 15}, p>1andﬁ>0 Let u be
a non-increasing function on 1. Then the opemtor K*’ defined by (1) is bounded
and compact from L, , to L, ,, if and only if B;,ﬁ < oo, where

q(p-1) g

b b p=q z p=q
B = f [ f W'(“l)(x)v(x)dx] [ f ul(s) W (s)w(s)dsJ

a z a
P9

X u"(s)Wqﬁ(s)w(s)dS) "

Theorems 5.1 and 5.2 implies especially the following new information
in the theory of Hardy type inequalities:

Theorem 5.3. Let 0 < @ < 1, B > 0 and u be a non-increasing function on I.
Then

1
P

[ FRES ] <C[ [y x)dx] 2

a

holds if and only if

a) A, ; < oo forthecase 1 <p < q < -,

b) By, ; < oo for the case 1 < q < min(p, L) p>1

Moreover, for the best constant C in (2) it yields that C ~ A; ; in case a) and
C~ B, , in case b).

Theorem 5.3 supplements the results of [2].

6 Applications

By applying our results in special cases we obtain both new and well-
known results. Here we just consider the Riemann-Liouville, Erdelyi-
Kober and Hadamard operators mentioned in our introduction. We use

the weig}g functions p and w and consider these operators on the forms E,
E,, and }, defined by
Lof() = p() [La(fw)] (x),
Eayf(¥) = p(x) [Eay(fw)| (),
Haf(x) := p(x) [Ha(f)] (x),
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where p and w are almost everywhere positive functions locally summable
on [ with degrees g and p’, respectively.

The action of the operator T, g from L, , to L, , is equivalent to the action
of the operator

_ L[ us)WE(s)w! () f(s)ds
Tapft = ot [ “ (S){l_a

from L, to L,. Therefore, in the case W(x) = x we have p(x) = v%(x),

w(x) = u(x)x? and
~ 3 w(s)f(s)ds
LA = pv) f e

If W(x) = x" o > 0, then u(s)Wﬁ(s)w%(s) = u(s)saﬁ_uiﬂ;’1 = u(s)srtol,

where y = — Consequently, (x) = v%(x), w(s) = u(s) and
oy+o-1
Fup f6) = p f S Sg){ O,

Now, we assume that a > 0 and W(x) = InZ. Then u(s)Wﬁ(s)wr’i'(s) =
u(s) (ln §)ﬁ (‘1)’7 = aﬁu(s)s% (ln f;)ﬁ 1. In this case p(x) = v%(x), w(s) =

s s

u(s)s%’ (ln s)ﬁ and
Jffaf(x) f w(s) f (s ds

Below we present statements for boundedness and compactness of the
operators I, Eq oy and *, from L, to L,. These statements are consequences
of Theorems 3.1, 3.2, 4.1 and 4. 2

We define

1 1

Al(z): [f x)x“ 1 Jq [jw”’(s)ds

a

, Al ==supAl(z),

zel

£ pg-1) 77

b b p=q z
= f [ f p(x)x“l"de [ f a)”'(s)ds] o (2)dz
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Corollary 6.1. Let 0 < < 1, B > 0 and w(s) = u(s)sP. Let u be a non-increasing
function on I. Then

i) for L <p <q < ocothe opemtorTa is bounded from L, to L, if and only
if AL < oo and, moreover, ||| ~ AL. It is compact from L, to L, if and only if
Al < ooand Zll_gq Al(z) = ZILI? Al(z) = 0;

ii) for 0 < g <p < coand p > 1 the operatorzx is bounded (compact if b < oo
orb=coand1<g<p <eo)fromL, to L, if and only if B, < co.

Remark 6.2. Corollary 6.1 generalizes the results of Theorems 1 and 2, 5 and
6 in [7], where the case p = 0 was considered. Even in this case the results of
Corollary 6.1 are different (and in a sense simpler to use) than those in [7], because
in [7] the statements are given in terms of two expressions while here we only need
one condition.

We define

1 1
p/

b 9 ( z
A% (2) = f lp(x)x" @ V}Idx f lw(s)s? ' ds|

Ai/y :=sup A2 (2),

ay
zel

14
p=q

b b
Bi,y = f flp(x)x“("“l)lqu
a ya

V4
X f lew(s)s™ o1 ds lw(z)z? 1 dz
a

pp=b I

Corollary 6.2. Let 0 < @ < 1,0 > 0,2 0andy = p— %= Let w bea
non-increasing function on I. Then

i) for L < p < q < oo the operator E,, is bounded from L, to L, if and only if
A}, < coand, moreover, ||E, || = A% . It is compact from L, to L, if and only if

ay

A% <coand lim A7 (z) = lim A} (z) = 0;
’ z—at 4 z—b~ ’

ii) for 0 < q < p < coand p > 1 the operator EW is bounded (compact if
b<oorb=ocoand1<q<p<oco)fromlL,toL,ifandonlyif B} < co.
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To formulate statements corresponding to the operator ¥, we define

:[ fh ’p(x) (m%)“lqur f o (s)ds
b b p=q z

B = f f ‘p(x) (ln ;—‘)alqu f wr”(s)ds] o (2)dz

a z a

o

P

, A :=sup Al(z),

z€l

Corollary 6.3. Leta > 0,0 <a <1, > 0and w(s) = u(s)s% (ln g)ﬁ Let u bea
non-increasing function on I. Then

i) for 1 < p < q < co the operator K, is bounded from L, to L, if and only
if A3 < oo and, moreover, 1 FHll = A3. It is compact from L, to L, if and only if
A3 < ooand Zll_gq Ad(z) = Zliril Ad(z) =

ii) for0 < q < p < coand p > * the operator H,is bounded (compact if b < oo
orb=coand1<g<p <oo)fromL, to L, if and only if B}, < co.

Finally, we consider the operator AI; g(s) = p(s)[L(gw)](s), s € I, acting
from L, to L,, where I}, is the Weil operator

b
. g(x)dx
Iag(S):fm.

S

The action of the operator K’ P fromL,, to L, is equivalent to the action
of the operator

d
K. 8(5) = i (©)u(s) WH(s) f (W(x) 81;(\/2); ~a

from L, to L,. Therefore, when W(x) = x we have

p(s) = u(s)sk, w(x) =07 (x),

d
T:56) = p(9) f wog

S)l a
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We define

1
v

o
AL) = f p7(s)ds f @ Wdx| | A= sup AL(2),

4

z€l
a

qp-1) g T

b b P9 z
B := f f lw(x)x* 1 dx f pl(s)yds|  p'(z)dz

From Theorems 5.1 and 5.2 we have the following result:

Corollary 6.4. Let 0 < a <1, 8 = 0and p(s) = u(s)sP. Let u be a non-increasing
function on 1. Then

i) forl <p <q< 7= the operator I, is bounded from L, to L, if and only
if A}, < oo and, moreover, LIl ~ A%. It is compact from L, to L, if and only if
Al < ooand zh—g}f Al(z) = Zlg}f} A(z)=0;

ii) for 1 < g < {min(p, 1)} < o and p > 1 the opemtorAI:*X is bounded
(compact) from L, to L, if and only if B, < co.

Remark 6.6. From the results in Corollary 6.1 - 6.3 follows some correspond-
ing Hardy type inequalities, which seem to be new even it they are special cases of
our Theorems 3.3 and 5.3.
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1 Introduction

Let0<p,q<m,I:(a,b),0£a<bS00,0<oc<1andrl—1+z%:1. Let W:I - R
be a strictly increasing and locally absolutely continuous function on I. Suppose that
W) = w(x) almost every x € I and W(a) = tlim W(t) > —oo.

—at

dx  —
Let v : I — I be a non-negative locally integrable function onIand ¢ : I — I be a
strictly increasing locally absolutely continuous function with the property:
lim ¢(x) =4, liril px)=0b, p(x) <x, VYxel
X—b~

x—at

Consider the operator in the form

P(x)
3 f(s)w(s)ds
K“’(’]f(x)_f—(W(x)—W(s))Hr’ xel, 1)

from Ly = Lyw(I) to Ly, = Ly(I), where Ly, , is the space of measurable functions f : [ — R
for which the functional

1
P

b
||f||p,w=[ f F@Pw@dx| , 0<p <o,

is finite. Let
Wo(x) = W(x) — W(a). (2)

Then Wy(x) > 0, Wy(a) = 0, and the operator (1) can be written as

P()
3 f(s)w(s)ds
Kot = | G- <"

a

Therefore, unless otherwise stated, further on we will assume that in (1) W(-) > 0 and
W(a) = 0.

In the case ¢(x) = x the operator (1) is studied in the papers [1, 2], and in the case
@(x) = x, W(x) = x the operator (1) is the Riemann-Liouville operator and its various
aspects are considered in many papers and books, for example in [3, 4, 5, 6, 6].

Together with operator (1) we consider the operator

g(x)v(x)dx

W - weye ! ®)

K}, ,8(s) =
P71s)

from L, to Ly, where ¢! is an inverse function to ¢.

Throughout this paper expressions of the form 3, 0 - co are supposed be equal to
zero. The relation A < B (A > B) means that A < CB (B < CA) with a constant C
depending only on p, g, @ which can be different in different places. If A < Band A > B,
then we write A = B. By Z we denote the set of all integer numbers and xr denotes the
characteristic function of the set E.



4 AM. Abylayeva, R. Oinarov and L.-E. Persson

2 Auxiliary results.

Besides the operator (1) we also consider the operator

P()

H,f(x) = W1+% ff(s)w(s)ds, xel 1)

From (1), (1) it is easy to see that
Kaof 2 He f )
for f > 0.
In assumptions about the function ¢ the boundedness of the operator (1) from L, to
Ly is equivalent (see [8]) to the boundedness of the Hardy type operator

1 x
Hf(x) = m ff(S)ZU(S)dS, xel,

from Ly, to L5, where o(t) = v(¢~'(£))(¢'(£)). Therefore, from the results of the study
the Hardy inequality (see, for example, [9]), we have

Lemma 2.1. Let 1 <p < g < co. Then the operator (1) is bounded from Ly, to Ly if and only if
A = sup A(t) < oo, where

tel

1

b
A(t):[ f wq<“-1>(x)v(x)dx] W7 ((t)).
t

Moreover, ||Hyl| = A.

Remark 2.2. Here and below ||T|| denotes the norm of the operator T : Ly — Ly, where the
operator T either T = Hy, or T = Kg .

Lemma 2.3. Let 0 < q <p < oo, p> 1. Then the operator (1) is bounded from Ly, to Ly, if
and only if

b b ﬁ e
B= f { f W"(“l)(x)v(x)dx] W%((p(t))v\;;((lt—szm <o

a t

Moreover, ||Hy|| ~ B.
We also need the following Lemma:

Lemma 2.4. Let 0 < § < 1 and the function y(-) defined on I, such that 0 < y(x) <1, Vx el
Then
r()
dz y(x)

—— < —, Vxel.
) =977 7 *
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Indeed, using the inequality (1 — y(x))? > 1 — y(x), we have

y(x)
r()

dz 1n—a—ﬂmms%u—a—ﬂwn=ﬁ

(-2 B
0

3 The main results.

Our first main result reads:

Theorem 3.1. Let 1 < p < g < oo, % < a < 1and A be defined as in Lemma 2.1. Then the

operator (1) is bounded from Ly, to Ly, if and only if A < co. Moreover,
”Kac,qz” ~ A. (1)
Our next main result reads:

Theorem 3.2. Let0 <g<p<oo, p>21,  0<a<1andB bedefined as in Lemma 2.3. Then
the operator (1) is bounded from Ly, to Ly, if and only if B < co. Moreover,

IKapll = B. @)

In the case 0 # W(a) > —oo, in accordance with Remark 2.2 the following theorems
follows from Theorems 3.1 and 3.2, respectively:

Corollary 3.1. Let1 <p <g < oo, % < a < 1and Wy be defined by (2). Then the operator (1)
is bounded from Ly, to Ly, if and only if

1

b q
Ay = sup [ f wg(“”(x)z;(x)dx] wj’ (@(2)) < .

a<z<b
Moreover, ||Kq,pll = Ao.

Corollary 3.2. Let0 < g <p <o, p>1, 0<a<1and Wy bedefined by (2). Then the
operator (1) is bounded from Ly, to Ly, if and only if

P
P

b b #
a- &n o(t)dt
Boz f[fwg( 1)(x)v(x)dx] WO ((p(t))m < o0

a t

Moreover, ||[Kq,pll = Bo.

For the operator (3) we have the following results:
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Theorem 3.3. Let 1 <p<q<iz, 0<a<1land Wy be defined by (2). Let W(a) > —oo.
Then the operator K, , defined by (3) is bounded from Ly, to Ly, if and only if

1
v

W” (p(2)) < co.

a<z<b

A’ = sup [ f WD (o (x)dx

Moreover, |[K}, |l = A"

Theorem 3.4. Let 1 < g < minfp, 7= =} 0 <a < 1and Wy be defined by (2). Let W(a) > —co.
Then the operator K, , defined by (3) is bounded from Ly, to Ly, if and only if

r=q

plg=1) 7

b p=q

b
_ f { f WD o) wg%(@(t))%
t

a

Moreover, |IK, ,

||~ B

The boundedness of the operator (1) from L, ;, to L, is equivalent to the boundedness
of the adjoint operator

g(x)dx

Ko p8(s) = W(S)IW’ sel
P76

from Ly 1y to L, 1, which in turn is equivalent to the boundedness of the operator
K, defined by (3) from Ly to Ly ». Therefore, making by replacing 4" and p’ by p and g,
respectively in Theorems 3.3 and 3.4, we obtain the assertions of Corollaries 3.1 and 3.2,
respectively.

Our main result concerning compactness of the operator K, , reads:

Theorem 3.5. Let 0 < a < 1and 1 < p < g < co. Then the following statements are equivalent:
i) Ko : Lpw — Ly is compact;

ii) A < ooand tlirn A(t) = lirgl A(t) =
—at t—b-

Theorem 3.6. Let b < 00,0 <a <1,0<q <p < ooandp > L. Then the operator Ko, is

compact from Ly, to Ly, if and only if B < oo holds.

4 Proofs of the main results.

Proof of Theorem 3.1. Necessity. Let the operator (1) be bounded from L, to Ly . Then
from (1), (1), (6) it follows that the operator H, boundedly maps from L, to L;, and
IKapll 2 IHpll. Consequently, by virtue of Lemma 2.1,

”Ka,(p” > A. (1)
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Sufficiency. Let A < co. Consider the function W(g(x)). In view of the conditions
imposed on the function ¢ and W we have that the function W(¢p(x)) is continuous, strictly
increasing and W(p(a)) = W(a) =

For any k € Z we define x; = sup{x € I : W(p(x)) < 2k}, Hence, a < x; < xp41 < b for
any k € Z and W(p(xy)) = }1_{2 W(p(x)) < 2F, butif x; < b, then xx_; < xx and W(¢p(xz)) = 2.

Assume that @(xx) = tr, I =[xk, Xk41), Ji = [tk tee1) and Zo = {k € Z : I # 0}. Then

I:UIk:U]k' (2)

keZy keZy
W(px)) = Wty =25, ke Zy, 3)
2k < W(p) <251, for xel, ke Z,. 4)

Let f € L,. By using (2) and the relation ¢(x;_1) < xx-1 < xx, k € Zp we have

b e o) 1

) lo(s)ds
oK f@Ndx < Y [ o) | o
f v Zk:f ) W@ - WE)

a

q

B s)lw(s)ds
Sy f o f W@ - WEy =

e Pr)

o) f (W(x) S)w;ffs();; o | dx| =271 (F1 + Fa). ®)

Here and in the sequal, the summation is taken over the set Z; with respect to index

¢ We estimate the expressions F; and F, separately. Applying Holder’s inequality, we
obtain

Xk+1 U

)
. F)ko(s)ds
A=) S| | o i

Xk (¥k-1)
Xpr1 P(x) (x 2
<Y [wo| [ e | f |
Xk (k1)
e b X o) - 4
Szk: f |f(s)Peo(s)ds f v(x) f W@ W)y oo dx. (6)

(xk-1)
Making the change of the variable W(s) = W(x)z in the last integral and applying
Lemma 2.4, we find that

W(px)
() W)

f w(s)ds W(x) dz
(W(x) = W(s)r = = Wr-a)(x) (1—z) @D
0
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1 W(p(x)
pla— _) W' (1- a)(x)

Substituting this in (6) and using (2) - (4), we obtain that:

)

Xk+1

el
K <<Z[ f If(s)lpw(s)ds] f W=D ()o(x) W7 ((x))dx
k k-1

Xk

q
trr1 P Xk41

< lf&)PwE)ds| 27 D [ WieD(x)o()dx
x|/ /
ti1 g Xk+1
< [ IfG&)IF w(S)dS] W”i'(@(xk)) f WD (x)o(x)dx )

{7351 ts1

flf(s)l”w(s)ds] < A1 (Zflf(s)l”w(s)ds]

k tj1

ong

k-1
< AL ®
In order to estimate F, we use (2), (3) and the estimate W(x) > W(p(x)), x €1, to

deduce that ]

Xk+1

Fp = Z fv(x)

({)jk‘l) f(s)w(s)ds
T y (W(x) = W(s))t-

Xks1 P(x-1) 1
f(s)w(s)ds
d
<L / ”(x)[ f UCE W(qo(xkl)))l“] g

Xk

Xis1 Q(xr-1) q
o(x)dx
s; f (W(x)—W((p(xkl)))q(l‘“)[ f f(S)w(s)ds] .

Taking the following estimates

W) = W) = WE0) - 32 = W) = 2 Wigiww)

> W) - 3 Wek) = We) - s WE) = 2 W),

for x; < x < x341, into account, we obtain that

P(xe-1) q
F, < 210~ “)waqz(i)( )[ f f(s)w(s)ds] dx
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P P(x) 1

1
<<Zk‘ f 0| e f fs)yw(s)ds | dx < IHyfIl - )

Hence, on the basis of Lemma 2.1,
Fy < A1} - (10)

From (5), (8) and (10) it follows that the operator (1) is bounded from L, to L.,
Moreover, [[K,, |l < A, which together with (5) gives (1). The proof is complete.

Proof of Theorem 3.2. Necessity. Let the operator (1) be bounded from L, to L.
Then, as in Theorem 3.1, from (6) and from Lemma 2.3, we have

IKa,ll > B. 11)

Sufficiency. Let B < co. To estimate the norm of the operator (1), we proceed from
the relation (5). By virtue of (9) and Lemma 2.3, we have

Fy < BIfIl. (12)

Estimating F; in a similar way as in Theorem 3.1, we obtain the relation (7) and
applying Holder’s inequality with exponents % and ﬁ, we have

q
e P X1

<) f FOPwEs| WP (plx) f WD (@yo(x)dx
k -1

Xk

frs1 %
Hl |f(s)|ﬂw(s>ds]

k tj—1

[=
~[Z
=

Xk+1

X YW )| [ W oo
k

Xk

~

—=q

<2 A0 | = Y W (o)
Pelp—q
k

N
X1 X1 F

X f Wq(“‘l)(x)v(x)dx] WICD (tyo(t)dt

X b ﬁ %
<y f [ f WD (odr| W () — D
t

q
Wa=a)(f) Wfllpa
k%

< BIfIf - (13)
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From (5), (12) and (13) it follows that the operator (1) is bounded from L, to L;, and,
moreover, ||[Ky || < B, which together with (11) gives (2). The proof is complete.

Proofs of Theorems 3.3 and 3.4: The proof are similar to those of Theorems 3.1 and
3.2, respectively, so we omit the details.

Proof of Theorem 3.5. Necessity. Suppose that the operator (1) is compact from L, ,(I) to
Ly(I). We show that (ii) is true.

Since the operator K, , is compact we get that the operator (1) is bounded. Then, from
Theorem 3.1 its follows that A < co.

To prove tlgg} A(t) = tliril A(t) = 0 we use the well known fact that a compact operator

maps a weakly convergent sequence into a strongly convergent one. Fora < s < b consider
the family of functions

(%) = Xapen()W 7 (@), x € L. (14)
It is easy to see that {fs}se(a,p) € Ly
Indeed,
b ; 9(s) ’
I fsllpw = flfs(x)lpw(x)dx = Wii((p(s)) fw(x)dx =1. (15)

We show that the family of functions (14) converges weakly to zero in L.
By using properties of ¢(x) and the Holder inequality together with (15) we find that

®(s)

b
f fo(0)g(x)dx = f fo(x)g(x)dx

a

4

b P s
< f IfS(x)I”w(x)dx] f Ig(x)lf’/wl”"(x)dx

; :
= [ f g w! "’ (x)dx] (16)
forallg € L, .

Since g € L, -, then last integral in (16) tends to zero when s — a*, which means
weak convergence f; — 0 ats — a*. Since a compact operator in a Banach space every
weakly convergent sequence translates into a strongly convergent one, then we get that

Slg}{} ”Ka,(pfS”q,U =0. (17)
On the other hand, by using properties of functions W(x) and ¢(x) we have

1
b X q q

P()
K fillgo = fv(x) f(W(x)—W(f))l_a

a
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A O TN
W7 (p(s))w(t)dt
2|J )| = waor)

S

Y

b @
zw-i«p(s))[ f oW D () ] f w(t)dt
b E
= W (p(s)) ( f v(x)w““-wx)dx} = A()- (18)

By combining (17) and (18) we find that lim A(s) =
s—at
Next we show that rhrz} A(t) = 0. The compactness of the operator K, , implies com-

pactness of the dual operator

_ 8dx
f W W(t))l —, tel, (19)
P71

from Lq,,vl_q/ to Lp,,wl_p/.
For a < s < b we consider the family of functions

b

8s(%) = Xps (%) [ f Z)(i-‘)V\/q(“_l)(t)dt‘] WO DE D )o(x), x€l. (20)

S

These functions are properly defined, since the integrals in the definition of the
functions g;(x), are finite because A < co.
In addition, g, € Lq/lvl—q/, for any s € (a,b). Indeed,

b q
Ig6lly o1 = [ f |gs(x>|q’vl-q’(x)dx]

b q b qi,
= [ f Wq(“l)(t)v(t)dt] [ f |w<‘71><“1>(x)z;(x)|q’vlq’(x)dx]

s

b T 7
= { f W"(“‘l)(t)v(t)dt] [ f Wq(“‘l)(t)v(t)dt] =1. (21)

From (21) it follows that

b b

f gs(x) f(x)dx = f gs() f(x)dx

a S
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[ f o (0 ] [ f If(X)qu(X)dXJ

b 7 b i
< [f |f(x)|‘70(x)dx] ||g5||q,,z,17qr = [f |f(x)|‘fv(x)de
forall f € Ly,.

Since f € L,,, the last integral tends to zero at s — b~. Hence, the family of functions
{Ss}se(a,p) converge weakly to zero in Ly v whens — b~.

The dual operator K;, , is compact from L, ;i to L, ;1. Therefore,
Slinbr} 1K sl o = 0. (22)
However, the following estimate holds:

b v v

Kl IEC f &b

S N W(x) - W(B) =

J ) e =
1
P v

P(s)

b ,
gs(x)dx
z f wt) f W —wya|

a )
) b WDy YN i
> f w(t) o2 dt f WD (pyo(t)dt
b S ) v
= f W‘i(“l)(t)v(t)dt] f WD (pyo(t)dt f wt)dt| = A(s).

Consequently, by using (22) we have that lirl? A(s) = 0. Thus, the implication (i) =
s—b-
(ii) holds.

Sufficiency. Now we will prove (ii)= (i).
Leta < c <d < b. We take d such that ¢(d) > c and put Pcf = x@af, Peaf = Xcalf,

Qaf = Xunf-
Then f = x@af + Xeaf + Xapf = Pef +Peaf + Quf.
We find that
Ka,qaf = (Pc + Pcd + Qd)Ka,(pf = (Pc + Pcd)Ka,(p(Pc + Pcd + Qd)f + QdKa,(pf
= PcK(x,(chf + PcKa,(chdf + PcKa,(def + Pcha,(chf

+Pch(x,q7PCdf + Pcha,qudf + QdKa,(pf-
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Thus, since PcKy,yPeq =0, PcKy Qi =0, PyKy, Qs = 0 we can conclude that
Ka,(pf = PCKa,anCf + Pcha,(chf + Pcha,(chdf + QdKa,(pf- (23)

We show that the operator PKyyPes is compact from Ly .(I) to Lgo(I). Since
PegKyoPeaf(x) = 0 when x € I\(c, d], then it suffices to show that the operator Pe;K, Py is
compact from L, ,(c, d) to L, .(c, d) and this is equivalent to the compactness from L, ,(c, d)

d
to Ly (c, d) of the operator Kf(x) = f K(x, s) f(s)ds with the kernel

U%(X)X(c,d](t)Q((p(x) - t)wpi’(t)

e e )

where 0(z) is Heaviside’s unit step function, (that is, 6(z) = 1 for z > 0 and 0(z) = 0 for
z < 0).

From the proof of the Theorem 3.1 there are points xi, x; such thatk—i=m > 1, x, > d
and c > x;. Therefore, making the change of the variable W(s) = W(x)z in the integral
below and applying Lemma 2.4, we have that

d pi d @(x) 4
} B Xed)B)w(t)dt
flK(xr t)IP dt] dx - fv(x) (W(X) _ W(t))p’(lfa) dX

d

/

o

c

==

d P(x)
w(t)dt

Sf o) f W@~ Wy

c

< f V() WID ()0(x) W (¢ (x))dx
< in’((p(xk))fv(x)Wq(“‘l)(x)dx

Xi

b
< W7 (p(x)) f V()WIED(x)dx < AT < co.
Xi
Therefore, on the basis of the theorem in Kantorovich and Akilov (see [10], page 420),
the operator K is compact from L,(c, d) to L;(c, d), which is equivalent to the compactness
of the operator PgiKy,oPeq from Ly, (1) to Ly (D).
By using (23) we find that

”Ka,(p - Pcha,(p” < ”PcKa,(p” + ”QdKa,(p” + ”Pcha,(ch||~ (24)
We will show that the right-hand side of (24) tends to zero as ¢ — a* and d — b™. This

will imply that the operator K, , being a uniform limit of compact operators, is compact
from Ly (1) to Ly (D).
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Consider each of the operators in (24) separately. By Theorem 3.1 we have

c )
Fltyw(tydt
”PcKa,(chf”q,v = fv(x) f W

1
1 q

a

a<t<c

< sup W7 (p(t) [ f Wq(“l)(X)v(X)dX] A1l 0

< sup A®)||fllp,-

a<t<c

Hence, [|P:Kq,oPcll < sup A(t). Then

a<t<c

lim ||P.Ky o Pl < tlim A(t) =0. (25)
c—at —at
Let v; = Qqv. Then, by Theorem 3.1 we obtain that
”QbKa,(pf”q,v = ”Ka,q)f”q,vd

a<t<b

b q
< sup W7 (¢(t) [ f Wq(“_l)(x)vd(x)dx] 111y, 0
t

b q
= sup W7 (¢(1)) [ f W"(“l’(X)v(X)dx] 1 f1lp0 = sup A®Ifllpo-
t

d<t<b d<t<b
Consequently,
dliné} 1QuKapll < tlirg} A(t) = 0. (26)
Now we will prove that
ChjZ} ”Pcha,(pPCH =0. (27)

Since ¢(d) > c and the function ¢(x) is continuous then there exists a point z € (c, d)
such that ¢(z) = ¢. Since ¢(x) is a strictly increasing function, then z = ¢71(c).
We have that

G P(x) q

" XD f (bt
IPeiKa,pPef ”Z,z;: f v(x) W

q

d P(x)
Xea®f Ot |
+ f U(x) W dx = ]1 + ]2. (28)
7o) a
By Theorem 3.1, we get that
¢ P 1

F(byw(t)dt
e [ oo\ G-

a
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< sup  ATOIfII - 9

a<t<p=(c)

Making the change of the variable W(t) = W(x)s in the integral below and applying
Holder’s inequality and Lemma 2.1 we obtain that

d c q
_ ftw(t)dt
B f ”(")[ (W<x>—W<t)><1-a>] =
e a

‘7

w(t)dt ’
= f ”(x)[f (W) — W(t))r’(l-“] Wl

¢71(0)

a
W(e) v
We)

(W()” ds
f o )(W( ))7d-=a) f(l — sy =) dx”fHZ,w

o0

d q LA
(W) (W) \”
= [ oo (iwia) Wl
P70

d
_ W) f o() W) |f[
@7 (c)
= A~ @) ||f]!

Since ¢~1(c) — a* atc — a*, then from (29), (30) and (28) we have (27).
From (25), (26) and (27) it follows that the right side of (24) tends to zero with ¢ — a*
and d — b™. The proof is complete. ]

- (30)

Proof of Theorem 3.6. The statement of Theorem 3.6 follows by Ando Theorem and its
generalizations [11].
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1 Introduction

Let0<g<o0,1<p<oo, l+’% =1,R; =(0,00). Moreover,letu : Ry - Randv: Ry —» R
be weight functions, i.e. non-negative measurable functions on R..
Since the 70-s of the last century weighted estimates of the form

loKflly < Clluflly @

are intensively studied in the literature for different classes of the operators K, where || - ||,
is the usual norm of the space L, = Ly(R;).
Here the operator K is defined by

X

Kf(x) = f K(x,s)f(s)ds, )

0

where K(x, s) is a kernel i.e. a measurable function on R, X R... To characterise all weights
so that inequalities of the type (2) hold are very important questions in the theory of what
today are called Hardy type inequalities. To characterise (1) without restrictions of the
kernel X(x, s) is still an open question.

Review of research in the period 1970 — 1982, where estimates of the form (1) are
given, can be found in [5]. Some directions of research of the estimate (1) until 2009 for
integral operators are summarized in the books [6, 5, 4, 3, 12]. Estimates of the form (1) are
considered not only in Lebesgue spaces but also in other function spaces (see. e.g. [7, 8, 6]
and Chapter 11 of the book [5]). Moreover, in [8] a sequence of classes of measurable
kernels X(x, s) was considered and a full description of weights v and u was given so that
the estimate (1) holds for the operator K defined by (2). However, these results do not
include operators in the form of (2), when the kernel X(:, ) has a singularity, for example
the Riemann-Liouville operator

~ f(s)d
Rof(x) = f (xf_(s—z)f ©)
0

when 0 < a < 1. The estimate of the form (1) remains open for the operator (3) in the
general case. However, the following cases are studied: v = 1 in [3], u = 1 in [15, 20] and
u is non-decreasing in [7] and when one of the weighted functions v, u is non-increasing
in [21].

The estimate (1) for a singular operator in a form

X

Kf(x) = f &' '1n % £(s)ds, @)

0

is equivalent to an estimate
1Ky fllg < ClIfll )

for the operator

K, f(x) = 0(x) f u(s)s” ' n ﬁ £(s)ds. )
0
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The estimate (5) is equivalent to the boundedness of the operator (6) from L, to L, with
the norm ||K, || = C, where C is the best constant in (5). The operator (4) in the case y = 0
is called a fractional integration operator of infinitesimal order [16].

The operator

e

K £(s) = us)s"™! f o(x) In ﬁ f)dx, s>0, @)

S

is dual to the operator K, with respect to the scalar product f fx)g(x)dx.
0

The main purpose of this paper is to establish the boundedness of the operator (6)
and the dual operator (7) from L, to L.

In the case u(x) = 1 of boundedness from L, to L, of the operator (6) was studied in
[1].

The main results (Theorems 1-4) are presented in Section 3. As corollaries some
corresponding new Hardy type inequalities (Corollaries 1-4) are pointed out. The detailed
proofs are given in Section 4 and in order not to disturb the argumentations in these proofs
some auxiliary results are collected in Section 2.

Conventions: Uncertainties of the type 0 - oo, 3, £ are assumed to be zero. The
inequality of the form A < BB is written in the form A < B, where the positive constant f8
may be dependent on the parameters p, 4, y, and the relation A * Bmeans that A < B < A.
X(@,b)(*) denotes a characteristic function of the interval (a, b), Z is the set of integer numbers.

The notations }., sup mean }., sup, respectively.
ko &k keZ kez

2 Auxiliary results
Since

ln—=f% forx>s>0, (1)

the following inequalities
L>lni>f, x>s>0 (2)

hold. The function In ;X decreases with respect to x and increases with respects to s when
x > s> 0, and from the inequality (2) it follows that the functions xIn =, 1 In - also

x—s’ s

decreases with respect to x and increases with respects to s when x > s > 0. Indeed,

i(Jcln il )zln r 8 <0,
ox X—s X—s Xx-5
and
d (1 X 1/ s X
%(gl x—s)_s_z(x—s_1 x—s)>0

forx >s>0.



Boundedness and compactness of a class of Hardy type operators 5

From (1) we have

In —f(s)ds = —f( s)ds = x L_ x f(s)dsdt. 3)
x—t J

In the case when the function u is positive a.e. in R, we put u(s)s”~! f(s) = ¢’(s). Then
from (3) and (6) it follows that the inequality (5) is equivalent to the inequality

Clo [ g-36) '
v(x) fds
IIKIE=

q % 00
dx] < C[ f Ig’(x)u‘l(x)xl‘}’l"’dx] 4)
0
for differentiable functions g.

Similarly, if the function v is positive a.e. in R,, then the inequality (5) for the operator
(7) is equivalent to the inequality

i

0

1

s] < C[f If (x)v‘l(x)l”dx] (5)

for any differentiable functions f. In this case we have that

fln—f(x)dx—ff( )ft(:dt = f”%ff(s)dsg
s t

Along with the operator K, defined by (6) we consider the operator H, defined by

f (x) = f(s) dx

X—5s x

u(s)s”

S

H,f(x) = @ fu(s)syf(s)ds, x> 0.
0

It easy to see that
Kyf = Hyf ®)
for f > 0. Let

Ax) = [ful"'(s)s”"ds] [f #dt] , A=supA().
x>0

0 x

For the operator H, the following theorem holds [5, 4, 12]:

Theorem A. Let 1 < p < q < oo. Then the operator H, is bounded from L, to L, if and only if
A < 0o, Moreover, ||H, || = A

Remark 2.1. Here and below for any operator T the value ||T|| denotes the norm of the operator
T from L, to L.
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The corresponding result for the case g < p reads:

Theorem B. Let 0 < g < p < oo, p > 1. The operator H,, is bounded from L, to L, if and only if

P
pa=1) I

P Pt
X = p (X , ) p=q ) )
B = f[f Ut—gt)dtJ [fu” (s)s” Vds] uP (x)x" Vdx| < oo.

0 X 0

Moreover, ||H,|| = B.

Remark 2.2. In the case 1 < q < p < oo, the constant B is equivalent to the constant

Pq

9p=1) I

xf x a(t ﬁ x P q
B= ffv—()dt] fup/(s)sp'yds de
t x1
0

X 0

3 The main results

Our first main result reads:

Theorem 3.1. Let1 <p < g < oo,y > %, and u(x) be a non-increasing function. Then the

operator K,, defined by (6) is bounded from L, to L, if and only if A < oo and, moreover, ||K, || = A.

Corollary 3.2. Let the function u be positive a.e. on R, and the conditions of Theorem 3.1 be
fulfilled. Then the Hardy type inequality (4) holds if and only if A < co. Moreover, A = C, where
C is the best constant in (4).

The corresponding result for the case g < p reads:

Theorem 3.3. Letp >1,0< g <p <ocoandy > L. Let u be a non-increasing function on R,.

Then the operator K, defined by (6) is bounded from L, to L, if and only if B < oo and, moreover,
IK, || ~ B.

Corollary 3.4. Let 0 < g < p < co. Let the function u be positive a.e. in R, and the conditions of
Theorem 3.3 be fulfilled. Then the Hardy type inequality (4) holds if and only if B < co. Moreover,
B = C for the best constant C in (4).

We define

1 1
00 X 7

A'(x) = f% fsq}’uq(s)ds

X [

A" =sup A'(x),

x>0
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and
pPq

(-1 7

B = fm[f %@}M [fs‘”’u%s)]yqq X7 ul(x)dx

0 X 0

We consider the operator K;, (defined by (7)) from L, to Ly. If 1 < p,q < co, then the
operator K;, is bounded from L, to L, if and only if the operator K, is bounded from L
to L. In this case the conditions 1 <p < g <oecoand 1 < g < p < oo are equivalent to the
conditions 1 < g’ <p’ <ecoand 1 < p’ < g’ < oo, respectively. Therefore from Theorems
3.1 and 3.3, we have the following:

Theorem 3.5. Let1 <p < g <ocoandy > ;—J. Then the operator K, defined by (7) is bounded
from Ly, to Ly if only if A* < oo and, moreover, ||K || ~ A™.

Corollary 3.6. Let the function v be positive a.e. on R, and the conditions of Theorem 3.5 be
fulfilled. Then the Hardy type inequality (5) holds if and only if A* < co. Moreover, A* = C,
where C is the best constant in (5).

Theorem 3.7. Let 1 < g <p <ocoandy > % Then the operator K, defined by (7) is bounded
from Ly, to Ly if only if B* < oo and, moreover, ||K} || ~ B*.

Corollary 3.8. Let the function v be positive a.e. on R, and the conditions of Theorem 3.7 be
fulfilled. Then the Hardy type inequality (5) holds if and only if B* < co. Moreover, B* = C for
the best constant C in (5).

4 Proofs of the main results

Proof of Theorem 3.1. Necessity. Let the operator (6) be bounded from L, to L,;. Then, in
view of (6), the operator H,, is bounded from L, to L, and ||K, || > [|H,||. Therefore, by
Theorem A the value A < co and

K, Il > A. (1)

Sufficiency. Let A < oo. Since In ;£ > 0 when x > s > 0, then it is enough to prove the
inequality (5) for f > 0. Let 0 < f € L,. Then we have

ok+1 X q

q _ y-1 X
1,15 = Y, [ o60)| [[utrsin 2 peoas | ax
P g
k+1 k-1 q
<<va‘7(x) fu(s)sy‘1 In Lf(s)ds dx
= ) x—s
2k+1 X q

+Zk" f (%) f u(s)s" ! In % Fe)ds| dx =1 + L. ?)
2k

k-1
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We estimate I; and I, separately. Using the monotonicity of the function %ln = with
respect to the variables x and s, we obtain that for x > s >0

ok+1 k-1 q
zk
I < vaq (%) fu(s)s7 2k_11n mpT= S (6)ds | dx
okt k-1 q

<(h12)‘72f(2k oY fu(s)s"’f(s)ds dx
%) x q
«[Z [ | u(s)sms)ds} dx = I, fI. ©)

0
In view of Theorem A from (3) it follows that
L < A|IfIIT. 4)

By now using the fact that the function u is increasing, applying Holder’s and Jensen’s
inequalities and making the change of the variable s = xt in the integral below, we have

kA
i, k+1 P

L< Zm(zkfl) f o(x) [ f 70D 1 —ds] dx f FP(t)dt
k o

2k+1 g 2k+1
f fFPode| w2 f o (x)x 0D { f In” ] dx
k-1 2k 0

q
Dk+1 ? k+1

B f Fr(tydt| w251 f D11 dy

k+1

1 1449
2k+1 P 2k+1 q
)+ L v1(x
<<Z ff”(t)dt ul(2k1y [26=D0+5) f%dx
k k=1 2k
2k+1 g Zkfl ;% 2k+1 % 1
, v (x
<<Z ff”(t)dt u(21) fs” Vds f%dx
k k-1 0 2k
2k+1 % 2/\*71 pl’ 2k+1 Al

o v1(x)
<<; If”(t)dt fs“u” (s)ds j‘?dx

0 2k
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q
k+1 P

<4y’ f fdt| < ATfIL, 5)
k k=1

1
where 8 = f #' 0= ¥’ - dt. The finiteness of f follows from the estimate
0

<5}

1
2
B <In” Zfs”'(”‘l)ds +max{1,2""(7‘1)}ft”'e‘tdt
0

In2

and from the condition y > 1.
From (2), (4) and (5) it follows that

Ky fllg < Allfllp-

Hence, ||K, || < A. This relation together with (1) gives K, || # A. The proof is complete.
|

Proof of Theorem 3.3. Necessity. Let the operator (6) be bounded from L, to L,. Then, in
view of (6), the operator H,, is bounded from L, to L, and ||K,|| > [|[H,||. Therefore, by
Theorem B the value B < co and

I, || > B. (6)

Sufficiency. Let B < co. We have the estimate (2) for 0 < f € L,. In view of Theorem B and
from (3) we have that

I < BI||fI[7. )
Moreover, from the estimate I, in the proof of Theorem 3.1 it follows that

q

2k+1 » 2}(”
Ty q
L<), f Frbydt | ut @2k e f v x(qx) 0
k k-1 he
2k+1 g k-1 ),i, okt
4 ’ q
< Z ffp(t)dt u? (2k‘1)ftﬁ Ydt fvx(qx)dx
= k-2 ok
2k+1 % 2k-1 ;% ok+1
’ , q
<) f frtydt f (7 dt ”_(qx)dx. ®
| J J X

. . . . . E L .
By now using the Holder inequality with exponents i and the estimate

pig=1)
k-1 — k-1
2/ p-q 2/ X =7

fu’”'(t)t”"dt <<f fur"(s)s””’ds w” (%)X dx

k-2 ok-2 o2
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in (8) we find that
9(p=-1) . %
zk—l p—q 2k+1 P—=q
, , v7(x)
P ()PP Z)
L < Z fu (HPP dt f i
k k=2 2k
9
2k+1 P
X Z f Pt
k k=1
-
, , v1(t) , ,
P’ (5)sP bl 4 4 P
< Zf fu (s)s’" ds f m dt|  uP (x)x"V dx
PR x
q
2k+1 P
x Z f FP(t)dt
k k=1
< BI|If1l5. ©)
From (3), (7) and (9) we obtain the estimate
1Ky fllg < BlIflly
which together with (6) gives ||K, || = B. The proof is complete. |

As mentioned before the proofs of Theorem 3.5 and 3.7 follows by using Theorems
3.1 and 3.3, respectively, and a standard duality argument.

We finalize this paper with the following remarks:
Remark 4.1. This paper is an essentially improved and enlarged version of the paper [1] (in

Russian).

Remark 4.2. The current status of the mentioned open question to characterize the Hardy type
inequality (1) - (2) without restriction on the kernel X(x,s) was recently described in [13].
However, the cases considered in this paper are new and can not be found there.

Acknowledgement: The authors thank Professor Ryskul Oinarov for several gener-
ous advices, which have improved the final version of this paper.
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1 Introduction

Let0<g<oo,1<p< oo,%+r% =1,R, = (0,00). Moreover, letu: R, - Randv:R; — R
be weight functions, i.e. non-negative measurable functions on R, .
Weighted estimates of the form

loKfllg < Clluflly )

are intensively studied in the literature for different classes of the operators K, where || - [|,
is the usual norm of the space L, = L,(Ry). We refer to [5] and the books [6, 5, 4, 3, 12]
when K is defined by

X

Kf(x) = | X(x,s)f(s)ds, @
/

where X(x, s) is a kernel i.e. measurable function on Ry X R.

Estimates of the form (1) are considered not only in Lebesgue spaces but also in other
function spaces (see. e.g. [7, 8, 6] and Chapter 11 of the book [5]). We also refer to [8] and
the recent review article [13].

However, all of these results do not include operators of the form of (2), when the
kernel X(-,-) has a singularity, for example, the Riemann-Liouville operator

X
f(s)ds
Raf(x) = G’ ®3)
0
when 0 < a < 1. Some special cases are studied in [3, 7, 15, 20, 21].
The estimate (1) for a singular operator in a form
X
Kf(x) = f &' '1n % £(s)ds, @)
0
is equivalent to an estimate
1Ky fllg < CIIfll, ®)
for the operator
X
K, f(x) = 0(x) f u(s)s” ' n ﬁ F(s)ds. ®)
0

The estimate (5) is equivalent to the boundedness of the operator (6) from L, to L, with
the norm ||K, || = C, where C is the best constant in (5). The operator (4) in the case y = 0
is called a fractional integration operator of infinitesimal order [16].

The operator

o

K, f(s) = u(s)s" ™! f v(x)In Jﬁ flx)dx, s>0 )

S

is dual to the operator K, with respect to the scalar product f fx)g(x)dx.
0
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When the function u is non- increasing, criterion of boundedness of the operator (6)
and the dual operator (7) from L, to L, are obtained in [2].

Recently, some new characterizations of (5) for the operators K, and K;, defined by
(5) and (6), respectively, are proved in [2]. In this paper we complement these results by
establishing the exact compactness criteria of the operators K, and K, from L, to L,.

In the case u(x) = 1 of compactness from L, to L, of the operator (6) was studied in
[1].

The main results (Theorems 1-4) are presented in Section 3. The detailed proofs are
given in Section 4 and in order not to disturb the argumentations in these proofs some
auxiliary results are collected in Section 2.

Conventions: Uncertainties of the type 0 - oo, %, = are assumed to be zero. The
inequality of the form A < BB is written in the form A < B, where the positive constant f8
may be dependent on the parameters p, g, y, and the relation A * Bmeans that A < B < A.
X@p) () denotes a characteristic function of the interval (a, b), Z is a set of integer numbers.

The notations ), sup mean )., sup, respectively.
k k keZ kez

2 Auxiliary results.

Since
S

dt
In— :f— for x>5>0, 1)
x—t

X—=5s

0
the following inequalities

s x s

—>In—>-, x>s>0 (2)
x-—s xX—s X

hold. The function In ;% decreases with respect to x and increases with respects to s when

X
1

x > s 2 0, and from the inequality (2) it follows that the functions xIn ;%;, < In ;% also

decreases with respect to x and increases with respects to s when x > s > 0. Indeed,

i(xln il ):ln xS <0,
ox xX-—s X—-s Xx-8
and 31 1
_(_1n * ):_( S )>0
ds\s x-—3s s2\x—s X—s
forx >s>0.

For the operator K, the following theorem holds [2]:

Theorem A. Let 1 <p < g <oo, y > ;—J, and u(x) - be a non-increasing function. Then the

operator K, defined by (6) is bounded from L, to L, if and only if A = sup A(x) < oo and, moreover,
x>0

1Ky ll,~1, = A, where
1

X p”

Ax) = f wP (s)s""' ds f %t)dt .

0 X

The corresponding result for the case g < p reads (see [2]):
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Theorem B. Let p > 1,0 < g < p < coand y > 1. Let u be a non-increasing function on R,.
Then the operator K, defined by (6) is bounded from L, to L, if and only if

pi-1) e
0 X = Z]

r q " s 2 2 ’
B= f fvt—gt)dt fu” (s)s”7ds u? ()P Vdx| < oo

0 x 0

P
4

and, moreover, ||K, |, L, = B.

Remark 2.1. In the case 1 < q < p < oo, the constant B is equivalent to the constant

r=q
9(p=1) T
(&Y X p—(] i

fm fv (t) N fup’(s)sp'yds a @dx
0

X 0

3 The main results

Our first main result reads:

Theorem 3.1. Let 1 < p < g < oo,y > %’ and u(x) - be a non-increasing function. Then

the operator K, defined by (6) is compact from L, to L, if and only if A < oo and lir(r)1 Ax) =
x—0*

lim A(x) =

X—00

The corresponding result for the case g < p reads:

Theorem 3.2. Let 1 < g <p < coandy > L. Let u be a non-increasing function on R,. Then
the operator K,, defined by (6) is compact from Ly, to L, if and only if B < oo,

We define
1 1
oox !
t
A'(x) = fv ®) fs‘”’uq(s)ds , A"=supA(x),
#
x>0
X 0
and .
S VE o "
B = f fvtTf) fs’”’uq(s) T u(x)dx
0 X 0

We consider the operator Kj, (defined by (7)) and its action from L, to L. If 1 < p,q < oo,
then the operator K, is bounded (compact) from L, to L, if and only if the operator K,
is bounded (compact) from L, to L,. In this case the conditions 1 < p < g < co and
1 < g < p < o are equivalent to the conditions 1 < g’ < p’ < wand 1 <p’ < g < oo,
respectively. Therefore from Theorems 3.1 and 3.2, we have the following:
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Theorem 3.3. Let 1 <p <g<ocoandy > ;—J. Then the operator K;, defined by (7) is compact

from Ly to Ly if only if A* < co and
lirg A*(x) = lim A*(x) = 0.
x—0+ xX—00

Theorem 3.4. Let1 <g<p <ocoandy > ;—J. Then the operator K;, defined by (7) is compact

rom L, to L, if only if B* < oo,
P q Y

4 Proofs of the main results

Proof of Theorem 3.1. Necessity. Let the operator K, be compact from L, to L;. Then
the operator is bounded and therefore, by Theorem A, A < co. First, we prove that
lirgm A(z) =0.
z—0*

Consider the family of functions {f};;, where

¢ p
fi(x) = xn @) )x ¥ (x) [ f uw (s)s /V(S)dS] . €y

0

Then
t t

. -1
Ifi(x)Pdx = [ u” (s)sP’V(s)ds] wP (x)xP7 (x)dx = 1. ()
e[ o |

Next we show that the family of functions {f;} converges weakly to zero in L,. Let
ge€Ly =(Ly)".
Applying the Holder inequality and using (2) we have that

o0 t Pt
fi(x)g(x)dx < | fi(x)Pdx [ Ig(x)lp’dx]
[ resies| [ieore] [
¢ 1
- f 9GOV dx
0

Since ¢ € Ly, then the last integral converges to zero as t — 0%, which means the
weak convergence to zero for the family of functions {f;}. Then, by the compactness of
the operator K,, from L, to L,

1
v

Lim [IK, filly = 0. ®)

Since In % > £ for x > s > 0 we find that

oo x q
IIK),ftIIZ = fzﬂ(x) [fu(s)sy"l(s)ln isﬁ(s)ds] dx

X
0 0
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oo t 1
zf%%Lﬂ@ﬂwmww%w

t 0

t o, 7 o
:[f W’(s)s”'y(s)ds} [f up'(s)sp']’)(s)dS] f %dx

0 0 t
= (A@t)". 4)
By combining (3) and (4) we obtain that tlirg} A(t) = 0.
Now we prove that tlim A(t) =0.

The compactness of the operator K,, : L, — L, implies the compactness of the dual
operator (7) from Ly to L.
We introduce the family of functions {g;}e;, where

1

oo 7 )
gt(x)=x<t,oo>(X)[ f %(qx)dX] wxq—_(lx)

t

Since A < oo, then the function g; is well defined.
In view of the equality

00 (o] -1 [
: 7(x) v7(x)
|g: (01 dx = [ ) dx] [ —dx] -1
J f x4 f x4

t t

for f € L; = (Ly)" we see that

f(x)gxx)dxs{ If(X)qux][ |gt<x)|q’dx]
[ s [z | [
=[ f If(X)I”’dx] .

Consequently, tlim f f(x)gi(x)dx = 0 for any f € L;, which means the weak conver-
—00 0

1
7

gence to zero of the family of functions {g:}. Then, by the compactness of the operator K,
from Ly to Ly, it follows that

lim 1K gill = 0. (5)
Again using that In ;= > £ for x > s > 0, we obtain that

ES
x

e}

t 4
IK; gl > f @GP [ f o) In — gt(x)dx] W (5)ds
0

X—=Ss
t
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’

t ) *p*/ t 14

qu”'(s)s”'}’(s)ds f%dx f%dx = AV (b). (6)

0 t a
By combining (5) and (6) it follows that tlim A(t) = 0. Thus, the necessity is proved.
Sufficiency. Let A < co and lirg A(z) = lim A(z) = 0.
z—0* Z—00
For 0 < ¢ < d < co we define

Pof = xoaf, Paf=xeanfr Qaf = X@eo)f-

Then
f=Pcf +Puf+Quf
and since P.K, P, =0, P.K,Q; =0, P4K, Qa4 = 0, we have that
Ky f = PeyK, Peaf + P.K,Pcf + PegK, P f + QuK, f. (7)
We show that the operator PyK, P, is compact from L, to L;. Since PosK, Peif(x) =0

for x € I\ (c,d), then it is enough to show that the operator P;K, Py is compact from
Ly(c,d) to Ly(c,d). This, in turn, is equivalent to compactness of the operator

d
Tf(x) = fK(x,s)f(s)ds

from L,(c,d) to L,(c, d) with the kernel
K(x,s) = u(s)s"0(x) X (x — 5) In ﬁ
Next we note that there are the points 2/,2", n > i such that 2/ < ¢ < 2i*1, 271 < 4 < 2",

We assume that the numbers ¢ and d are chosen so that 2/*! < 2"~1. Then arguing as in
the estimates of I and I, in Theorem 3.1 in [2] (see Theorem A), we find that

d(d v d x Y
, , , x \
f IK(x,s)P'ds| dx = f I(x) f u? (s)s”' 01 (ln m) ds| dx
c c C c
KA
okl k-1 7

n-1 ,

S P
<<va”’(x) fu” (s)s”' 0D (ln X ) ds| dx
=y y X—s

el 2k+l x . p, ‘%
+va’7(x) fup'(s)s”/o’_l)(lnm) ds| dx
k=i
2k 1

k—
<um—i+1)A < oo,
where the constant i does not depend on i and 7. Therefore, on the basis of Kantarovich

condition [2] (page 420), the operator T is compact from L,(c,d) to Ly(c,d), which is
equivalent to the compactness of the operator P,;K, Pes from L, to L, .



Boundedness and compactness of a class of Hardy type operators 9

From (7) it follows that
”Ky - PCdePcd” < ”PcKyPc” + ”PchyPc” + ”Qde||~ (8)

We show that the right side of (8) tends to zero at ¢ — 0* and d — co. Then it follows
that the operator K, as the uniform limit of compact operators is compact from L, to L;.
By Theorem A we have that

c x q %
IPK, P fll, = f (%) f u(s)s ' In ﬁ F(s)ds| dx
0 0
z N i
< sup f u? (s)s7ds f o (0)xdx | If Il
O<z<c
V4
< sup AQ@)|Ifllp-
O<z<c
Consequently, ||P.K, P.|| < sup A(z). Hence,
' O<z<c
lim ||P.K,P.|| < lim sup A(z) = lim A(c) = 0. )
c—0* ‘ c—0* O<z<c c—0*
Let vy = Qqv. Then, by Theorem A, we find that
5] X q %
- X
Q4K flly = fvg(x) j}t(s)s'1 n mf(s)ds dx
0 0
1 1
z 4 0
< sup fu”/(s)s”/yds fvg(x)x"qu 1£1l,
0<z
z
< sup A@)|Ifl,-
d<z
Therefore,
£}im IQuK, |l < ;im A(d) =0. (10)
Now we will prove that
Clir(l)'}r ”Pch}/Pc” =0. (1)

We put v,y = Pyv and u. = Pcu. It is obvious that the function u. is non-increasing.
Therefore, according to Theorem A, we get that

9 \i
dx

)

”Pchypcf”q = fUZd(x)

0

X

‘fuc(s)sy_l In %f(s)ds

0

1
z v o

< sup fuf/(s)s”/yds fvzd(x)x_qu (111,

0<z
z
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< AOISlp-
and we conclude that equality (11) holds.
From (9), (10) and (11) it follows that the right side of (8) tends to zero at ¢ — 0* and
d — oco. Hence, also the sufficiency is proved. The proof is complete. ]

Proof of Theorem 3.2. Necessity. Let the operator K, be compact from L, to L,. Then the
operator is bounded and therefore, by Theorem B, B < co.
Sufficiency. Let A < co. Here we have K, f = P4K, Py f + PaK,Quf + Qu4K, f. Therefore

y — Favy gl = 15 d vy d dlsyll-
Ky — PaKy Pall < |IPaKy Qall + [1QaKy I (12)

Since d < oo, then from the Ando theorem and its generalizations (see e.g. [10]) the
operator P;K, P is compact from L,(0, d) to L;(0, d), which is equivalent to the compactness
of it from L, to L;. We show that the right-hand side (12) tends to zero asd — co. Then the
operator K, is compact from L, to L, as the uniform limit of compact operators. Similarly
as in the proof of Theorem 3.1 we find that

4 \i
dx

=S}

”QdK)/f”q = fUZ(x)

0

X

j‘u(s)s}’"1 In ﬁf(s)ds

0

Then, by Theorem 3.1,

9p-1)
[

oo

1QuK, Il < f f uP (s)s'ds
d

z

=9

X ( fd ) vq(x)x’”dx)ﬁ vq(z)z"dz) .

From this estimate and the fact that B < oo it follows that
}glgo IQ4K, |l = 0. (13)
Let v4g = Pqv and uy = Qqu. Then, using again Theorem A, we obtain that

1
1 q

IPK, Quflly = f o, f 1(6)5" ™ In —— f(S)ds| dx
0 0
< f wP (s)s'Vds ( fod vq(x)x“’dx)q||f||p:A(d)||f||,,. (14)
d

We also note that, by Remark 2.1, B = B. Since

A(d) < B(d, o)

a ;
= = "

[ee) [ee) q ) , q
- f f o) 4 f ' @rds| S|
11 xq
d \x
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then from (14) we have that }im IP4K,Qqll = 0. From this and from (13) it follows that

the right-hand side of (12) tends to zero at d — co. Therefore also the sufficiency part is
proved. The proof is complete. ]

Finally, we remark that as mentioned before the proofs of Theorems 3.3 and 3.4 follow
by using Theorems 3.1 and 3.2, respectively, and a standard duality argument.

We also include the following final remark:

Remark 4.1. This paper is an essentially improved and enlarged version of the paper [1] (in
Russian).

Acknowledgement: The author thanks Professor Ryskul Oinarov and Professor Lars-
Erik Persson for several generous advices, which have improved the final version of this

paper.
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fractional order operator
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Abstract: Inequalities of the form
X flly < C(lpfll, + loHSI]), f 20,

are considered, where X is an integral operator of Volterra type and H is the
Hardy operator. Under some assumptions on the kernel X we give necessary and

sufficient conditions for such an inequality to hold.

1 Introduction

Let] =(0,+0),1<p,q < co. Let u(-), v(-) and p(-) be weighted
functions, i.e. positive measurable functions on I. Let X*, X~,
H* and H™ be integral operators of the form

X [e0]

K1) = [ Kfeds, K@= [ Koo,

0 X

H f(x)= | f(s)ds, H f(x)= | f(s)ds, x>0,
J J

where K(x,s) > 0asx >s > 0.
Denote by L, the set of all measurable functions f such that

1

Il =] [ Vel x| <o
0
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Inequalities of the form
lubf], < Cllof (1)

where H is some of the operators H*, H™, K* and K™ are called
Hardy type inequalities in the literature. For the standard
Hardy operators H" and H™~ almost everything is nowadays
known, see e.g. the books [4], [5], [12] and [3] and the ref-
erences given there. However, for the case with a general
positive kernel k(x, y) a characterization of the weights so that
(1) holds for K* or K™ is a long standing open question. How-
ever, for some kernels and parameters the answer of this open
question is known. The most typical such example is when
k(x, y) is a so called Oinarov kernel (in particular satisfying (4)
below) and when1 <p<g<oor0<g<p<oo,p>1. See
especially Chapter 2 in [4] and the references therein. Later on
R.Oinarov [9] generalized such results to cover also the case
with so called generalized Oinarov conditions, for definitions
and some of these results see Section 2.

In this paper we consider the following more general addi-
tive weighted inequalities

X" flly < C(llofll, + IH*£1l,), £ 20, 2)

pl

and

1 flly < C(Ilpfll, + lHf1l,), f>0. (3)
In particular, our results give new information related to the
open question mentioned above.

Inequalities of the form (2)-(3) were considered in [6, 7,
10, 11, 8]. In [8] the inequalities (2)-(3) have been studied
assuming that the kernels K(-, -) of the operators X", X~ satisfy
”QOinarov’s condition”, i.e., that there existanumberd > 1 such
that the relation

d~Y(K(x, t) + K(t,5)) < K(x,5) < d (K(x, t) + K(t,5)) 4)
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holds for x > t > s > 0.

In this paper we study the inequalities (2)-(3) when the
kernels of the operators KX* and K~ satisfy weaker conditions
than the conditions (4), namely, we assume that the kernels of
the operators X* and X~ belong to the classes O;, O;,, n > 0,
respectively, which was first introduced in [9]. (for definitions
see Section 2)

This paper is organized as follows: In Section 3 we present
our main results with proofs. In order not to disturb our
presentations we present some Preliminaries of independent
interest in Section 2.

Conventions: If A and B are functionals, then A < B means
that there exist a constant C > 0 independent of the arguments
of the functionals A and B and the inequality A < CB holds.
In the case A < B << A we write A ~ B.

2 Preliminaries

In [9] the classes O} and O, of the kernels of the form X*, X~
are defined for each n > 0. We agree to write K(-,-) = K (-, -), if
K(-,-) € O;.

Let K*(-,-) and K™ (-, -) be nonnegative measurable functions
inQ = {(x,s) : x > s > 0} and besides the function K*(, -) is non-
decreasing in the first argument and K™(;, -) is non-increasing
in the second argument.

We say that the function K(-, -) = K§(-, -) belongs to the class
05(Q) if only if K (x,s) = v(s) = 0, K;(x,5) = u(x) > 0 for all
(x,s) € Q.

Theclasses O;;,n = 1,2, ... are defined recursively as follows:
Let the classes 03((2),i =0,1,...,n—1,1n > 1 be defined. Then
K(-,-) = Ku(-,-) € 0;(Q) if and only if there exist functions
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Kf(-,) € 07(Q),i=0,1,...,n — 1 such that

K (x,8) ~ Z K (x, DK (1, 5), (1)
i=0

K;(x,8) ~ Z K (x, DK (t,9), )
i=0

when 0 < s <t < x < o0 and K ,(-,-) = 1, where the func-
tions K;i(~,-), K- (,)),i=0,1,...,n—1, generally speaking,
are arbitrary nonnegative measurable functions defined on Q,
satisfying the conditions (1) or (2), respectively. In fact, these
functions can be defined in the following form (see [9]):

.. Ki(x,s)
Knot) = inf 2oy

K= (t.6) = inf K)o _
i,n( /S) - 1t12x Ki_(x, t), 1=

From (1) and (2) we have for n = 1 that the functions K{(-, "),
K] (-,-) belong to the classes OT, 07, respectively, if there exist
functions v; > 0 and 17 > 0 such that

0,1,...,n—1.

KI_ (x/ S) ~ K_lt()(xr t)vl (S) + K—li_(t/ S)/
Kl_(x/ S) ~ Kl—(xr t) + Ka,l(t/ S)Ml(X),

respectively, for all x >t > s > 0.

In particular, we note that each function, satisfying the con-
dition (4), belong to O and O;. However, functions from O7
and O] need not to satisfy the condition (4). For example,
the functions Kf(x,s) = xf — (x —s)f and K (x,s) = In” @,
x>s>0, y>0 p>1,donot satisfy the condition (4).
However, they belong to the class O7(€2) since

X —(x—sfr(x-tfls+tP—(t—s)Pf, x>t>5>0,
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and
1) t+1)P
lny(x—i_ ) zlnyﬂ+lny( ) , x>t>s>0.
S t+1 S
Consider the inequality (1) with H = K* or H = K7, i.e.
[uX£ll; < Cllofll,, 3)

where X is one of the operators X* or X~. The following
Theorems were proved in [9]:

Theorem A*. Let 1 < p < q < oo and the kernel of the operator
K* belong to the class O;}(Q), n > 0. Then the inequality (3) holds
for the operator X* if and only if one of the conditions

9

(o] z w7 q
Al =sup fu”’(x) f|K+(x,s)v_1(s)|plds dx| < oo,
z>0 p 9
A} = sup f 07" (s) f IK* (x, s)u(x)| dx | ds| < oo
z>0
0 z

holds and for the best constant C > 0 in (3) holds the relation
AT =~ C=AJ.

Theorem A~. Let 1 < p < g < oo and the kernel of the operator
K~ belongs to the class O,/(€2), n > 0. Then the inequality (3) holds
for the operator K~ if and only if one of the conditions:

q

q
z [oe] v

Al =sup fuq(x) f|K‘(x,s)v‘1(s)|p/ ds| dx| < oo,
z>0 9 .
. . Y
A, =sup fv_p'(s) fiK‘(x,s)u(x)de ds| < oo
z>0

z 0
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holds and AT ~ C = A, where C > 0 is the best constant from (3).

Let 1 < p < co. We introduce the functions

[oe]

17y -1
px) = mf [ f P s)ds] +[ f vp(s)ds] ,

t

and

1
v

+ [ f v”(s)dsJ%

0

$() = {int [ | pf”<s>dsJ

X

The following result was proved in [8]:
Theorem B". Let 1 < p < oo, g is a nonnegative non-increasing
. . . o -1 1
function and the functions p, v satisfy the conditions p~ € LJ(I),
v € Ly(t, 00),t >0, and ¢(0) = 0. Then

[ f 8 (s)dep” (S)] 4)
0

f f(s)g(s)ds
"y ||Pf||p o I,

where ¢(0) = lin% P(x).
X—
Also the next result was formulated in [8]:
Theorem B~. Let 1 < p < oo, g is a nonnegative non-decreasing
. . . .o -1 1
function and the functions p, v satisfy the conditions p~ € LJX(I),
v € Ly(t,00), YVt > 0, and 1p(c0) = 0. Then

1
p/

[ f & (s)d(~y” (S))] (5)
0

f f©)g(s)ds
e ||pf||p+||vH Al

where )(c0) = %1_{1; P(x).
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Remark: The assertion in Theorem B~ was given without
proof in [8]. However, this result is crucial for the proof of one
of our main result so for completeness we present a proof also
of Theorem B~ as a part of our main results given in the next
Section.

3 The main results

Our first main result reads:

Theorem 3.1. Let 1 < p < g < oo, ¢(0) = 0, p~' € L¥(I),
v € L,(0,t), t > 0, and the kernel of the operator X" belongs to the
class O,,(Q), n > 0. Then the inequality (2) holds if and only if one
of the conditions

4

= =

o0 zZ p/
E] =sup f f K?'(x,s)dg" (s)| ul(x)dx| < oo,
z>0 . 9
. v %
EJ = sup f f Ki(x,s)ul(x)dx | do”(s)| < oo
z>0

holds. Moreover, for the sharp constant C > 0 in (2) it holds that
Ef ~EJ ~C.

The corresponding main result for the operator X~ reads:

Theorem 3.2. Let 1 < p < g < o0, (c0) = 0, pt € LéO,C(I),
v € Ly(t, 00), t > 0, and the kernel of the operator X~ belongs to the
class O} (Q), n > 0. Then the inequality (3) holds if and only if one
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/ >

4

K"(x,s)u"(s)ds] d(—gbp/(x)) < 00,

S

of the conditions
LA

(oe]
E1 =sup f
z>0
zZ
1
P i

E; =sup f fo’/(x,s)d(—gbp'(x))J ul(s)ds| < oo
0

z>0

holds. In this case E
in (3).
We will begin by proving Theorem 3.2. However, since this

proof heavily depends on the (unproved) Theorem B~ we first
prove this Theorem.

~ E; ~C, where C > 0 is the sharp constant

Proof of Theorem B™: First we assume that the inequalities
1
4

00 [ p-1
f(ffds] FOyredt| < (||pf||p+||vH—f||p)’ F>0
0 t

(1)

1-p %
dt] )

and

dyp

dt

(Ipfll + IloHf1},) < [ f FOP@)™
0

hold.
By virtue of (2) and the principle of duality in L, spaces we
have

o o0

[ f(s)g(s)ds [ f(s)g(s)ds
0

0

sup > sup -

20 lOfllp +10H™ fllp — sp (oo )
[of |f|p¢_1|ﬁ|l_’”J
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1

s , 1-p 1-p’ p s 4 P

= [fgv (¢-1 ) dt] = [fgv 1 —1d—l’fdt]
0 0

- (;}) [ f g”(t)dW(t)J . )

0
Moreover, from the results of [1] the inequality

f feds < f [ f f(s)ds]p_l Fyy (bt
0 0 t

X[fg”'(S)le”'(S)] , f20, (4)

0

1
7

dy

dt

|-

1
p

holds for all functions g, which are non-negative and non-

decreasing.
Therefore, according to (1) and (4), we have
[ f6)8(s)ds [ f6)8(s)ds
sup 0 < sup 0

=0 ”Pf”p + ”vH_f”p f>0 (oo /oo p-1 %
(f (f fds) f(tW(t)dt)
t

0

1
7

<| | & @)dy” (S)J :
J

This estimate combined with (3) implies (5). And now
we prove (1). First, we note that by definition ¢ is a non-
increasing function. Let f > 0 and k € Z. Assume that T =

xel: [fs)ds <27%), xp = infTy, if Ty # 0 and x; = oo, if
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Ty = @. Let Zy = {k € Z : x; < oo}. From the definition x; it
follows that 2-*+1) < f f(s)ds < 27 for xp < x < xp41, k € Zo,
Xk+1

[ fe)ds =27® D T = U [xg, Xpes)-

X keZy

Thus
00 [ o p-1
f[ [ o] siosr
0 t

Xk+1 00

p-1
f f (S)dS] f@Oyrat

keZ O.X'k

1
P
1
p

1

Xgp1f 0 p-1 P
P(xys d
<Zk',sv xklf[tff(s ] f(t)dt

Xk
1
xk+2 “p Xke+2 ]}_7 P P
Pds + [ f vpds] 27kp=1) . o=kt

0

_z ; 1
Xi+2 P’ Xk+2 P
Z[’f Pds] 2k +[22‘k”fvpds] =1 +L. (5)
k

k k+1 0

We estimate I; and I, separately .
By the Holder inequality we have

X4 1-p 1 %00 p %
I = Zzzp [ f pr”ds] [ f f(t)dt]

k

k+1 k+1
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Xk+2

< [Z | Ipfl’”dt] <lIp ©)

Xk+1
and

=

I, = [Z Z_kPZ fzv”dst < [Z fzvpdsZZ‘kp]
keZy

i<k T ki
Xia2 1 Xia2 o0 P\
< [Z f des2<f+2>P] < [Z f vPds [ f f (t)dt]]
! Xit1 ! Xi+1 S
< |lvH™ fllp.

This inequality together with (5) and (6) implies (1).

Finally, we prove (2). Let 0 < x < z. From the definition of
Y we find

t
f pFds
¥ (x) < sup — e
x<t<z vz P
[1 + (f p‘P'(s)ds) [fzﬂ’ds) }
X 0
z t
[pVds+ [p7ds
+sup - =
z<t

Y P
[1 + (f pF(s)ds + fp‘P'ds)p (fvf’ds) }
x z 0

<2 fp_”'ds - gbpl(z).
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We note that 0 < ¥ (x) — Y¥'(z) < 2 f pP'ds. Hence, the

function ¢ is locally absolutely continuous and

p/l]bp'—l(z) (_Z_f) — hm llbp (X) - llbp (Z)

X—z zZ—X

1
<2lim
xX—=z7Z—X

fp_’“'ds =2p7"(2).

for almost all z € I. Therefore,

dy !
pf (2)Y(z) - <1 or

1-p
a.e. z€el. (7)

d
dz

@) <y'(2)

According to (7) we have

dp

dz

1-p rl_’
dz| . (8)

By the Hardy inequality (see e.g. [4]) we obtain

Ifpll, < [ Py (2)
/

1

a7 |
d_f dzJ )

loH™ fll, < [ fPY~H(2)
/

sup [ f v*’dsJ [ f sbp’l(t)(—w'(t))dt]
0 z

1

= (%);7 s;i%) [J‘ vpds] Y(z) < 1.

since :
4
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By combining (8) and (9) we get (2). Theorem B~ is proved.

Proof of Theorem 3.2: Let C > 0 be the sharp constant in
(3). Then, by using the duality principlein L;,, 1 < g < oo, we
have

uX~ fds
-, i
C =sup =sup su

- P
720 0l + OHflly - 20 0get, (lpfll, + IloH£1I,) lIglly

f FO)(K* gu)dx
=sup ——

g>0 ”g”q f>0 ”pf”p + ||UH f”p

Hence, by using the fact that the function (X*gu)(x) is non-
decreasing we can apply Theorem B~ to obtain that

1

( [ (3t qu)” (x)d(—y (x)))

C=~ sup =C.
0<g€Ly ”g”q’

Therefore, the inequality (3) is equivalent to the inequality

1
7

f (K qu)’ (x)d(—ljﬂ"(x))] sE[ |g(t)|"'dt] , §2>0,
0

0

or the inequality

f (K*g) (x)d(—¢”'(x))] 35[ f gl dt] , ¢>0, (10)
0 0

and C ~ C.
The inequality (10) is the inequality of the form (3). Since
1 <p < g < ooimplies that 1 < g' < p’ < oo, then applying
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Theorem A* to the inequality (10), we get that the inequality
(10) holds if and only if one of the conditions

==

A] =sup f[f |K+(x,s)u(s)|q dsJ d(—¢P’(x)) = E| < oo,
z \0

z>0

= =

z

A, = sup fufi(s) [f |K+(x, s)|p’ d(-lpp'(x))] =E, <o
0 z

z>0

holds and, moreover, C =~ E] =~ E5. ButC » C and, thus, also
C ~ E] =~ E;. The proof is complete.

Proof of Theorem 3.1: The proof is similar to that of The-
orem 3.2 so we omit the details. We only remark that in this
case we use Theorem B™ and Theorem A~ instead of Theorem
B~ and Theorem A”, respectively.

Finally, we will consider the case p = 1. In this case for
f >0 we have

loflh+1l0H  fllh = | p(t)f(®)dt+ | o(t) | f(s)dsdt
Jroross o]

(0]

:fp(t)f(t)dt+0ff(s)fv(t)dtds:bff(s) [p(s)+fv(t)dt]ds

0 S

o0 o

= fw+(s)f(s)ds; where w*(s) zp(s)+fv(t)dt,

0 S
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and

||,0f||1+||UH_f||1=fp(t)f(t)dt+f t)ff(s )dsdt

ff(s)[ s)+jv(t)dtst—fw (s)f(s)ds,

0 0
s

where w™(s) = p(s) + fv(t)dt.
0
Therefore, in the case p = 1 the inequalities (2) and (3) have
the forms
uX™* flly < CHllw™ flly, f=0, (11)
[uX" fll; < Cllw™ flh, f=0, (12)
respectively, i.e. the problem in this case reduces to the prob-
lem boundedness of the operators X", X~ from Ly = to L, ..
Thus, on the basis of Theorem 4 of Chapter XI from [2], we
have the following:

Proposition 3.3. Let p = 1 and 1 < q < co. Then the inequalities

(2) and (3) hold if and only if
oo oo -1
C" =esssup,., [fl”(x)K+(xr5)lq de [p(s) - fv(t)dt] < 00,

and
N -1
[p(s) + fv(t)dtJ < 00

C™ =esssup,., [f |u(s)K_(x, 5)|q ds]
0 0

hold, respectively. Moreover, for the best constant C in (2) and (3),
it yields that C* ~ C and C~ =~ C, respectively.

= =

= =
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