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Abstract

This PhD thesis is devoted to investigate weighted differential Hardy in-
equalities and Hardy-type inequalities with kernel when the kernel has an
integrable singularity, and also the additivity of the estimate of a Hardy
type operator with a kernel.

The thesis consists of seven papers (Papers 1, 2, 3, 4, 5, 6, 7) and an
introduction where a review on the subject of the thesis is given.

In Paper 1 weighted differential Hardy type inequalities are investi-
gated on the set of compactly supported smooth functions, where neces-
sary and sufficient conditions on the weight functions are established for
which this inequality and two-sided estimates for the best constant hold.

In Papers 2, 3, 4 a more general class of α - order fractional in-
tegration operators are considered including the well-known classical
Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard operators. Here
0 < α < 1.

In Papers 2 and 3 the boundedness and compactness of two classes of
such operators are investigated namely of Weyl and Riemann-Liouville
type, respectively, in weighted Lebesgue spaces for 1 < p ≤ q < ∞ and 0 <
q < p < ∞. As applications some new results for the fractional integration
operators of Weyl, Riemann-Liouville, Erdelyi-Kober and Hadamard are
given and discussed.

In Paper 4 the Riemann-Liouville type operator with variable upper
limit is considered. The main results are proved by using a localization
method equipped with the upper limit function and the kernel of the
operator.

In Papers 5 and 6 the Hardy operator with kernel is considered, where
the kernel has a logarithmic singularity. The criteria of the boundedness
and compactness of the operator in weighted Lebesgue spaces are given
for 1 < p ≤ q < ∞ and 0 < q < p < ∞, respectively.

In Paper 7 we investigated the weighted additive estimates

‖uK± f ‖q ≤ C
(
‖ρ f ‖p + ‖vH± f ‖p

)
, f ≥ 0 (∗)

for integral operatorsK+ andK− defined by

K
+ f (x) :=

x∫
0

K(x, s) f (s)ds, K− f (x) :=

∞∫
x

K(x, s) f (s)ds.

It is assumed that the kernel K = K(x, s) of the operator K± belongs to
the general Oinarov class. We derived the criteria for the validity of the
inequality (∗) when 1 ≤ p ≤ q < ∞.
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Preface

This PhD thesis is mainly devoted to introduce and study weighted differ-
ential Hardy inequalities and new Hardy type integral inequalities involv-
ing Riemann-Liouville type operator and its conjugate Weyl type operator.
Further we investigate boundedness and compactness of Hardy type op-
erators with variable upper limit and integral operators with a logarithmic
singularity in weighted Lebesgue spaces. Moreover, we have found addi-
tive estimates of a class of integral operators, which is much wider than
previously studied. We also present some applications, which cover much
wider classes of integral operators than studied before.

The thesis consists of an introduction and the following seven papers:
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2016-04, ISSN: 1400-4003, Department of Engineering Sciences and
Mathematics, Luleå University of Technology, Sweden. Submitted to
an International Journal.

[5] A.M. Abylayeva and L.-E. Persson, Hardy type inequalities with log-
arithmic singularities, Research report 2016-05, ISSN: 1400-4003, De-
partment of Engineering Sciences and Mathematics, Luleå University
of Technology, Sweden.
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Introduction

Integral operators are a wide class of linear operators that have applica-
tions in various fields of science, such as physics, economics, technical
sciences and many others. Therefore the study of integral operators take
an important place in modern mathematics.

In the last decades the issues of finding necessary and sufficient condi-
tions for the weighted inequality

‖K f ‖q,u ≤ C‖ f ‖p,v (0.1)

and two-sided estimates for the best constant C in (0.1) are intensively
studied for various integral operatorsK, where

‖ f ‖p,v :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

| f (x)|pv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

< ∞.

In the case when one of the parameters p and q is equal to 1 or ∞,
there is a general result ([28] Chapter XI, §1.5, Theorem 4, see also [18],
Theorem 1.1) establishing the exact value of the best constants in (0.1).
However, when 1 < p, q < ∞ in the general case this problem remains
open. Therefore a solution of this problem for various classes of integral
operators is urgent.

In 1925 G.H.Hardy [24] obtained the inequality (0.1) when p = q for the
Hardy operator defined by

K f (x) ≡ H f (x) :=
∫ x

0
f (t)dt

with the weighted functions u(x) = x−p, v ≡ 1 with the exact value C = p
p−1

for the best constant C in (0.1), i.e. the inequality∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx ≤
(

p
p − 1

)p ∫ ∞

0
f p(x)dx, f ≥ 0, (0.2)

holds which is called the classical Hardy inequality. In 1928 G.H.Hardy
[25] proved the first weight modification of inequality (0.2), namely the
inequality∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

xαdx ≤
(

p
p − α − 1

)p ∫ ∞

0
f p(x)xαdx, f ≥ 0, (0.3)
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with the best constant C =
(

p
p−α−1

)p
, when p > 1 α > p−1 (see [26], Theorem

330). It is nowadays known that the inequalities (0.2) and (0.3) are in a sense
equivalent and also equivalent to some other power weighted variants of
Hardy’s inequality, see [56].

Since the middle of the last century the studing of a general weighted
form of inequality (0.1) with the Hardy operator H i.e. the inequality

(∫ ∞

0
u(x)

∣∣∣∣∣
∫ x

0
f (t)dt

∣∣∣∣∣q dx
) 1

q

≤ C
(∫ ∞

0

∣∣∣ f (t)
∣∣∣p v(t)dt

) 1
p

(0.4)

for p = q was initiated (see for instance [8] by P.R. Beesack, [27] by J. Kadlec
and A. Kufner, [57] by V.R. Portnov, [63] by V.N. Sedov and [76] by F.A.
Sysoeva). However, for the case p = q the necessary and sufficient condi-
tion for the validity of inequality (0.4) was first obtained, independently, in
the works of G.Talenti [77] and G.Tomaselli [78]. In 1972 B.Muckenhoupt
in [42] gave a simple excellent proof of this result, even in the more gen-
eral case, when uq(x)dx and vp(t)dt were replaced by general Borel measures
dμ(t) and dν(t), respectively. A criterion for the inequality (0.4) to hold when
1 < p ≤ q < ∞ was given independently by J.Bradley [10], V.Kokilashvili
[29] and B.Maz’ya [39]. And the case 1 < q < p < ∞ was first described by
B.Maz’ya and A.Rozin in the late seventies, see [38] and [39]. These results
have been extended by G. Sinnamon [64] to the values of the parameters
0 < q < p < ∞, p > 1, and the case 0 < q < p = 1 has been described
by G.Sinnamon and V.D.Stepanov [65]. G.Tomaselli [78] gave an alterna-
tive criterion for the weighted Hardy inequality (0.4) to hold when p = q,
which V. Stepanov and L.-E. Persson generalized this result to the cases
1 < p ≤ q < ∞ and 1 < q < p < ∞ in [54].

There are studies on the description of the inequalities in other terms
[15] and [32], different from the above authors and also for negative values
of the parameters p, q see e.g. [61].

Let us sum up some of the results above in the following Theorem:

Theorem A. (i) If 1 ≤ p ≤ q < ∞, then the inequality (0.4) holds for all
measurable functions f (x) ≥ 0 on (a, b) if and only if

A1 := sup
a<x<b

(∫ b

x
u(t)dt

) 1
q (∫ x

a
v1−p′(t)dt

) 1
p′
< ∞
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or

APS := sup
t>0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

w(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p

< ∞.

(ii) If 1 < q < p < ∞, then the inequality (0.4) holds if and only if

A2 :=

⎛⎜⎜⎜⎜⎜⎝
∫ b

a

(∫ b

x
u(t)dt

) r
q (∫ x

a
v1−p′(t)dt

) r
q′

v1−p′(x)dx

⎞⎟⎟⎟⎟⎟⎠
1
r

< ∞

or

BPS :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

w(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
r
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− r

p

v1−p′(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

r

< ∞,

where 1
r =

1
q − 1

p .
(iii) If 0 < q < 1 < p < ∞, then the inequality (0.4) holds if and only if

A3 :=

⎛⎜⎜⎜⎜⎜⎝
∫ b

a

(∫ b

x
u(t)dt

) r
p (∫ x

a
v1−p′(t)dt

) r
p′

u(x)dx

⎞⎟⎟⎟⎟⎟⎠
1
r

< ∞.

(iv) If 0 < q < 1 = p, then the inequality (0.4) holds if and only if

A4 :=

⎛⎜⎜⎜⎜⎜⎜⎝
∫ b

a

[
v̄(x)

∫ b

x
u(t)dt

) q
1−q

u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎠
1
q−1

< ∞,

where v̄(x) = ess sup
a<t<x

1
v(t) .

It is nowadays known that the conditions in (i)-(ii) in fact can be replaced
by infinite many equivalent conditions, even by four different scales of
conditions, see [15] (the case (i)), [55] (the case (ii)) and for even more
information of this type the review article [34].

In connection with the investigation of operators in Lorentz spaces
since 1990 the Hardy-type operators were actively studied on the class
of monotone functions, see for example [18], [19], [20], [21], [22] and the
references therein. Moreover, operators including the supremum, has
began to be investigated recently, see for example [3], [16], [17], [53] and
the references therein.
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The inequality (0.4) and its dual inequality are equivalent to the differ-
ential inequality

‖y‖q,u ≤ C‖y′‖p,v (0.5)

respectively for y(0) = 0 and for y(∞) = 0. We remark that P.Gurka [23]
described the inequality (0.5) under the condition

y(0) = 0, y(∞) = 0. (0.6)

Historical background, a review of the research, the main results and
their applications are given in the books [11], [12], [26], [31], [33], [41] and
[51].

The inequality (0.5) with condition (0.6) was considered in [51], [31],
but only in [51] an expanded version of the work of P. Gurka [23] was
considered and two-sided estimates for the best constant C of (0.5) was
stated.

The aim of this PhD thesis is to complement and extend several results
in the area described above which is today called Hardy type inequalities
and related boundedness and compactness results. Below we give a short
description and motivation for these new contributions presented in this
PhD thesis.

In Paper 1, using a new method, we obtained necessary and sufficient
conditions for the validity of the inequality (0.5) with condition (0.6) for
the cases 1 < p ≤ q < ∞ and 0 < q < p < ∞, p > 1. We also derived
two-sided estimates for the best constant C of (0.5), which are better than
those in [51].

In 1979 O.D.Apyshev and M.Otelbaev [7] considered the inequality
(0.5) for higher order derivative, namely the inequality

‖y‖q,u ≤ C‖yn‖p,v, n > 1 (0.7)

y(i)(0) = 0, i = 0, 1, ...n − 1. (0.8)

But a criterion for the inequality (0.7) to hold was obtained only under
certain restrictions on the weight functions. We mention that Chapter 4 of
the book [31] is devoted only to such higher order Hardy type inequalities.
We remark that the possible boundary values (of type (0.8)) are very crucial
to make such investigations possible (see [31]).

The inequality (0.7) with the condition (0.8) is equivalent to the inequal-
ity (0.1), when the integral operator K is equal to the Riemann-Liouville
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operator Iα defined by

Iα f (x) :=
1
Γ(α)

x∫
0

(x − y)(α−1) f (y)dy, x > 0, (0.9)

for α = n, i.e.

‖Iα f ‖q,u ≤ C‖ f ‖p,v. (0.10)

A satisfactory criterion for the inequality (0.10) to hold for the Riemann-
Liouville operator when α > 1 was obtained in the papers [67], [70] and
[69] of V.D.Stepanov.

An other generalization of (0.4) is a norm inequality of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

k(x, y) f (y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

f p(y)v(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

, f ≥ 0, (0.11)

for the Hardy-Volterra integral operator K given by

K f (x) :=

x∫
0

k(x, y) f (y)dy, x ≥ 0, (0.12)

with kernel k(x, y), which is assumed to be non-negative and measurable
on the triangle {(x, y) : 0 ≤ y ≤ x ≤ ∞}. A number of authors have studied
in their works several different classes of such operators. In [37] it was
obtained a characterization of (0.11) in the case 1 < p ≤ q < ∞ with the
special kernel k(x, y) = ϕ(x/y), where ϕ : (0, 1) → (0,∞) is non-increasing
and satisfying that ϕ(ab) ≤ D(ϕ(a) + ϕ(b)) for all 0 < a, b < 1. Moreover, a
criterion of the Lp,v → Lq,w boundedness was given in [71] and [72] by V.D.
Stepanov for the Volterra convolution operator (0.12) with k(x, y) = k(x− y)
for both the cases 1 < p ≤ q < ∞ and 1 < q < p < ∞. An other class of
studied operators of the type (0.12) has kernels satisfying some additional
monotonicity and continuity conditions (see e.g. [9] by S. Bloom and R.
Kerman). In the nineties it appeared some important works (see e.g. [45],
[46] by R. Oinarov and [73], [74] by V.D. Stepanov) devoted to the class of
the operators (0.12) with so called Oinarov kernels. A kernel k(x, y) ≥ 0
satisfies the Oinarov condition if there is a constant D ≥ 1 independent on
x, y, z such that

D−1k(x, y) ≤ k(x, z) + k(z, y) ≤ Dk(x, y), 0 ≤ y ≤ z ≤ x. (0.13)
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Let the kernel k(x, y) ≥ 0 of the operator (0.12) satisfy the Oinarov
condition (0.13). If

A0(α) := sup
t>0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

Kq(x, t)u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

,

A1(α) := sup
t>0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

Kp′(t, y)v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

,

B0(α) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

Kq(x, t)u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

v1−p′(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q− 1

p

,

and

B1(α) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

u(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

Kp′(t, y)v1−p′(y)dy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

u(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q− 1

p

,

then it is known that

‖K‖Lp,v→Lq,u ≈ A0(α) + A1(α), 1 < p ≤ q < ∞, (0.14)

and
‖K‖Lp,v→Lq,u ≈ B0(α) + B1(α), 1 < q < p < ∞. (0.15)

Later on two-sided estimates of the types (0.14) and (0.15) were derived
for more general operators and spaces, see e.g. [37], [35], [75], [31], [14],
[12], [30], [47], [48] and [49].

The class of Oinarov kernels includes all above mentioned classes of
kernels except Riemann-Liouville kernels for 0 < α < 1.

The Riemann-Liouville operator is a weakly singular integral operator
when 0 < α < 1 and behaves very differently than when α > 1.

For power weight function v(x) and u(y) ≡ 1 the following classical
result [26], Theorem 402, is well known:

If p > 1, 0 < α < 1/p, p ≤ q ≤ p/(1 − αp) or α ≥ 1/p, 1 < p ≤ q < ∞, then⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

x−
1
p (p−q+pqα)(Iα f )q(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C
∥∥∥ f

∥∥∥
p
. (0.16)
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The inequality (0.16) has been generalized in the following way in paper
[6] of K.F.Andersen and E.T.Sawyer:

Let 0 < α < 1
p and 1 < p < q = p

(1−αp) . Then

∥∥∥uIα(u f )
∥∥∥

q
≤ C

∥∥∥ f
∥∥∥

p

if and only if K < ∞, where

K := sup
0<h<α

⎛⎜⎜⎜⎜⎜⎜⎜⎝1
h

a+h∫
a

uq(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝1

h

a∫
a−h

up′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

Moreover, in [59] D.V.Prokhorov and V.D.Stepanov proved the follow-
ings result:

Let 0 < α < 1
p and 1 < p < q = p

(1−αp) . Then

∥∥∥uIα f
∥∥∥

q
≤ C

∥∥∥ f
∥∥∥

p,v
, (0.17)

if and only if
‖v‖∞ < ∞.

When α ≥ 1
2 , p = q = 2 and v ≡ 1 the inequality (0.17) has been

characterized by S. Newman and M. Solomyak within the spectral theory of
pseudo-differential operators on the half-axis, see [44] and also references
therein.

A criterion for the inequality (0.10) to hold for 1 < p ≤ q < ∞ was
derived by M.Lorenti [36]. However, due to implicitness of the conditions
the criteria in [36] make them difficult to verify. Therefore, we set a goal
to derive explicit Lp,v → Lq,u criteria for the boundedness of the Riemann-
Liouville operator in subsequent works.

In the case 0 < q < ∞, 1 < p < ∞, α > 1
p and v(·) ≡ 1 explicit criteria

for Lp,v → Lq,u boundedness of the Riemann-Liouville and Weyl operators
are obtained independently in works of A.Meskhi [40] and D.V.Prokhorov
[58], see also [66]. A generalization of these results to the case when the
function u(·) is not increasing was claimed in the paper [13] of S.M.Farsani.
In the paper [59] of D.V.Prokhorov and V.D.Stepanov criteria for Lp,v →
Lq,u boundedness and compactness of the Riemann-Liouville operator are
given for 1 < p ≤ q < ∞ in the following cases:

a) 1 < q′
p′ < α ≤ 1 and the function v is not decreasing;

b) 1 < p
q < α ≤ 1 and the function u is not increasing.

7



A generalization of these criteria for Lp → Lq boundedness of the
Riemann-Liouville operator in the case of convolution type operator K,
defined by

K f (x) := v(x)

x∫
0

K(x − s)u(s) f (s)ds, x > 0,

are given in the papers of N.A.Rautian [52] and R.Oinarov [50]. For the
case when the kernel of the operator K, defined by (0.12) is k(x, y) = k(x− y)
and the function k(·) has an integrable singularity in zero like the Riemann-
Liouville operator the results in [52] were generalized by D.V.Prokhorov
and V.D.Stepanov [59] in the case of inequality (0.11). Moreover, R.Oinarov
[50] proved a general result of the type claimed by S.M.Farsani [13].

In addition to the Riemann-Liouville and Weyl operators the Erdey-
Kober and Hadamard operators are important both in mathematics and
for several applications.

One of the generalizations and unifications of these operators is the
fractional integration operator Iαg defined by:

Iαgϕ(x) :=
1
Γ(α)

x∫
0

ϕ(t)g′(t)dt
[g(x) − g(t)]1−α , x > 0, α > 0, (0.18)

where g(·) is a local absolute continuous and increasing function on I ≡
(0,∞). In [62] the operator Iαg is called a fractional integral of the function ϕ
with respect to the function g of order α. In particular, in (0.18) when g(x) =
x, g(x) = xσ, σ > 0 and g(x) = lnx, we obtain the fractional integral Riemann-
Liouville, Erdelyi-Kober type and a Hadamard operator, respectively.

In Papers 2 and 3 of this PhD thesis we consider the more general
operators Kα,β and Tα,β defined as follows:

Kα,β f (x) :=

b∫
x

u(s)Wβ(s) f (s)w(s)ds

(W(s) −W(x))1−α , x ∈ I,

and

Tα,β f (x) :=

x∫
a

u(s)Wβ(x) f (s)v(s)ds

(W(s) −W(x))1−α , x ∈ I,

8



where 0 < α < 1, β ∈ R, I = (a, b), −∞ ≤ a < b ≤ ∞ and W(·) is locally
absolutely continuous and monotonically increasing function on I, dW(t)

dt =
w(x) and u(·) - non-negative measurable function in I.

In Paper 2 when 0 < α < 1, p > 1
α , β ≤ 0 (β < 1

p − α, if W(b) = ∞) and
u ≥ 0 is a non-decreasing function we obtained necessary and sufficient
conditions for the boundedness and compactness of the operatorKα,β from
Lp,w into Lq,v, for the cases 1

α < p ≤ q < ∞ and 0 < q < p < ∞, when b < ∞
and for the case 1 < q < p < ∞when b = ∞.

Consequently, from these statements we obtain necessary and sufficient
conditions for the boundedness and compactness of the weighted Weyl
operator I∗α, defined by

I∗α f (x) := w(x)

∞∫
x

u(s)sβ f (s)ds

(s − x)1−α , x > 0, 0 < α < 1,

from Lp to Lq.
Note that from these results it seems that Theorems 3, 4, 7 and 8 of

paper [13] are not true in general.

Similarly, in Paper 3 when 0 < α < 1, p > 1
α , β ≤ 0 and u is a non-

increasing function we derived necessary and sufficient conditions for the
boundedness and compactness of the operator Tα,β from Lp,w into Lq,v, for
the cases 1

α < p ≤ q < ∞ and 0 < q < p < ∞, when b < ∞ and for the case
1 < q < p < ∞when b = ∞.

Consequently, we obtained in particular necessary and sufficient con-
ditions for the boundedness and compactness of the weighted Riemann-
Liouville, Erdelyi-Kober and Hadamard operators from Lp into Lq, which
generalize the well known results for these operators when p > 1

α .

In Paper 4 we considered the problem of boundedness and compactness
of the operator Kα,ϕ, defined in the following way

Kα,ϕ f (x) :=

ϕ(x)∫
a

f (s)w(s)ds

(W(x) −W(s))1−α , 0 < α < 1,

from Lp,w into Lq,v, where ϕ(x) is a strictly increasing locally absolutely
continuous function, which satisfies the following conditions

lim
x→a+
ϕ(x) = a, lim

x→b−
ϕ(x) = b, and ϕ(x) ≤ x.

9



Obviously, the results presented in this paper clearly generalizes the results
in [1] and [4].

In Papers 5 and 6 we considered the operator Kγ with a logarithmic
singularity defined by

Kγ f (x) := v(x)

x∫
0

u(s)sγ−1 ln
x

x − s
f (s)ds, x > 0.

When γ = 0, v(·) ≡ u(·) ≡ 1 this operator is called a fractional integration
operator of infinitesimal order and it has wide applications in mathematical
biology, see [43].

In Paper 5 we assumed that the function u is non-increasing and derived
necessary and sufficient conditions for the boundedness of the operatorKγ
from Lp into Lq, when 1 < p ≤ q < ∞ and 0 < q < p < ∞, p > 1. Moreover,
the compactness of the operatorKγ from Lp into Lq was proved in Paper 6
when 1 < p ≤ q < ∞.

We remark that the results in papers 5 and 6 clearly generalizes the
main results in [5] and [2], respectively.

In Paper 7 we considered the weighted additive estimates

‖uK± f ‖q ≤ C
(
‖ρ f ‖p + ‖vH± f ‖p

)
, f ≥ 0 (0.19)

for the integral operatorsK+ andK− defined by

K
+ f (x) :=

x∫
0

K(x, s) f (s)ds, K
− f (x) :=

∞∫
x

K(x, s) f (s)ds,

where the special cases H+ and H− are the usual Hardy operators defined
by

H+ f (x) :=

x∫
0

f (s)ds, H− f (x) :=

∞∫
x

f (s)ds.

We assumed that kernel of the operators K+ and K− belong to the
generalised Oinarov class [48] and thus found exact criteria for the validity
of the inequality (0.19) when 1 ≤ p ≤ q < ∞ in much more general cases
than previously known.

10
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§1. Introduction

Assume that I = (a, b), −∞ ≤ a < b ≤ ∞, 0 < p, q < ∞, 1
p +

1
p′ = 1, ρ, υ and

ρ1−p
′
= 1
ρp′ −1

are nonnegative locally summable functions on I and υ � 0.

Let 0 < p < ∞ and let Lp,ρ ≡ Lp,ρ(I) be the space of measurable functions
f on I such that the norm

∥∥∥ f
∥∥∥

p,ρ
≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

ρ (t)
∣∣∣ f (t)

∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

is finite. The symbol W1
p,ρ ≡ W1

p(ρ, I), p > 1, stands for the collection of f
locally absollutely continuous on I and having the norm

∥∥∥ f
∥∥∥

W1
p,ρ
=

∥∥∥ f
′∥∥∥

p,ρ
+
∣∣∣ f (t0)

∣∣∣ (20)

finite, where t0 ∈ I is a fixed point. Assume that limt→a+ f (t) ≡ f (a),

limt→b− f (t) ≡ f (b), and
◦

ACp(ρ, I) =
{

f ∈W1
p,ρ : f (a) = f (b) = 0

}
,ACp,l(ρ, I) ={

f ∈W1
p,ρ : f (a) = 0

}
, ACp,r(ρ, I) =

{
f ∈W1

p,ρ : f (b) = 0
}
.

The closures of
◦

ACp(ρ, I), ACp,l(ρ, I) and ACp,r(ρ, I) under (20) are denoted

respectively by
◦

Wp(ρ, I), W1
p,l(ρ, I) and W1

p,r(ρ, I).
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We consider the weighted Hardy inequality in differential form on
◦

ACp(ρ, I) [1] :

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

υ(t)
∣∣∣ f (t)

∣∣∣q dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

ρ(t)
∣∣∣ f ′(t)∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

. (21)

Inequality (21) and its generalizations were the subject of investigations
of many specialists in the last 50 years, and so these are studied well on
ACp,l(ρ, I) and ACp,r(ρ, I). The history of the problem and the results can
be found in [1, 2, 3]. In the recent years numerous equivalent criterions,
ensuring this inequality, are obtained (for instance, see [4, 5]). But (21) is

not studied adequately on
◦

ACp(ρ, I). Some results can be found in [1, 2]
and only in the article [1] two-sided estimates for the best constant C > 0
of (21) are given.

Various applications of (21) in the qualitative theory of differential equa-

tions (see [6, 7, 8, 9]) necessitate studying it on
◦

ACp(ρ, I) with sharper es-
timates for the best constant.

In the present article by a method different from that in [1] we establish
a more genaral result generalizing those in the above papers and give
sharper two-sided estimates for the best constant C > 0 in (21).

§2. Necessary Notations and Statements

We study (21) on
◦

ACp(ρ, I) in dependence on the behavior of ρ at the
endpoints of I. The weighted function ρ may vanish at the endpoints of I
and thus we have

Theorem A. Let 1 < p < ∞. Then
(i) if ρ1−p

′ ∈ L1(I) then, for every f ∈W1
p
(
ρ, I

)
, there exist limt→a+ f (t) ≡ f (a),

limt→b− f (t) ≡ f (b), and

◦
Wp(ρ, I) =

{
f ∈W1

p(ρ, I) : f (a) = f (b) = 0
}
≡ ◦

ACp(ρ, I);

(ii) if ρ1−p
′ ∈ L1(a, c) and ρ1−p

′
� L1(c, b), c ∈ I, then, for every f ∈ W1

p
(
ρ, I

)
,

there exist f (a) and

◦
Wp(ρ, I) =W1

p,l
(
ρ, I

)
=

{
f ∈W1

p(ρ, I) : f (a) = 0
}
≡ ACp,l

(
ρ, I

)
;

(iii) if ρ1−p
′
� L1(a, c) and ρ1−p

′ ∈ L1(c, b), c ∈ I, then, for every f ∈W1
p
(
ρ, I

)
,

there exist f (b) and
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◦
Wp(ρ, I) =W1

p,r
(
ρ, I

)
=

{
f ∈W1

p(ρ, I) : f (b) = 0
}
≡ ACp,r

(
ρ, I0

)
;

(iv) if ρ1−p
′
� L1(a, c) and ρ1−p

′
� L1(c, b), c ∈ I, then

◦
Wp(ρ, I) =W1

p,l
(
ρ, I

)
=W1

p,r
(
ρ, I

)
= f ∈W1

p
(
ρ, I

)
.

Generally speaking, the statements of Theorem A are known and they
can be deduced from the results in [10, 11, 12]. We present the proof of
(ii). The remaining statements are proven by analogy.

Assume that ρ1−p
′ ∈ L1(a, c) and ρ1−p

′
� L1(c, b), c ∈ I. Then for f ∈

W1
p
(
ρ, I

)
we have

c∫
a

∣∣∣ f ′ (t)∣∣∣ dt ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

ρ(t)
∣∣∣ f ′(t)∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

< ∞.

Therefore, f (a) is defined.
Let f ∈ W1

p,l

(
ρ, I

)
. Then there exists a sequence

{
fn
} ⊂ ACp,l

(
ρ, I

)
such

that
∥∥∥ f − fn

∥∥∥
W1

p,ρ
→ 0 as n→∞. Since

∣∣∣ f (t) − fn(t)
∣∣∣ ≤

t0∫
t

∣∣∣ f ′(s) − f
′
n(s)

∣∣∣ ds +
∣∣∣ f (t0) − fn(t0)

∣∣∣
for a < t < t0 < b, the Hölder inequality yields

∣∣∣ f (t) − fn(t)
∣∣∣ ≤ max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩1,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t0∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∥∥∥ f − fn

∥∥∥
W1

p,ρ
.

Hence, f (a) = 0.
Let a < α ≤ t0 < b. In this case

∣∣∣ f (α)
∣∣∣ ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ(t)
∣∣∣ f ′ ∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

or ∣∣∣ f (α)
∣∣∣
⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ(t)
∣∣∣ f ′ ∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
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Let a point α∗ = α∗ (a, α) ∈ (a, α) satisfy the relation

α∫
α∗

ρ1−p
′
=

α∗∫
a

ρ1−p
′
.

Introduce a function

fα(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, a < t ≤ α∗,
f (α)

( t∫
α∗
ρ1−p

′
) ( α∫
α∗
ρ1−p

′
)−1

, α∗ ≤ t ≤ α,
f (t), α ≤ t < b.

Obviously, fα ∈ ACp,l
(
ρ, I

)
. We have

∥∥∥ f − fα
∥∥∥

W1
p
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ
∣∣∣ f ′ − f

′
α

∣∣∣p
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

+
∣∣∣ f (α)

∣∣∣
⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫
α∗

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

≤
(
1 + 2

1
p′
) ⎛⎜⎜⎜⎜⎜⎜⎜⎝

α∫
a

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

,

and so
∥∥∥ f − fα

∥∥∥
W1

p
→ 0 as α → 0. Hence f ∈ W1

p,l

(
ρ, I

)
and W1

p,l

(
ρ, I

)
={

f ∈W1
p
(
ρ, I

)
: f (a) = 0

}
.

Demonstrate that
◦

Wp
(
ρ, I

)
= W1

p,l

(
ρ, I

)
. Since

◦
Wp

(
ρ, I

) ⊂ W1
p,l

(
ρ, I

)
,

it suffices to establish that
◦

Wp
(
ρ, I

) ⊃ W1
p,l

(
ρ, I

)
. Let f ∈ W1

p,l

(
ρ, I

)
and

a < α ≤ t0 < β < b. Since
b∫
β

ρ1−p
′
ds = ∞, for every β ∈ I there exists a point

β∗ = β∗
(
β, b

) ∈ (
β, b

)
such that

∣∣∣ f (β)
∣∣∣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∗∫
β

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
β

ρ(t)
∣∣∣ f (t)

∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

.
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Construct fα,β ∈
◦

ACp
(
ρ, I

)
such that

fα,β(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

fα(t), a < t ≤ β,

f (β)

⎛⎜⎜⎜⎜⎜⎝
β∗∫
β

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠
−1 β∗∫

t
ρ1−p

′
, β ≤ t ≤ β∗,

0, β∗ ≤ t < b.

In this case

∥∥∥ f − fα,β
∥∥∥

W1
p,ρ
≤

⎛⎜⎜⎜⎜⎜⎜⎜⎝
α∫

a

ρ
∣∣∣ f ′ − f

′
α

∣∣∣p
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∗∫
β

ρ
∣∣∣ f ′ − f

′
α,β

∣∣∣p
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p

+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫
β∗

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤
(
1 + 2

1
p′
) ⎛⎜⎜⎜⎜⎜⎜⎜⎝

α∫
a

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

+ 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫
β

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

+
∣∣∣ f (β)

∣∣∣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∗∫
β

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

≤
(
1 + 2

1
p′
) ⎛⎜⎜⎜⎜⎜⎜⎜⎝

α∫
a

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

+ 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫
β

ρ
∣∣∣ f ′ ∣∣∣p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

.

Hence,
∥∥∥ f − fα,β

∥∥∥
W1

p,ρ
→ 0 as α → 0 and β → b. There fore, f ∈ ◦

Wp
(
ρ, I

)
.

Theorem A is proven.
Let a ≤ α < β ≤ b. Put

A1
(
α, β, x

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

,

A2
(
α, β, x

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
α

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

,

A∗1
(
α, β, x

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

,
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A∗2
(
α, β, x

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

t

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

, α < x < β;

Ai
(
α, β

)
= sup
α<x<β

Ai
(
α, β, x

)
,

A∗i
(
α, β

)
= sup
α<x<β

A∗i
(
α, β, x

)
, i = 1, 2,

γ1 = min
(
p

1
q
(
p
′) 1

p′ , q
1
q
(
q
′) 1

p′
)
, γ2 = p

′
.

The best constants C in (21) on
◦

ACp
(
ρ,

(
α, β

))
,ACp,l

(
ρ,

(
α, β

))
and

ACp,r
(
ρ,

(
α, β

))
are denoted by C = J0

(
α, β

)
, C = Jl

(
α, β

)
, and C = Jr

(
α, β

)
,

respectively.
In view of [3, 13], we can say that
Theorem B. Let 1 < p ≤ q < ∞. Then

max
{
A1

(
α, β

)
,A2

(
α, β

)} ≤ Jl
(
α, β

) ≤ min
{
γ1A1

(
α, β

)
, γ2A2

(
α, β

)}
, (22)

max
{
A∗1

(
α, β

)
,A∗2

(
α, β

)} ≤ Jr
(
α, β

) ≤ min
{
γ1A∗1

(
α, β

)
, γ2A∗2

(
α, β

)}
. (23)

Assume that

B
(
α, β

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫
α

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q ⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ρ(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

,

B∗
(
α, β

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫
α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ρ(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
pq

.

Since ρ1−p
′

is locally summable on I, we by [3, 14] have (see [14], Re-
mark)

Theorem C. Let 0 < q < p < ∞, p > 1. Then

μ−B
(
α, β

) ≤ Jl
(
α, β

) ≤ μ+B
(
α, β

)
, μ−B∗

(
α, β

) ≤ Jr
(
α, β

) ≤ μ+B∗
(
α, β

)
,

where μ− =
(

p−q
p

) 1
q′ , μ+ =

(
p′
) 1

pq′ q
1
q for 1 < q < p < ∞ and μ− = q

1
q
(
p′
) 1

q′ p−q
p ,

μ+ = p
1
p
(
p′
) 1

q′
(

p
p−q

) p−q
pq for 0 < q < 1 < p < ∞.
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§3. The Main Results

3.1. The case of 1 < p ≤ q < ∞. Let

b∫
a

ρ1−p
′
(s)ds < ∞. (24)

Definition 1. A point ci ∈ I, i = 1, 2, is called a midpoint for
(
Ai,A∗i

)
if

Ai (a, ci) = A∗i (ci, b) ≡ Tci (a, b) < ∞, i = 1, 2.

Theorem 1. Assume that 1 < p ≤ q < ∞ and (24) holds. Then (21) is

fulfilled on
◦

ACp
(
ρ, I

)
if and only if there exits a midpoint ci ∈ I for

(
Ai,A∗i

)
at

least for one of the numbers i = 1, 2 and the best constant J0 (a, b) in (21) in this
case satisfies the estimate

2
q−p
pq max

{
Tc1 (a, b) ,Tc2 (a, b)

} ≤ J0 (a, b) ≤ min
{
γ1Tc1 (a, b) , γ2Tc2 (a, b)

}
. (25)

Corollary 1 [9]. In the case of p = q, we have

max
{
Tc1 (a, b) ,Tc2 (a, b)

} ≤ J0 (a, b) ≤ min
{
p

1
p
(
p
′) 1

p′ Tc1 (a, b) , p
′
Tc2 (a, b)

}
.

To prove Theorem 1, we use
Lemma 1. Let 1 < p ≤ q < ∞ and assume that (24) holds. Then a midpoint

for
(
Ai,A∗i

)
, i=1,2, exists if and only if, for a given c ∈ I, there exist

lim
x→a

sup Ai (a, c, x) < ∞, lim
x→b

sup A∗i (c, b, x) < ∞, i = 1, 2. (26)

Proof of Lemma 1. Sufficiency: (26) yields

lim
c→a

Ai (a, c) < ∞, lim
c→b

A∗i (c, b) < ∞, i = 1, 2.

Demonstrate that

lim
c→b

Ai (a, c) > lim
c→b

A∗i (c, b) , i = 1, 2. (27)

Indeed, if
lim
c→b

Ai (a, c) ≤ lim
c→b

A∗i (c, b) < ∞ (28)
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then (24) implies that
b∫

c

υ(t)dt < ∞, c ∈ I.

Hence,
lim
c→b

A∗i (c, b) = 0, i = 1, 2. (29)

For i = 1, (29) is obvious and, for i = 2, it follows from the inequality
that

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

c

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
c

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
c

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
c

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Since Ai (a, c) is a nonnegative nondecreasing continuous function in
c ∈ I, from (28) and (29) it follows that Ai (a, b) , i = 1, 2. Thus, υ (t) ≡ 0 on
I and the latter contradicts the conditions on υ. Hence, (27) holds. In the
same way, we justify the inequality

lim
c→a

A∗i (c, b) > lim
c→b

Ai (a, c) , i = 1, 2. (30)

In view of (27) and (30), the continuity and monotonicity of Ai (a, c) and
A∗i (c, b) in c ∈ I imply the existence of points ci ∈ I such that Ai (a, ci) =
A∗i (ci, b) , i = 1, 2.

Necessity: Let a midpoint ci ∈ I for
(
Ai,A∗i

)
, i = 1, 2, exist. The definition

of ci yields
Ai (a, ci) = A∗i (ci, b) < ∞, i = 1, 2.

If c ≥ c1 then (24) implies that

lim
x→a

sup A1 (a, c, x) = lim
t→a

sup
a<x<t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
x

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ sup
a<x<c1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c1∫
x

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

+ lim
t→a

sup
a<x<t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
c1

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A1 (a, c1) + lim
t→a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
c1

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A1 (a, c1) < ∞,
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lim
x→b

sup A∗1 (c, b, x) = lim
t→b

sup
t<x<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
c

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ sup
c1<x<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
c1

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A∗1 (c1, b) < ∞.

In the case of c < c1 we similarly have

lim
x→a

sup A1 (a, c, x) ≤ A1 (a, c1) < ∞,

lim
x→b

sup A∗1 (c, b, x) = lim
t→b

sup
t<x<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
c

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ A∗1 (c1, b) + lim
t→a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

c1∫
c

υ(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A∗1 (c1, b) < ∞.

In the case of A2 and A∗2 we have

lim
x→a

sup A2 (a, c, x) = lim
t→a

sup
a<x<t

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∫
a

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ sup
a<x<c2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x∫
a

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A2 (a, c2) < ∞

for every c ∈ I and similarly

lim
x→b

sup A∗2 (c, b, x) ≤ A∗2 (c2, b) < ∞.

Lemma 1 is proven.

Proof of Theorem 1. Necessity: Let (21) hold on
◦

ACp
(
ρ, I

)
with the best

constant C = J0 (a, b) . Assume that a < c− < c < c+ < b. Put
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f0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−1 t∫

a
ρ1−p

′
, a < t < c−,

1, c− ≤ t ≤ c+,⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−1 b∫

t
ρ1−p

′
, c+ ≤ t < b.

(31)

The function f0 is locally absolutely continuous on I and

b∫
a

ρ(s)
∣∣∣ f ′0(s)

∣∣∣p ds =

c−∫
a

ρ(s)
∣∣∣ f ′0(s)

∣∣∣p ds +

c+∫
c−

ρ(s)
∣∣∣ f ′0(s)

∣∣∣p ds +

b∫
c+

ρ(s)
∣∣∣ f ′0(s)

∣∣∣p ds

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c−∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
−p c−∫

a

ρρp(1−p
′) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

c+

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
−p b∫

c+

ρρp(1−p
′)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c−∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1−p

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

c+

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

1−p

< ∞. (32)

Hence, f0 ∈W1
p
(
ρ, I

)
and

lim
t→a+

f0(t) ≡ f0(a) = 0, lim
t→b−

f0(t) ≡ f0(b) = 0

by construction. In this case f0 ∈
◦

ACp
(
ρ, I

)
. Inserting f0 in (21), we have

J0 (a, b) ≥

⎛⎜⎜⎜⎜⎝ b∫
a
υ(t)

∣∣∣ f0(t)
∣∣∣q dt

⎞⎟⎟⎟⎟⎠
1
q

⎛⎜⎜⎜⎜⎝ b∫
a
ρ(t)

∣∣∣ f ′0(t)
∣∣∣p dt

⎞⎟⎟⎟⎟⎠
1
p

(33)

The direct calculation yields

b∫
a

υ(t)
∣∣∣ f0(t)

∣∣∣q dt =

c−∫
a

υ(t)
∣∣∣ f0(t)

∣∣∣q dt +

c+∫
c−

υ(t)
∣∣∣ f0(t)

∣∣∣p dt +

b∫
c+

υ(t)
∣∣∣ f0(t)

∣∣∣q dt

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c−∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
−q c−∫

a

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt
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+

c+∫
c−

υ(t)dt +

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

c+

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
−q b∫

c+

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt. (34)

By (32) - (34), we obtain the inequalities

Jq
0 (a, b) ≥

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−q c−∫

a
υ(t)

( t∫
a
ρ1−p

′
)q

dt

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

+

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−q b∫

c+
υ(t)

⎛⎜⎜⎜⎜⎝ b∫
t
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

dt

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

,

(35)

Jq
0 (a, b) ≥

c∫
c−
υ(t)dt +

c+∫
c
υ(t)dt

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

. (36)

Multiplying the numerator and denominator of the right-hand sides in

(35) and (36) by

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′

, we derive

Jq
0 (a, b) ≥

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠
− q

p c−∫
a
υ(t)

( t∫
a
ρ1−p

′
)q

dt

⎛⎜⎜⎜⎜⎜⎝1 +
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

+

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′
⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−q b∫

c+
υ(t)

⎛⎜⎜⎜⎜⎝ b∫
t
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

dt

⎛⎜⎜⎜⎜⎜⎝1 +
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

,

(37)

Jq
0 (a, b) ≥

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′ c∫
c−
υ(t)dt +

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′ c+∫
c
υ(t)dt

⎛⎜⎜⎜⎜⎜⎝1 +
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

. (38)

Since the left-hand sides of (37) and (38) are independet of c− ∈ (a, c) ,
passing to the limit as c− → a on the right-hand sides, we infer



12

Jq
0 (a, b) ≥

lim
x→a

sup
( x∫

a
ρ1−p

′
)− q

p x∫
a
υ(t)

( t∫
a
ρ1−p

′
)q

dt

⎛⎜⎜⎜⎜⎜⎝1 + lim
c−→a

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

+

lim
c−→a

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′
⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−q b∫

c+
υ(t)

⎛⎜⎜⎜⎜⎝ b∫
t
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

dt

⎛⎜⎜⎜⎜⎜⎝1 + lim
c−→a

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

= lim
x→a

sup

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− q

p′ x∫
a

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt = lim
x→a

sup Aq
2 (a, c, x) , (39)

Jq
0 (a, b) ≥

lim
x→a

sup
( x∫

a
ρ1−p

′
) q

p′ c∫
x
υ(t)dt + lim

c−→a

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′

υ(t)dt

⎛⎜⎜⎜⎜⎜⎝1 + lim
c−→a

⎛⎜⎜⎜⎜⎝ c−∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ b∫

c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p⎞⎟⎟⎟⎟⎟⎠

q
p

= lim
x→a

sup

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

p′ c∫
x

υ(t)dt = lim
x→a

sup Aq
1 (a, c, x) . (40)

Multiplying the numerator and denominator of the right-hand sides in

(35) and (36) by

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′

and passing to the limit as c+ → b,we obtain

Jq
0 (a, b) ≥

lim
c+→b

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′
⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p

′
⎞⎟⎟⎟⎟⎠
−q c−∫

a
υ(t)

( t∫
a
ρ1−p

′
)q

dt

⎛⎜⎜⎜⎜⎜⎝lim
c+→b

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+ 1

⎞⎟⎟⎟⎟⎟⎠
q
p
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+

lim
x→b

sup

⎛⎜⎜⎜⎜⎝ b∫
x
ρ1−p

′
⎞⎟⎟⎟⎟⎠
− q

p b∫
x
υ(t)

⎛⎜⎜⎜⎜⎝ b∫
t
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

dt

⎛⎜⎜⎜⎜⎜⎝lim
c+→b

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+ 1

⎞⎟⎟⎟⎟⎟⎠
q
p

= lim
x→b

sup

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠
− q

p b∫
x

υ(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

dt = lim
x→b

sup
(
A∗2 (c, b, x)

)q , (41)

Jq
0 (a, b) ≥

lim
c+→b

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′ c∫
c−
υ(t)dt + lim

x→b
sup

⎛⎜⎜⎜⎜⎝ b∫
x
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

p′ x∫
c
υ(t)dt

⎛⎜⎜⎜⎜⎜⎝lim
c+→b

⎛⎜⎜⎜⎜⎝ b∫
c+
ρ1−p′

⎞⎟⎟⎟⎟⎠
p−1 ⎛⎜⎜⎜⎜⎝ c−∫

a
ρ1−p′

⎞⎟⎟⎟⎟⎠
1−p

+ 1

⎞⎟⎟⎟⎟⎟⎠
q
p

= lim
x→b

sup

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q

p′ x∫
c

υ(t)dt = lim
x→b

sup
(
A∗1 (c, b, x)

)q
. (42)

Relations (39) - (42) ensure (26). By Lemma 1, there exist midpoints
ci ∈ I for

(
Ai,A∗i

)
, i=1,2. Definition 1 yields the equality Ai (a, ci) = A∗i (ci, b) ≡

Tci (a, b) < ∞, i = 1, 2.
Since Ai (a, ci, x) and A∗i (ci, b, x) are continuous in x on (a, ci] and [ci, b),

respectively, and

Ai (a, ci) ≥ lim
x→a

sup Ai (a, ci, x) , A∗i (ci, b) ≥ lim
x→b

sup A∗i (ci, b, x) ,

the two possibilities are open: If Ai (a, ci) = limx→a sup Ai (a, ci, x) or
A∗i (ci, b) = limx→b sup A∗i (ci, b, x) then (39) - (42) imply the estimate J0 (a, b) ≥
Tci (a, b) , i = 1, 2, i.e., the left part of (25) holds. Otherwise, there ex-
ist points c−i , c

+
i , a < c−i ≤ ci, ci ≤ c+i < b, such that c−1 � c1, c+1 � c1,

Ai (a, ci) = Ai

(
a, ci, c−i

)
, and A∗i (ci, b) = A∗i

(
ci, b, c+i

)
.

To justify the left estimate in (25), we estimate Tc1 (a, b) and Tc2 (a, b)
separately. First, we examine Tc2 (a, b).

Let c− = c−2 in (35). Estimate (37) yields
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Jq
0 (a, b) ≥

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠
− q

p c−2∫
a
υ(t)

( t∫
a
ρ1−p

′
)q

dt

⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

+

⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠
− q

p b∫
c+2

υ(t)

⎛⎜⎜⎜⎜⎝ b∫
t
ρ1−p

′
⎞⎟⎟⎟⎟⎠

q

dt

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

(we take the expressions for A2

(
a, c2, c−2

)
and A∗2

(
c2, b, c+2

)
into account)

=

(
A2

(
a, c2, c−2

))q
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠

q

p′

+
(
A∗2

(
c2, b, c+2

))q
⎛⎜⎜⎜⎜⎜⎝

c−2∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

(by the definition of c2, we have A2 (a, c2) = A2

(
a, c2, c−2

)
and A∗2 (a, c2) =

A∗2
(
c2, b, c+2

)
)

=

(A2 (a, c2, ))
q

⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠

q

p′

+
(
A∗2 (c2, b)

)q
⎛⎜⎜⎜⎜⎜⎝

c−2∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p



15

(since c2 is a midpoint for
(
A2,A∗2

)
)

=
(
Tc2 (a, b)

)q

⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎠

q

p′

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

≥ 21− q
p
(
Tc2 (a, b)

)q . (43)

Estimate Tc1(a, b). Similarly, putting c = c1, c− = c−1 , and c+ = c+2 in (36), in
view of (38) we obtain

Jq
0 (a, b) ≥

⎛⎜⎜⎜⎜⎜⎝
c−1∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′ c1∫
c−1

υ(t)dt

⎛⎜⎜⎜⎜⎜⎜⎝
b∫

c+1

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

+

⎛⎜⎜⎜⎜⎜⎜⎝
b∫

c+1

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎠

q

p′ c+1∫
c1

υ(t)dt

⎛⎜⎜⎜⎜⎜⎝
c−1∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

=

(
A1

(
a, c1, c−1

))q

⎛⎜⎜⎜⎜⎜⎜⎝
b∫

c+1

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎠

q

p′

+
(
A∗1

(
c1, b, c+1

))q
⎛⎜⎜⎜⎜⎜⎝

c−1∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

=

(A1 (a, c1, ))
q

⎛⎜⎜⎜⎜⎜⎜⎝
b∫

c+1

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎠

q

p′

+
(
A∗1 (c1, b)

)q
⎛⎜⎜⎜⎜⎜⎝

c−1∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

=
(
Tc1 (a, b)

)q

⎛⎜⎜⎜⎜⎜⎜⎝
b∫

c+1

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎠

q

p′

+

⎛⎜⎜⎜⎜⎜⎝
c−1∫
a
ρ1−p

′
⎞⎟⎟⎟⎟⎟⎠

q

p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝ b∫
c+2

ρ1−p′
⎞⎟⎟⎟⎟⎟⎠

p−1

+

⎛⎜⎜⎜⎜⎜⎝
c−2∫
a
ρ1−p′

⎞⎟⎟⎟⎟⎟⎠
p−1⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p

≥ 21− q
p
(
Tc1 (a, b)

)q . (44)
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The left estimate in (25) results from (43) and (44). The necessity is proven.
Sufficiency: Assume the existence of a midpoint ci ∈ I for (Ai,A∗i ), i = 1, 2.

In this case we have Ai (a, ci) = A∗i (ci, b) = Tci (a, b) < ∞, i = 1, 2. Since

f (a) = f (b) = 0 for f ∈ ◦
ACp

(
ρ, I

)
, the restriction of

◦
ACp

(
ρ, I

)
to (a, ci) and

(ci, b) belongs to ACp,l
(
ρ, (a, ci)

)
and ACp,r

(
ρ, (ci, b)

)
, respectively.

Theorem 8 implies that

b∫
a

υ(t)
∣∣∣ f (t)

∣∣∣q dt =

ci∫
a

υ(t)
∣∣∣ f (t)

∣∣∣q dt +

b∫
ci

υ(t)
∣∣∣ f (t)

∣∣∣q dt

≤ (
γiAi (a, ci)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ci∫

a

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

+
(
γiA∗i (ci, b)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

ci

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤ (
γiTci (a, b)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
ci∫

a

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds +

b∫
ci

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

=
(
γiTci (a, ci)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

,

i.e., (21) holds and the best constant C = J0 (a, b) in (21) meets the estimate

J0 (a, b) ≤ min
{
γ1Tc1 (a, b) , γ2Tc2 (a, b)

}
,

which defines the right-hand side of (25). Theorem 1 is proven.
Remark 1. Theorem 1 improves the estimate for J0 (a, b) in [1]. For ex-

ample, in Theorem 8.8 of [1], under the assumption A1 (a, a) = A∗1 (b, b) = 0
(the latter is equivalent to the conditions limx→a A1 (a, c, x) = 0 and
limx→b A∗1 (c, b, x) = 0), it is established that

2−
1
p A ≤ J0 (a, b) ≤

(
1 +

q
p′

) 1
q
(
1 +

p′

q

) 1
p′

A,

where A = infa<c<b max
{
A1 (a, c) ,A∗1 (c, b)

}
.

Under our conditions, it is easily seen that A = T1 (a, b) .
Let

c∫
a

ρ1−p
′
(s)ds < ∞,

b∫
c

ρ1−p
′
(s)ds = ∞, c ∈ I, (45)
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or
c∫

a

ρ1−p
′
(s)ds = ∞,

b∫
c

ρ1−p
′
(s)ds < ∞, c ∈ I. (46)

Theorem 2. Let 1 < p ≤ q < ∞. If (45) or (46) holds then the best constant
J0 (a, b) in (21) meets the estimate

max {A1 (a, b) ,A2 (a, b)} ≤ J0 (a, b) ≤ min
{
γ1A1 (a, b) , γ2A2 (a, b)

}
(47)

max
{
A∗1 (a, b) ,A∗2 (a, b)

}
≤ J0 (a, b) ≤ min

{
γ1A∗1 (a, b) , γ2A∗1 (a, b)

}
(48)

PROOF OF THEOREM 2. Since
◦

ACp
(
ρ, I

)
is dense everywhere in

◦
Wp

(
ρ, I

)
,

J0 (a, b) = sup
f∈ ◦ACp(ρ,I)

⎛⎜⎜⎜⎜⎝ b∫
a
υ(t)

∣∣∣ f (t)
∣∣∣q dt

⎞⎟⎟⎟⎟⎠
1
q

⎛⎜⎜⎜⎜⎝ b∫
a
ρ(t)

∣∣∣ f ′(t)∣∣∣p dt

⎞⎟⎟⎟⎟⎠
1
p

= sup
f∈ ◦Wp(ρ,I)

⎛⎜⎜⎜⎜⎝ b∫
a
υ(t)

∣∣∣ f (t)
∣∣∣q dt

⎞⎟⎟⎟⎟⎠
1
q

⎛⎜⎜⎜⎜⎝ b∫
a
ρ(t)

∣∣∣ f ′(t)∣∣∣p dt

⎞⎟⎟⎟⎟⎠
1
p

. (49)

Let (45) hold. In view of item (ii) of Theorem A,
◦

Wp
(
ρ, I

)
={

f ∈W1
p
(
ρ, I

)
: f (a) = 0

}
= ACp,l

(
ρ, I

)
. Hence, J0(I) = Jl(I) and (47) follows

from Theorem B. By analogy we justify (48) in the case (46). Theorem 2 is
proven.

Finally, let

c∫
a

ρ1−p
′
(s)ds = ∞,

b∫
c

ρ1−p
′
(s)ds = ∞, c ∈ I. (50)

Theorem 3. Assume that 1 < p ≤ q < ∞ and (50) is valid. Then (21) fails

on the set
◦

Wp
(
ρ, I

)
, i.e., J0 (a, b) = ∞.

PROOF OF THEOREM 3. By condition, (50) holds. By Theorem A (item

(iv))
◦

Wp
(
ρ, I

)
=W1

p
(
ρ, I

)
. Since f (x) ≡ 1 ∈W1

p
(
ρ, I

)
, (49) yields J0 (a, b) = ∞.

Theorem 3 is proven.

3.2. The case of 0 < q < p < ∞.
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Definition 2. A point c ∈ I is called a midpoint for (B,B∗) if B (a, c) =
B∗ (c, b) ≡ T (a, b) < ∞.

Obviously, for a midpoint for (B,B∗) to exist, it is necessary and sufficient
that B

(
a, β

)
< ∞, β ∈ I, and B∗ (α, b) < ∞, α ∈ I.

Theorem 4. Assume that 0 < q < p < ∞, p > 1, and (24) holds. Then (21)

is fulfilled on
◦

ACp
(
ρ, I

)
if and only if there exists a midpoint c ∈ I for (B,B∗) ; in

this case the best constant J0 (a, b) in (21) satisfies the estimate

q
1
q

(
p − q
p − 1

) 1
q′

T (a, b) ≤ J0 (a, b) ≤ 2
p−q
pq μ+T (a, b) . (51)

PROOF. Necessity: Assume that 0 < q < p < ∞, p > 1, and (21) holds on
◦

ACp
(
ρ, I

)
with C = J0 (a, b) . Let a < α < β < b. In view of the conditions on

the weighted functions υ and ρ, the quantities B (α, c) , c ∈ (α, b) ,B∗
(
c, β

)
,

and c ∈ (
a, β

)
are finite. Hence, there exists a midpoint c = c

(
α, β

) ∈ (
α, β

)
for B

(
α, β

)
and B∗

(
α, β

)
, i.e.,

c∫
α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

x

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

p(q−1)
p−q

ρ1−p
′
(x)dx =

β∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

c

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ρ1−p
′
(x)dx.

(52)
Introduce the function

f0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, a < t ≤ α,
1
b1

t∫
α

( c∫
x
υ

) 1
p−q

( x∫
α

ρ1−p
′
) (q−1)

p−q

ρ1−p
′
(x)dx, α ≤ t ≤ c,

1
b2

β∫
t

( x∫
c
υ

) 1
p−q

⎛⎜⎜⎜⎜⎝ β∫
x
ρ1−p

′
⎞⎟⎟⎟⎟⎠

(q−1)
p−q

ρ1−p
′
(x)dx, c ≤ t ≤ β,

0, β ≤ t ≤ b,
where

b1 =

c∫
α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

x

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

(q−1)
p−q

ρ1−p
′
(x)dx,

b2 =

β∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

c

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

x

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(q−1)
p−q

ρ1−p
′
(x)dx.
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Obviously, f0 ∈
◦

ACp
(
ρ, I

)
. For a function f0 we have

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

ρ(t)
∣∣∣ f ′0(t)

∣∣∣p dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

=

⎛⎜⎜⎜⎜⎝ 1
bp

1

(B(α, c))
qp

p−q +
1
bp

2

(
B∗(c, β)

) qp
p−q

⎞⎟⎟⎟⎟⎠
1
p

=
(
T(α, β)

) q
p−q

⎛⎜⎜⎜⎜⎝ 1
bp

1

+
1
bp

2

⎞⎟⎟⎟⎟⎠
1
p

, (53)

b∫
a

υ(t)
∣∣∣ f0(t)

∣∣∣q dt =

c∫
α

υ(t)
(

f0(t)
)q dt +

β∫
c

υ(t)
(

f0(t)
)q dt

= q

c∫
α

f
′
0
(

f0(t)
)q−1

c∫
t

υ(s)dsdt + q

β∫
c

(
− f

′
0(t)

) (
f0(t)

)q−1

t∫
c

υ(s)dsdt. (54)

Since

f0(t) ≥ 1
b1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

t

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1

p−q t∫
α

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

q−1
p−q

ρ1−p
′
(x)dx =

1
b1

p − q
p − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

t

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
α

ρ1−p
′
⎞⎟⎟⎟⎟⎟⎟⎟⎠

p−1
p−q

for α ≤ t ≤ c and similarly

f0(t) ≥ 1
b1

p − q
p − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

c

υ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
β∫

t

ρ1−p
′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−1
p−q

for c ≤ t ≤ β,we infer
c∫
α

f
′
0(t)

(
f0(t)

)q−1

c∫
t

υ(s)dsdt ≥
(

1
b1

p − q
p − 1

)q−1

(B(α, c))
pq

p−q ,

β∫
c

(
− f

′
0(t)

) (
f0(t)

)q−1

t∫
c

υ(s)dsdt ≥
(

1
b2

p − q
p − 1

)q−1 (
B∗(c, β)

) pq
p−q .

Hence, (54) yields⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

υ(t)
∣∣∣ f0(t)

∣∣∣q dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≥ q
1
q

(
p − q
p − 1

) 1
q′
⎛⎜⎜⎜⎜⎝ 1

bq
1

(B(α, c))
pq

p−q +
1
bq

2

(B∗(c, β))
pq

p−q

⎞⎟⎟⎟⎟⎠
1
q
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= q
1
q

(
p − q
p − 1

) 1
q′ (

T(α, β)
) p

p−q

⎛⎜⎜⎜⎜⎝ 1
bq

1

+
1
bq

2

⎞⎟⎟⎟⎟⎠
1
q

.

Since p
q > 1, we have

[(
1
bq

1
+ 1

bq
2

) p
q
] 1

p

≥
(

1
bp

1
+ 1

bp
2

) 1
p

. Hence,

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

υ(t)
∣∣∣ f0(t)

∣∣∣q dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≥ q
1
q

(
p − q
p − 1

) 1
q′ (

T(α, β)
) p

p−q

⎛⎜⎜⎜⎜⎝ 1
bp

1

+
1
bp

2

⎞⎟⎟⎟⎟⎠
1
p

. (55)

Relations (21), (53) and (55) imply that

q
1
q

(
p − q
p − 1

) 1
q′

T(α, β) ≤ J0(a, b). (56)

The absolute continuity of the integral ensures the continuity of T
(
α, β

)
in

α and β for a ≤ α < β ≤ b. In view of the independence of the right-hand
side (56) of α and β, a < α < β < b,we have

q
1
q

(
p − q
p − 1

) 1
q′

T(a, b) ≤ J0(a, b), (57)

i.e., there exists a midpoint c ∈ I for (B,B∗) and (57) is true.
Sufficiency: Let a midpoint c ∈ I for (B,B∗) exist, i.e., B (a, c) = B∗(c, b) =

T(a, b) < ∞. Arguing as in the sufficiency part of Theorem 1 and involing
Theorem C, we derive that

b∫
a

υ(t)
∣∣∣ f (t)

∣∣∣q dt =

c∫
α

υ(t)
∣∣∣ f (t)

∣∣∣q dt +

β∫
c

υ(t)
∣∣∣ f (t)

∣∣∣q dt

≤ (
μ+B(a, c)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

a

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

+
(
μ+B∗(c, b)

)q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

c

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤ (
μ+T(a, b)

)q 2
p−q

p

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
c∫
α

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds +

β∫
c

ρ(s)
∣∣∣ f ′(s)

∣∣∣p ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

,

i.e., (21) is fulfilled and J0(a, b) ≤ μ+2
p−q

p T(a, b); the last estimate and (57)
ensure (51). Theorem 4 is proven.
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Remark 2. The comparision of (51) and the estimate

2−
1
p q

1
q

(
p − q
p − 1

) 1
q′

B̃ ≤ J0(a, b) ≤ 2
p−q
pq (p

′
)

1
pq′ q

1
q B̃,

where B̃ = mina<c<b max {B(a, c),B(b, c)}, obtained in the case of 1 ≤ q < p <
∞ in Theorem 8.17 of [1], shows that the estimate in (51) is better than that
of [1].

Theorem 5. Let 0 < q < p < ∞, p > 1. If (26) or (27) holds then the best
constant J0(a, b) in (21) satisfies the estimate μ−B(a, b) ≤ J0(a, b) ≤ μ+B(a, b) or
μ−B∗(a, b) ≤ J0(a, b) ≤ μ+B∗(a, b), respectively.

Theorem 6. Assume that 0 < q < p < ∞, p > 1, and (50) holds. Then (21)

fails on
◦

ACp
(
ρ, I

)
; i.e., J0(a, b) = ∞.

Theorems 5 and 6 are proven by analogy with Theorem 2 and 3.
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Abstract. We establish criteria for the boundedness and compactness for
a class of operators of fractional integration involving the Weyl operator.

1 Introduction

Let I = (a, b), 0 ≤ a < b ≤ ∞, 0 < q, p < ∞, 1
p +

1
p′ = 1. Let u, v be almost

everywhere positive and locally integrable functions on I. By Lp,u ≡ Lp(u, I)
we denote the set of all measurable functions f on I such that

‖ f ‖p,u =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

| f (x)|pu(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

< ∞.

In the case u ≡ 1 we write Lp ≡ Lp(I). Let W be a positive strictly increasing
and locally absolutely continuous function on I. Suppose dW(x)

dx ≡ w(x) for
almost everywhere x ∈ I.

Let 1 > α > 0. We consider the operator

Kα,β f (x) =

b∫
x

u(s)Wβ(s) f (s)w(s)ds

(W(s) −W(x))1−α , x ∈ I. (1)

In the case β = 0, u ≡ 1 the dual operator to operator (1) has the form

K∗α,β f (x) =

x∫
a

f (s)w(s)ds

(W(x) −W(s))1−α , x ∈ I. (2)
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Operator (2) is called [15] the operator of fractional integration of the
function f of the function W. Weighted estimates for operator (2) were
previously considered in [12], [1].

When W(x) = x, u ≡ 1, β = 0 operator (1) is the Weyl operator

I∗α f (x) =

b∫
x

f (s)ds
(s − x)1−α , x ∈ I, (3)

which is dual to the Riemann-Liouville operator

Iαg(s) =

s∫
a

g(x)dx
(s − x)1−α , s ∈ I. (4)

Operators (3) and (4) acting from the weighted space Lp,u to the weighted
space Lq,v are investigated in papers [3], [3], [7], [15], [20], [21] and others,
where necessary and sufficient conditions for their boundedness, com-
pactness are obtained for various relations between the parameters α, p, q
and under various assumptions regarding the weight functions u and v.
Two-sided estimates of their norms are also obtained.

We investigate operator (1) acting from the space Lp,w to Lq,v. From the
obtained results new assertions follow, in simple terms, for operators (3)
and (4), generalizing the results of [7], [15], [20].

The positivity and monotonicity of W implies the existence of the non-
negative limit lim

x→a+
W(x) ≡ W(a). Futher, we assume W(a) = 0 and other-

wise, we consider the operator Kα,β in the form, where function W(x) is
replaced by the function W0(x) =W(x) −W(a), x ∈ I.

Further, the norm of the linear operator T from a normed space to
another one is denoted briefly by ‖T‖. Which spaces are meant will be
clear from the context.

Throughout the paper the products of the form 0 · ∞ are supposed be
equal to zero. Relations A � B, A � B mean A ≤ cB with a constant
c depending only on p, q, α which can be different in different places. If
A � B and A � B then we write A ≈ B. By Z we denote the set of all
integer numbers, χE denotes the characteristic function of the set E.

2 Auxiliary assertions

To prove the main results we need some well-known assertions.
Along with operator (1) we consider the Hardy operator
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Hα,β f (x) =

b∫
x

u(s)Wβ+α−1(s) f (s)w(s)ds. (1)

It is easy to see that for f ≥ 0

Kα,β f (x) ≥ Hα,β f (x), ∀x ∈ I. (2)

Issues of boundedness and compactness of operator (1) in weighted
Lebesgue spaces were studied quite completely. A summary of the
results can be found in [5]. The following Theorem A and Theorem B are
corollaries of Theorem 5 and Theorem 6 in [5].

Theorem A. Let 1 < p ≤ q < ∞. The operator Hα,β is bounded from Lp,w to Lq,v

if and only if

Aα,β = sup
z∈I

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

up′(s)Wp′(α+β−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

< ∞.

Moreover, ‖Hα,β‖ ≈ Aα,β.

Theorem B. Let 0 < q < p < ∞, p > 1. The operator Hα,β is bounded from Lp,w

to Lq,v if and only if

Bα,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

up′(s)Wp′(α+β−1)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

×
(∫ z

a
v(x)dx

) q
p−q

v(z)dz

⎞⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, ‖Hα,β‖ ≈ Bα,β.
Remark 2.1. In the case 1 < q < p < ∞, p > 1 the value Bα,β is equivalent to the
value

B̃α,β(a, b) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

up′(s)Wp′(α+β−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

×
(∫ z

a
v(x)dx

) p
p−q

up′(z)Wp′(α+β−1)(z)w(z)dz

⎞⎟⎟⎟⎟⎟⎠
p−q
pq

.
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Remark 2.2. Note that a function u non-decreasing on I and such that uWβ+α−1 ∈
Lp′,w(z, b), for all z ∈ I, exists if and only if Wβ+α−1 ∈ Lp′,w(z, b) for all z ∈ I.

3 Boundedness of the operator Kα,β

Theorem 3.1. Let 0 < α < 1, 1
α < p ≤ q < ∞ and β ≤ 0 (β < 1

p − α when
W(b) = ∞). Let u be a non-decreasing function on I. Then the operator Kα,β is
bounded from Lp,w to Lq,v if and only if Aα,β < ∞. Moreover, ‖Kα,β‖ ≈ Aα,β.

Proof. Necessity. Let the operator Kα,β be bounded from Lp,w to Lq,v. Then, in
view of (2), the operator Hα,β is bounded from Lp,w to Lq,v and ‖Kα,β‖ ≥ ‖Hα,β‖,
therefore by Theorem A the value Aα,β < ∞ and

‖Kα,β‖ � Aα,β. (1)

Sufficiency. Since the function W is continuous and strictly increasing on
I and W(a) = 0, then for any k ∈ Z the set

{
x : W(x) ≤ 2k, x ∈ I

}
is non-

empty. Denoting xk = sup
{
x : W(x) ≤ 2k, x ∈ I

}
we obtain a sequence of

points {xk}k∈Z such that 0 < xk ≤ xk+1, ∀k ∈ Z, and if xk < b, then W(xk) = 2k,

2k ≤ W(x) ≤ 2k+1 for xk ≤ x ≤ xk+1,
xk∫

xk−1

w(s)ds = 2k−1, and if xk+1 = b, then

xk+1∫
xk

w(s)ds ≤ 2k. These facts will be used below without reminders. We

assume that Ik = [xk, xk+1), k ∈ Z, Z0 = {k : k ∈ Z, Ik � ∅}. Then Z0 ⊆ Z
and I =

⋃
k∈Z

Ik =
⋃

k∈Z0

Ik. Since Ik = ∅, ∀k ∈ Z \ Z0, and integrals over these

intervals are equal to zero, then in the sequel, without loss of generality,
we suppose that Z = Z0.

Let Aα,β < ∞. We need to prove that the inequality

‖Tα,β f ‖q,v � Aα,β‖ f ‖p,w, f ∈ Lp,w, (2)

holds, which means ‖Tα,β‖ � Aα,β and, together with (1), gives

‖Tα,β‖ ≈ Aα,β.

It suffices to prove inequality (2) for f ≥ 0. So let f ≥ 0. Using the relation
I =

⋃
k

Ik, we have

‖Kα,β f ‖qq,v =
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx
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=
∑

k

xk∫
xk−1

v(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+1∫
x

+

b∫
xk+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q

dx

�
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫
x

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

+
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

xk+1

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx = J1 + J2. (3)

We estimate the values J1 and J2 separately. Using Hölder’s inequality,
nondecreasing of the function u andβ ≤ 0 and in view of change of variables
W(s) =W(x)t we have

J1 =
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫
x

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫
x

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+1∫
x

up′(s)Wp′β(s)w(s)ds
(W(s) −W(x))(1−α)p′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(xk+1)

xk∫
xk−1

v(x)W
q
p′ (p

′β+p′(α−1))(x)

×W
q
p′ (x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
W(xk+1)
W(xk−1)∫
1

tp′β(t − 1)p′(α−1)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q
p′

dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(xk+1)

× 2
q
p′ (p

′(β+α−1))(k−1)2
q
p′ k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
4∫

1

tp′β(t − 1)p′(α−1)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′ xk∫

xk−1

v(x)dx. (4)
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By the assumptions of the theorem α > 1
p , therefore

4∫
1

tp′β(t− 1)p′(α−1)dt <

∞.
The expression F = uq(xk+1)2q(β+α−1)(k−1)2

q
p′ k is estimated as follows. Since

β + α − 1 < 0 then

F = uq(xk+1)23q|β+α−1|2q(β+α−1)(k+2)2−
q
p′ 2

q
p′ (k+1)

= 23q|β+α−1|− q
p′ uq(xk+1)2q(β+α−1)(k+2)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+2∫

xk+1

w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

≤ 23q|β+α−1|− q
p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+2∫

xk+1

Wp′(β+α−1)(s)up′(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

.

Substituting this estimate in (4) we obtain

J1 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p xk∫
xk−1

v(x)dx

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+2∫
xk+1

up′(s)Wp′(β+α−1)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

≤ Aq
α,β

∑
k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤ Aq
α,β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Aq
α,β‖ f ‖qp,w. (5)

Now, we estimate J2.

J2 =
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

xk+1

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

xk+1

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(xk))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx
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≤
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

xk+1

u(s)Wβ(s) f (s)w(s)ds
(W(s) − 1

2W(xk+1))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤ 2q(1−α)
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

xk+1

u(s)Wβ(s) f (s)w(s)
(W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

�
b∫

a

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

u(s)Wβ+α−1(s) f (s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx = ‖Hα,β f ‖qq,v. (6)

Then, by Theorem A
J2 � Aq

α,β‖ f ‖qp,w. (7)

Inequalities (3), (5) and (7) imply inequality (2). �

Theorem 3.2. Let 0 < α < 1, 0 < q < p < ∞, p > 1
α and β ≤ 0 (β < 1

p − α in the
case W(b) = ∞). Let u be a non-decreasing function on I. Then the operator Kα,β
is bounded from Lp,w to Lq,v if and only if Bα,β < ∞. Moreover, ‖Kα,β‖ ≈ Bα,β.

Proof. Necessity and the estimate

‖Kα,β‖ � Bα,β (8)

follows by relation (2) and Theorem B.
Sufficiency. Let Bα,β < ∞. If the inequality

‖Kα,β f ‖q,v � Bα,β‖ f ‖p,w, (9)

holds then by (8) and (9) we obtain ‖Kα,β‖ ≈ Bα,β.
To prove (9) we use relation (3) of Theorem 3.1. Estimate for J2 directly

follows by (6) and Theorem B:

J2 � Bq
α,β‖ f ‖qp,w. (10)

By (5) we have

J1 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p xk∫
xk−1

v(x)dx

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
xk

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′
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(
applying the Hölder inequality with the exponents p

q ,
p

p−q

)

≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk∫

xk−1

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
xk

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
p

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤ G‖ f ‖qp,w, (11)

where

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk∫

xk−1

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
xk

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
p

.

Using the relation⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk∫

xk−1

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

=
p

p − q

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

xk−1

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

dx

we estimate G:

G�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk∫
xk−1

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

xk−1

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

dx

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
xk

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk∫
xk−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
x

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q

p
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≤ Bq
α,β. (12)

By (11) and (12) it follows that

J1 � Bq
α,β‖ f ‖qp,w. (13)

Therefore, by (3), (10) and (13) it follows that inequality (9) holds. �

4 The compactness of the operator Kα,β

Theorem 4.1. Let 0 < α < 1, 1
α < p ≤ q < ∞ and β ≤ 0 (β < 1

p −α if W(b) = ∞).
Let u be a non-decreasing function on I. Then the operator Kα,β is compact from
Lp,w to Lq,v if and only if Aα,β < ∞ and

lim
z→a+

Aα,β(z) = lim
z→b−

Aα,β(z) = 0,

where

Aα,β(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

Proof. Necessity. Let the operator Kα,β be compact from Lp,w to Lq,v. Then
the operator is bounded and therefore, by Theorem 3.1, Aα,β < ∞. First, we
prove that lim

z→b−
Aα,β(z) = 0.

Let F(t) =
b∫

t
up′(s)Wp′(β+α−1)(s)w(s)ds. Since Aα,β < ∞ and function u non-

decreasing then 0 < F(t) < ∞ for t ∈ I. Consider the family of functions
{ ft}t∈I, where

ft(x) = χ(t,b)(x)up′−1(x)W(p′−1)(β+α−1)(x)(F(t))−
1
p . (1)

Then
b∫

a

| ft(x)|pw(x)dx = (F(t))−1

b∫
t

up′(x)Wp′(β+α−1)(x)w(x)dx ≡ 1. (2)

We show that the family of functions { ft} weakly converges to zero in
Lp,w. Let g ∈ Lp′,w1−p′ = (Lp,w)∗.

Applying the Holder inequality and using (2) we have

b∫
a

ft(x)g(x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

| ft(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

|g(x)|p′w1−p′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

|g(x)|p′w1−p′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

Since g ∈ Lp′,w1−p′ then the last integral converges to zero as t→ b, which
means the weak convergence to zero the family of function { ft}. Then, by
the compactness of the operator Kα,β from Lp,w to Lq,v

lim
z→b−
‖Kα,β ft‖q,v = 0. (3)

We have

‖Kα,β ft‖qq,v =
b∫

a

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

u(s)Wβ(s) ft(s)w(s)ds

(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≥
t∫

a

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

u(s)Wβ(s) ft(s)w(s)ds

(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≥
t∫

a

v(x)dx

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

u(s)Wβ+α−1(s) ft(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

= (F(t))−
q
p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q t∫

a

v(x)dx =
(
Aα,β(t)

)q
. (4)

By (3) and (4) we obtain that lim
t→b−

Aα,β(t) = 0.

Now, we show lim
t→a+

Aα,β(t) = 0.

The compactness of the operator Kα,β : Lp,w → Lq,v implies the compact-
ness of the adjoint operator

K∗α,βg(x) = u(s)Wβ(s)w(s)

s∫
a

g(x)dx
(W(s) −W(x))1−α

from Lq′,v1−q′ to Lp′,w1−p′ .
We introduce the family of functions {gt}t∈I, where

gt(x) = χ(a,t)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′

v(x).
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Since almost everywhere v > 0 and Aα,β < ∞ then the function gt is well
defined.

In view of the equality

b∫
a

|gt(x)|q′v1−q′(x)dx =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1

for f ∈ Lq,v = (Lq′,v1−q′ )∗ we have

b∫
a

f (x)gt(x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

|gt(x)|q′v1−q′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Consequently lim
t→a+

b∫
a

f (x)gt(x)dx = 0 for any f ∈ Lq,v, which means the

weak convergence to zero the family of functions gt. Then by the compact-
ness of the operator K∗α,β from Lq′,v1−q′ to Lp′,w1−p′

lim
t→a+
‖K∗α,βgt‖p′,w1−p′ = 0. (5)

We have

‖K∗α,βgt‖p′p′,w1−p′ ≥
b∫

t

|u(s)Wβ(s)w(s)|p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

gt(x)dx
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

w1−p′(s)ds

≥
b∫

t

up′(s)Wp′(β+α−1)(s)w(s)ds

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− p′

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

=
(
Aα,β(t)

)p′
. (6)

By (5) and (6) it follows that lim
t→a+

Aα,β(t) = 0. The necessity is proved.

Sufficiency. Let Aα,β < ∞ and lim
z→a+

Aα,β(z) = lim
z→b−

Aα,β(z) = 0.

Yet for a < c < d < b

Pc f = χ(a,c] f , Pcd f = χ(c,d] f , Qd f = χ(d,b) f .
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Then f = Pc f +Pcd f +Qd f and by the equalities PcdKα,βQd ≡ 0, PcdKα,βPc ≡ 0,
QdKα,βPc ≡ 0, we have

Kα,β f = PcdKα,βPcd f +QdKα,βQd f + PcdKα,βQd f + PcKα,β f . (7)

We show that the operator PcdKα,βPcd is compact from Lp,w to Lq,v. Since
PcdKα,βPcd f (x) = 0 when x ∈ I\(c, d] then it suffices to show that the operator
PcdKα,βPcd is compact from Lp,w(c, d) to Lq,v(c, d) and this is equivalent to the

compactness of the operator K f (x) =
d∫

c
K(x, s) f (s)ds with the kernel

K(x, s) =
u(s)Wβ(s)v

1
q (x)χ(c,d)(s − x)w

1
p′ (s)

(W(s) −W(x))1−α

from Lp to Lq.
Let {xk}k∈Z be a sequence of points introduces in the proof of Theo-

rem 3.1. There are the points xi−1, xn, xi−1 < xn such that xi−1 ≤ c < xi,
xn−1 < d ≤ xn. We assume that the number c, d are chosen so that xi < xn−1.
Similarly to obtaining estimates of J1, J2 in Theorem 3.1, we have

d∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

|K(x, s)|p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx =

d∫
c

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

x

up′(s)Wp′β(s)w(s)ds
(W(s) −W(x))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

≤
n∑

k=i

xk∫
xk−1

v(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
xk+1

+

xk+1∫
x

⎞⎟⎟⎟⎟⎟⎟⎟⎠ up′(s)Wp′β(s)w(s)ds
(W(s) −W(x))p′(1−α)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q
p′

dx

≤ μ(n − i + 1)Aq
α,β < ∞,

where the constant μ does not depend on i,n. Therefore, on the basis of
the theorem in Kantorovich and Akilov [2] (page 420), the operator K is
compact from Lp(c, d) to Lq(c, d), which is equivalent to the compactness of
the operator PcdKα,βPcd from Lp,w to Lq,v .

By (7) we have

‖Kα,β − PcdKα,βPcd‖ ≤ ‖QdKα,βQd‖ + ‖PcdKα,βQd‖ + ‖PcKα,β‖. (8)

We shall show that the right-hand side of (8) tends to zero as c → a+,
d → b−. This will imply that the operator Kα,β being a uniform limit of
compact operators, is compact from Lp,w to Lq,v.
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On the basis of Theorem 3.1, we have:

‖QdKα,βQd f ‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
d

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
d<z<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

d

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

up′(s)Wp′(β+α−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

‖ f ‖p,w

≤ sup
d<z<b

Aα,β(z)‖ f ‖p,w.
Hence

lim
d→b−
‖QdKα,βQd f ‖ � lim

d→b−
sup
d<z<b

Aα,β(z) = lim
z→b−

Aα,β(z) = 0; (9)

Let 1 > ε > 0. To estimate ‖PcdKα,βQd f ‖q,v we introduce the functions vε,
uε defined by vε(x) = v(x) for x ∈ (a, d] and vε(x) = εqv(x) for x ∈ I \ (a, d],
uε(s) = u(s) for s ∈ (d, b) and uε(s) = εu(s) for s ∈ I \ (d, b). Obviously, the
function uε is non-decreasing on I. Then by Theorem 3.1

‖PcdKα,βQd f ‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∫
c

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

d

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

vε(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

uε(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� Aεα,β‖ f ‖p,w, (10)

where

Aεα,β = sup
z∈I

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

vε(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

up′
ε (s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

We estimate Aεα,β.

Aεα,β ≤ sup
a<z<d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝εp′

d∫
z

up′(s)Wp′β(s)w(s)ds

+

b∫
d

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′
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+ sup
d<z<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

a

v(x)dx + εq

z∫
d

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

� 2(εAα,β + Aα,β(d)).

Hence, by (10) we have

‖PcdKα,βQd f ‖q,v � (εAα,β + Aα,β(d))‖ f ‖p,w. (11)

Where, due to the independence of the left-hand side of (28) of ε > 0, by
letting ε→ 0+, we obtain

‖PcdKα,βQd f ‖q,v � Aα,β(d)‖ f ‖p,ω.
Then

lim
d→b−
‖PcdKα,βQd‖ � lim

d→b−
Aα,β(d) = 0. (12)

Similarly, we obtain

‖PcKα,β‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c∫
a

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

x

u(s)Wβ(s) f (s)w(s)ds
(W(s) −W(x))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
a<z<c

Aα,β(z)‖ f ‖p,w.
Therefore

lim
c→a+
‖PcKα,β f ‖ � lim

c→a+
sup
a<z<c

Aα,β(z) = lim
z→a+

Aα,β(z) = 0. (13)

By (8), (9), (12) and (13) it follows that lim
c→a+,d→b−

‖Kα,β − PcdKα,βPcd‖ = 0. �

Theorem 4.2. Let 0 < α < 1, p > 1
α and β ≤ 0 (β < 1

p −α in the case W(b) = ∞).
Let u be a non-decreasing function on I. If b < ∞ and 0 < q < p < ∞ or
a = 0, b = ∞ and 1 < q < p < ∞, then the operator Kα,β is compact from Lp,w to
Lq,v if and only if Bα,β < ∞.

Proof. In the case b < ∞ and 0 < q < p < ∞ the statement of Theorem 4.2
follows by Ando Theorem and its generalizations [10]. Therefore, we prove
Theorem 4.2 in the case a = 0, b = ∞ and 1 < q < p < ∞.
Necessity. Let the operator Kα,β be compact from Lp,w to Lq,v. Then the
operator is bounded. Hence, by Theorem 3.2 Bα,β < ∞.



Boundedness, compactness of a class fractional integration operator of Weyl type 15

Sufficiency. Let Bα,β < ∞. Here Kα,β f = PdKα,βPd f + PdKα,βQdF + QdKα,β f .
Therefore

‖Kα,β − PdKα,βPd‖ ≤ ‖PdKα,βQd‖ + ‖QdKα,β‖. (14)

Since d < ∞ then the operator PdKα,βPd is compact from Lp,w(0, d) to Lq,v(0, d),
which is equivalent to its compactness from Lp,w to Lq,v. We show that the
right-hand side of (12) tends to zero as d → ∞. Then the operator Kα,β is
compact from Lp,w to Lq,v as the uniform limit of compact operators. On the
basis of Theorem 3.2

‖QdKα,β‖ ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

up′(s)Wp′(α+β−1)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

×
(∫ z

d
v(x)dx

) q
p−q

v(z)dz

⎞⎟⎟⎟⎟⎟⎠
(p−q)

pq

.

Hence, since Bα,β < ∞, it follows that

lim
d→∞
‖QdKα,β‖ = 0. (15)

Let 1 > ε > 0. To estimate ‖PdKα,βQd f ‖ we suppose as above, that
vε(x) = v(x) for x ∈ (0, d] and vε(x) = εqv(x) for x ∈ (d,∞), uε(s) = u(s) for
s ∈ (d,∞) and uε(s) = εu(s) for s ∈ (0, d]. Obviously, the function uε is
non-decreasing on I = (0,∞). Now, by Theorem 3.2, estimating the norm
‖PdKα,βQd‖ as in (10), and then passing to the limit as ε→ 0+, we obtain

‖PdKα,βQd‖ �
⎛⎜⎜⎜⎜⎜⎜⎜⎝

d∫
0

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
d

up′(s)Wp′(α+β−1)(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

= Aα,β(d). (16)

By Remark 1 Bα,β ≈ B̃α,β(0,∞). Since Aα,β(d) � B̃α,β(d,∞) then by (14) it
follows that lim

d→∞
‖PdKα,βQd‖ = 0. Hence by (13) it follows that the right-hand

side of (12) tends to zero as d→∞. �

5 Dual case

We consider the operator

Tα,β f (x) = u(x)Wβ(x)

x∫
a

v(s) f (s)ds
(W(x) −W(s))1−α
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acting from Lp,v to Lq,w.
Assume that

A∗α,β(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

uq(x)Wq(β+α−1)(x)w(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

,

A∗α,β = sup
z∈I

A∗α,β(z).

Theorem 5.1. Let 0 < α < 1, 1 < p ≤ q < 1
1−α and β ≤ 0 (β < 1 − 1

q − α in the
case W(b) = ∞). Let u be a non-decreasing function on I. Then the operator Tα,β

i) is bounded from Lp,v to Lq,w if and only if A∗α,β(z) < ∞, moreover, ‖Tα,β‖ ≈
A∗α,β,

ii)is compact from Lp,v to Lq,w if and only if A∗α,β(z) < ∞ and

lim
z→a

A∗α,β(z) = lim
z→b

A∗α,β(z) = 0.

Proof. The operator Tα,β acting from Lp,v to Lq,w is adjoint to the operator

K̃α,β f (x) = v(x)

b∫
x

u(s)Wβ(s) f (s)ds
(W(x) −W(s))1−α

acting from Lq′,w1−q′ to Lp′,v1−p′ , which is equivalent to the action of the oper-
ator Kα,β from Lq′,ω to Lp′,v. Consequently, the operator Tα,β is bounded and
compact from Lp,v to Lq,ω if and only if the operator Kα,β is bounded and
compact from Lq′,ω to Lp′,v respectively. Since by the assumptions of Theo-
rem 5.1 it follows that 1

α < q′ ≤ p′ < ∞ then on the basis of Theorems 3.1
and 4.1 the validity of the Statements i) and ii) of Theorem 5.1 follows. �

Similarly, on the basis of Theorem 4.2, we have

Theorem 5.2. Yet 0 < α < 1, 1 < q < min{p, 1
1−α }, p > 1 and β ≤ 0 (β < 1− 1

q−α
in the case W(b) = ∞). Let u be a non-decreasing function on I. Then the operator
Tα,β is bounded and compact from Lp,v to Lq,w if and only if B∗α,β(z) < ∞, where

B∗α,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
x

uq(s)Wq(β+α−1)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q

p

.
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6 Applications

We consider the weighted Weyl operator

Ĩ∗αg(s) = ω(s)

∞∫
s

ρ(x)g(x)dx
(x − s)1−α , s > 0

and the weighted Riemann-Liouville operator

Ĩα f (x) = ρ(x)

x∫
0

ω(s) f (s)ds
(x − s)1−α , x > 0

acting from Lp to Lq, where the weight functions ρ and ω are almost ev-
erywhere positive and locally integrable on I = (0,∞). The actions of the
operator Kα,β from Lp,ω to Lq,v and the operator Tα,β from Lp,v to Lq,ω are
equivalent to the actions of the operators

K̃α,βg(s) = v
1
q (s)

b∫
s

u(x)Wβ(x)w
1
p′ (x)g(x)dx

(W(x) −W(s))1−α , (1)

T̃α,β f (x) = w
1
q (x)u(x)Wβ(x)

x∫
a

v
1
p′ (s) f (s)ds

(W(x) −W(s))1−α , (2)

from Lp to Lq, respectively.

Let ω(s) = v
1
q (s) in (1) and ω(s) = v

1
p′ (s) in (2). If W(x) = x, a = 0, b = ∞

and ρ(x) = u(x)xβ then the operators (1) and (2) coincide with the operators
I∗α and Iα, respectively. Therefore, by Theorems 3.1- 4.2 we have

Corollary 6.1. Let 0 < α < 1, β < 1
p − α and ρ(x) = u(x)xβ, where u is a

non-decreasing function on I = (0,∞). Then the operator Ĩ∗α
i) for 1

α < p ≤ q < ∞ is bounded from Lp to Lq if and only if Ãα < ∞,
moreover, ‖̃I∗α‖ ≈ Ãα, and is compact from Lp to Lq if and only if Ãα < ∞ and
lim
z→0+

Ãα(z) = lim
z→∞ Ãα(z) = 0, where

Ãα(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∝∫

z

ρp′(x)xp′(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
0

ωq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

, Ãα = sup
z∈I

Ãα(z);
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ii) for 0 < max{q, 1
α } < p < ∞ is bounded (compact) from Lp to Lq if b < ∞

(for 1 < max{q, 1
α } < p < ∞ if b = ∞) if and only if B̃α < ∞, moreover, ‖̃I∗α‖ ≈ B̃α,

where

B̃α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

ωq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ρp′(x)xp′(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

ωq(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
qp

.

Remark 6.2. In the case β = 0, 0 < max
{
q, 1
α

}
< p < ∞ the boundedness

and compactness of the operator Ĩ∗α fram Lp to Lq was also studied in [7].
However, the assertions of Theorems 4.1 and 4.2 and Theorems 7 and 8
in [7] are not correct, because the given there criteria involves the integral
∞∫

2t

(
u(t)tα−1

)p′
dt for non-decreasing functions u which for 1

p < α diverges for

any such function.

Theorem 5.1 and 5.2 imply

Corollary 6.3. Let 0 < α < 1, β < 1 − 1
q − α and ρ(x) = u(x)xβ, where u is a

non-decreasing function on I = (0,∞). Then the operator Ĩα
i) for 1 < p ≤ q < 1

1−α is bounded from Lp to Lq if and only if Ã∗α < ∞,
moreover, ‖̃Iα‖ ≈ Ã∗α, and compact from Lp to Lq if and only if Ã∗α < ∞ and
lim
z→0+

Ã∗α(z) = lim
z→∞ Ã∗α(z) = 0, where

Ã∗α(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ρq(x)xq(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
0

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, Ã∗α = sup
z∈I

Ã∗α(z);

ii) for 1 < q < min{p, 1
1−α } < ∞, p > 1 is bounded(compact) if and only if

B̃∗α < ∞, moreover, ‖̃Iα‖ ≈ B̃∗α, where

B̃∗α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ρq(x)xq(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
0

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ωp′(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

From (2) for W(x) = xσ, σ > 0 a = 0, b = ∞, ρ(x) = u(x)xσβ+
σ−1

q , v
1
p′ (s) =

ω(s)sσγ+σ−1 we obtain the weighted Erdelyi-Kober operator

Eα,γ f (x) = ρ(x)

x∫
0

ω(s)sσγ+σ−1 f (s)ds
(xσ − sσ)1−α ,
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where γ is a real number, and for W(x) = ln x
a , a > 0, ρ(x) = u(x)x−

1
q (ln x

a )β,

v
1
p′ (s) = ω(s) 1

s we obtain the weighted Hadamar operator

Hα f (x) = ρ(x)

x∫
a

ω(s) f (s)ds
s(ln x

s )1−α .

Corollary 6.4. Let 0 < α < 1, β < 1 − 1
q − α and ρ(x) = u(x)xσβ+

σ−1
q , where u is

a non-decreasing function on I = (0,∞). Then the operator Eα,γ
i) for 1 < p ≤ q < 1

1−α is bounded from Lp to Lq if and only if A◦α,γ < ∞,
moreover, ‖Eα,γ‖ ≈ A◦α,γ and compact from Lp to Lq if and only if A◦α,γ < ∞ and
lim
z→0+

A◦α,γ(z) = lim
z→∞A◦α,γ(z) = 0, where A◦α,γ = sup

z∈I
A◦α,γ(z),

A◦α,γ(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ρq(x)xqσ(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
0

ωp′(s)sp′(σγ+σ−1)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

ii) for 1 < q < min{p, 1
1−α } < ∞, p > 1 is bounded (compact) from Lp to Lq if

and only if B◦α,γ < ∞, moreover, ‖Eα,γ‖ ≈ B◦α,γ, where

B◦α,γ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ρq(x)xqσ(α−1)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

ωp′(s)sp′(σγ+σ−1)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ωp′(z)zp′(σγ+σ−1)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

Corollary 6.5. Let a > 0, 0 < α < 1, β ≤ 0 (β < 1− 1
q −α in the case b = ∞) and

ρ(x) = u(x)x−
1
q (lnx

a )β, where u is non-decreasing function on I = (a, b). Then the
operator Hα

i) for 1 < p ≤ q < 1
1−α is bounded from Lp to Lq if and only if A1

α < ∞,
moreover, ‖Hα‖ ≈ A1

α, and compact from Lp to Lq if and only if A1
α < ∞ and

lim
z→a+

A1
α(z) = lim

z→b−
A1
α(z) = 0, where A1

α = sup
z∈I

A1
α(z),

A1
α(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

ρq(x)
(
ln

x
a

)q(α−1)

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

ωp′(s)s−p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

;
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ii) for 1 < q < min{p, 1
1−α } < ∞, p > 1 is bounded (compact) from Lp to Lq if

and only if B1
α < ∞, moreover, ‖Hα‖ ≈ B1

α, where

B1
α =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

ρq(x)
(
ln

x
a

)q(α−1)

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

ωp′(s)s−p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ωp′(z)z−p′dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.
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Abstract. We establish characterizations both of boundedness and com-
pactness of a general class of fractional integration operators involving the
Riemann-Liouville, Hadamard and Erdelyi-Kober operators. In particular,
these results imply new results in the theory of Hardy type inequalities.
As applications both new and well-known results are pointed out.

1 Introduction

Let I = (a, b), 0 ≤ a < b ≤ ∞. Let v and u be almost everywhere positive
functions, which are locally integrable on the interval I.

Let 0 < p < ∞ and 1
p +

1
p′ = 1. Denote by Lp,v ≡ Lp(v, I) the set of all

functions f measurable on I such that ‖ f ‖p,v :=

⎛⎜⎜⎜⎜⎝ b∫
a
| f (x)|pv(x)dx

⎞⎟⎟⎟⎟⎠
1
p

< ∞.

Let W be a non-negative, strictly increasing and locally absolutely con-
tinuous function on I. Suppose that dW(x)

dx = w(x), a.e. x ∈ I.
We consider the Hardy type operator Tα,β defined by

Tα,β f (x) :=

x∫
a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α , x ∈ I. (1)

When u ≡ 1 and β = 0 the operator Tα,β is called the fractional inte-
gration operator of a function f with respect to a function W ([15], p.248).
When u ≡ 1 and W(x) = x the operator (1) becomes the Riemann-Liouville
operator Iα defined by

Iα f (x) :=

x∫
a

f (s)ds
(x − s)1−α . (2)
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When u ≡ 1 and W(x) ≡ lnx
a , a > 0, this operator is the Hadamard operator

Hα defined by

Hα f (x) :=

x∫
a

f (s)ds

s
(
lnx

s

)1−α .

Moreover, when u ≡ 1 and W(x) = xσ, σ > 0, we get the operator Eα,β of
Erdelyi-Kober type ([15], p.246) defined by

Eα,β f (x) :=

x∫
a

f (s)sσβ+σ−1ds

(xσ − sσ)1−α .

There are a lot of works devoted to mapping properties of the Riemann-
Liouville operator Iα. Two-weighted estimates of the operator Iα of the
order α > 1 in weighted Lebesgue spaces were first obtained in the papers
[17] and [18]. The singular case 0 < α < 1 was studied with different
restrictions in [3], [7], [9], [15], [5], [21] and some others. The most general
results among them are given in [7] and [21] under the assumption that
one of the weight functions is increasing or decreasing.

In this work we investigate the problems of boundedness and compact-
ness of the operator Tα,β defined by (1) from Lp,w to Lq,v when 0 < α < 1.
When α > 1 the results follow from the results in [11].

The operator Tα,β was studied in [1] and [12] when u ≡ 1, β = 0 and
u ≡ 1, β > − 1

p′ , respectively .
Due to non-negativity and monotone increase of the function W the

limit lim
x→a+

W(x) ≡W(a) ≥ 0 exists.

We also consider the Hardy type operator T0
α,β defined by

T0
α,β f (x) :=

x∫
a

u(s)Wβ
0(s) f (s)w(s)ds

(W0(x) −W0(s))1−α , x ∈ I,

where W0(x) =W(x) −W(a).
Since we also suppose that β ≥ 0, then for f ≥ 0 we have Tα,β f (x) ≈

T0
α,β f (x)+W(a)T0

α,0 f (x), where the equivalence constants do not depend on
x and f . Therefore, without loss of generality, we can assume that W(a) = 0.
For short writing we denote by ‖K‖ the norm of a linear operator K acting
from one normalized space to another, since from the context we shall in
each case clearly see which spaces the operator is acting between.

The paper this organized as follows: In order not to disturb our discus-
sions later on some auxiliary statement are given in Section 2. The main
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results concerning the boundedness of operator Tα,β, including the corre-
sponding Hardy type inequalities, can be found in Section 3. The main
results about the compactness are presented in Section 4. Moreover, in
Section 5 some similar results for the dual operator T0

α,β are given. Finally,
Section 6 is reserved for some applications (both new and well-known
results).

Conventions: the indeterminate form 0 · ∞ is assumed to be zero. The
relations A� B and A� B respectively mean A ≤ cB and A ≥ cB, where a
positive constant c can be dependent only on the parameters p, q, α and β.
The relation A ≈ B is interpreted as A � B � A. The set of all integers is
denoted by Z. Moreover, χ(c,a)(·) is the characteristic function of the interval
(c, a) ⊂ I.

2 Auxiliary statements

To prove the main results we shall need some auxiliary results from the
standard literature on Hardy type inequalities (see [5] and [4]).

Together with the operator (1) we consider the following Hardy type
operator Hα,β defined by

Hα,β f (x) =
1

W1−α(x)

x∫
a

u(s)Wβ(s) f (s)w(s)ds. (1)

It is easy to see that for f ≥ 0 we have

Tα,β f (x) ≥ Hα,β f (x), ∀x ∈ I. (2)

The problem of boundedness of operators of the form (1) in weighted
Lebesgue spaces have been very well studied. The history and develop-
ment of Hardy type inequalities with relevant references can be found in
[5].

In view [16] the following statements are consequences of Theorem 5
of [5]:

Lemma 2.1. Let 1 < p ≤ q < ∞ and let the operator Hα,β be defined by (1). Then
the inequality

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
Hα,β f (x)

)q
v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
f (x)

)p w(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(3)
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holds if and only if

Aα,β = sup
z∈I

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

< ∞.

Moreover, C ≈ Aα,β.

Lemma 2.2. Let 0 < q < p < ∞, p > 1 and let the operator Hα,β be defined by
(1). Then the inequality (3) holds if and only if

Bα,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

up′(z)Wp′β(z)w(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, C ≈ Bα,β.

Remark 2.3. In the case 1 < q < p < ∞, p > 1 it is well known and easy to
prove that the value Bα,β is equivalent to the value

B̃α,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

Wq(α−1)(z)v(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

3 Boundedness of the operator Tα,β

The main results in this Section reads:

Theorem 3.1. Let 0 < α < 1, 1 < p ≤ q < ∞ and β ≥ 0. Let u be a non-
increasing function on I. Then the operator Tα,β defined by (1) is bounded from
Lp,w to Lq,v if and only if Aα,β < ∞. Moreover, ‖Tα,β‖ ≈ Aα,β.
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Theorem 3.2. Let 0 < α < 1, 0 < q < p < ∞, p > 1
α and β ≥ 0. Let u be a

non-increasing function on I. Then the operator Tα,β is bounded from Lp,w to Lq,v

if and only if Bα,β < ∞. Moreover, ‖Tα,β‖ ≈ Bα,β.

These two theorems can be reformulated as the following new infor-
mation in the theory of Hardy type inequalities:

Theorem 3.3. Let 0 < α < 1, β ≥ 0 and u be a non-increasing function on I.
Then the inequality

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
Tα,β f (x)

)q
v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
f (x)

)p w(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(1)

holds if and only if
a) Aα,β < ∞ for the case 1 < p ≤ q < ∞,
b) Bα,β < ∞ for the case 0 < q < p < ∞, p > 1

α .
Moreover, for the best constant C in (1) it yields that C ≈ Aα,β in case a) and

C ≈ Bα,β in case b).

Proof of Theorem 3.1. Necessity. Let the operator Tα,β be bounded from
Lp,w to Lq,v. Then, in view of (2), the operator Hα,β is bounded from Lp,w

to Lq,v, and ‖Tα,β‖ ≥ ‖Hα,β‖. Consequently, by Lemma 2.1 we have that
Aα,β < ∞ and

‖Tα,β‖ � Aα,β. (2)

Sufficiency. Since the function W is continuous and strictly increas-
ing on I and W(a) = 0, then for any k ∈ Z we can define xk :=
sup

{
x : W(x) ≤ 2k, x ∈ I

}
. We obtain a sequence of points {xk}k>−∞ such that

0 < xk ≤ xk+1, ∀k ∈ Z, and if xk < b, then W(xk) = 2k, 2k ≤ W(x) ≤ 2k+1 for

xk ≤ x ≤ xk+1,
xk∫

xk−1

w(s)ds = 2k−1, and if xk+1 = b, then
xk+1∫
xk

w(s)ds ≤ 2k. These

facts will be used below without reminders. We assume that Ik = [xk, xk+1),
k ∈ Z, Z0 = {k : k ∈ Z, Ik � ∅}. Then Z0 ⊆ Z and I =

⋃
k∈Z

Ik =
⋃

k∈Z0

Ik. Since

Ik = ∅, ∀k ∈ Z \Z0, and integrals over these intervals are equal to zero, then
in the sequel, without loss of generality, we can suppose that Z = Z0.

Let Aα,β < ∞. We need to prove that the inequality

‖Tα,β f ‖q,v � Aα,β‖ f ‖p,w, f ∈ Lp,w, (3)

holds, which means ‖Tα,β‖ � Aα,β and, together with (2), this gives that

‖Tα,β‖ ≈ Aα,β.
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Let f ≥ 0. Using the relation I =
⋃
k

Ik, we have that

‖Tα,β f ‖qq,v =
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

=
∑

k

xk+1∫
xk

v(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk−1∫
a

+

x∫
xk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q

dx

�
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫
a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

+
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

xk−1

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx := J1 + J2. (4)

We now estimate J1 and J2 separately. Using the monotonicity of W we
find that

J1 =
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫
a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫
a

u(s)Wβ(s) f (s)w(s)ds

(W(xk) −W(xk−1))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

= 22q(1−α)
∑

k

xk+1∫
xk

v(x)
( 1
2k+1

)q(1−α)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk−1∫
a

u(s)Wβ(s) f (s)w(s)ds)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

�
∑

k

xk+1∫
xk

v(x)Wq(α−1)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

u(s)Wβ(s) f (s)w(s)ds)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx ≤ ‖Hα,β f ‖qq,v.

Hence, by Lemma 2.1 we get that

J1 � Aq
α,β‖ f ‖qp,w. (5)

Moreover, by using Hölder’s inequality and that the function u is in-
creasing, we obtain that

J2 =
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

xk−1

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx



Boundedness and compactness of a class of Hardy type operators 7

≤
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
xk−1

up′(s)Wp′β(s)w(s)ds

(W(x) −W(s))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(xk−1)

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

Wp′β(s)w(s)ds

(W(x) −W(s))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx. (6)

A change of variables W(s) =W(x)t in the last integral, implies that

x∫
a

Wp′β(s)w(s)ds

(W(x) −W(s))p′(1−α)
=

Wp′β+1(x)
Wp′(1−α)(x)

1∫
0

tp′β(1 − t)p′(α−1)dt. (7)

Since β ≥ 0, α > 1
p , then the Euler beta function

1∫
0

tp′β(1 − t)p′(α−1)dt

converges. Consequently, from (6) and (7) it follows that

J2 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(xk−1)

xk+1∫
xk

v(x)
W

q
p′ (p

′β+1)dx
Wq(1−α)(x)

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(xk−1)W
q
p′ (p

′β+1)(xk+1)

xk+1∫
xk

v(x)Wq(α−1)(x)dx

= 22(qβ+ q
p′ )

∑
k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

× uq(xk−1)W
q
p′ (p

′β+1)(xk−1)

xk+1∫
xk

v(x)Wq(α−1)(x)dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

× uq(xk−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫
a

Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′ xk+1∫

xk

v(x)Wq(α−1)(x)dx
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≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′ b∫

xk

v(x)Wq(α−1)(x)dx

≤ Aq
α,β

∑
k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤ Aq
α,β

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Aq
α,β‖ f ‖qp,w. (8)

By combining (4), (5) and (8) we obtain (3). The proof is complete.

Proof of Theorem 3.2. Necessity. Similarly as in the proof of Theorem 3.1
and the estimate

‖Tα,β‖ � Bα,β, (9)

follow from (2) and Lemma 2.2.
Sufficiency. Let Bα,β < ∞. If we show that ‖Tα,β‖ � Bα,β, then this fact

and (9) imply that ‖Tα,β‖ ≈ Bα,β. Next, we use relation (4). For the estimate
J1 we have obtained J1 � ‖Hα,β f ‖qq,v. Hence, by Lemma 2.2 we obtain that

J1 � Bq
α,β‖ f ‖qp,w. (10)

Moreover, from Theorem 3.1, obvious estimates and Hölder’s inequal-
ity it follows that

J2 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

× uq(xk−1)W
q
p′ (p

′β+1)(xk+1)

xk+1∫
xk

v(x)Wq(α−1)(x)dx
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= 23(qβ+ q
p′ )(2p′β+1 − 1)

q
p′
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

× uq(xk−1)
(
2(p′β+1)(k−1) − 2(p′β+1)(k−2)

) q
p′

xk+1∫
xk

v(x)Wq(α−1)(x)dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

× uq(xk−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫

xk−2

Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′ xk+1∫

xk

v(x)Wq(α−1)(x)dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk−1∫
xk−2

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′ xk+1∫

xk

v(x)Wq(α−1)(x)dx

(
we apply Hölder’s inequality with the conjugate exponents p

q ,
p

p−q

)

≤ J
p−q

p

21

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk−1

f p(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� J
p−q

p

21 ‖ f ‖qp,w, (11)

where

J21 =
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫

xk−2

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+1∫
xk

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

.
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To estimate J21 we use the relation

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk−1∫

xk−2

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

�
xk−1∫

xk−2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

xk−2

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

up′(t)Wp′β(t)w(t)dt.

Then

J21 �
∑

k

xk−1∫
xk−2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

xk−2

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

× up′(t)Wp′β(t)w(t)dt

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

≤
∑

k

xk−1∫
xk−2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

up′(t)Wp′β(t)w(t)dt

≤ B
qp

p−q

α,β . (12)

By substitution of (12) in (11) we obtain that

J2 � Bq
α,β‖ f ‖qp,w. (13)

Now, by combining (4), (10) and (13) we obtain that

‖Tα,β f ‖q,v � Bα,β‖ f ‖p,w.
Consequently, ‖Tα,β‖q,v � Bα,β. The proof is complete.
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4 Compactness of the operator Tα,β

The main results in this Section reads:

Theorem 4.1. Let 0 < α < 1, 1
α < p ≤ q < ∞ and β ≥ 0. Let u be a non-

increasing function on I. Then the operator Tα,β is compact from Lp,w to Lq,v if and
only if Aα,β < ∞ and

lim
z→a+

Aα,β(z) = lim
z→b−

Aα,β(z) = 0,

where

Aα,β(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Theorem 4.2. Let 0 < α < 1, p > 1
α and β ≥ 0. Let u be a non-increasing

function on I. If b < ∞ and 0 < q < p < ∞ or b = ∞ and 1 < q < p < ∞, then
the operator Tα,β is compact from Lp,w to Lq,v if and only if Bα,β < ∞.

Proof of Theorem 4.1. Necessity. Let the operator Tα,β be compact from
Lp,w to Lq,v. Then it is bounded and consequently, by Theorem 3.1, we have
that Aα,β < ∞. First we need to show that lim

z→a+
Aα,β(z) = 0. Consider the

family of functions { ft}t∈I, where

ft(x) = χ(a,t)(x)up′−1(x)W(p′−1)β(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p

, x ∈ I. (1)

We note that

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

| ft(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

| ft(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

= 1. (2)
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Next we show that the family of functions { ft}t∈I defined by (1) converges
weakly to zero in Lp,w. Let g ∈ Lp′,w1−p′ =

(
Lp,w

)∗
. Then, by Hölder’s

inequality and (2), we find that

b∫
a

ft(x)g(x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

| ft(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

|g(s)|p′w1−p′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

|g(s)|p′w1−p′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

. (3)

Since g ∈ Lp′,w1−p′ , then the last integral in (3) converges to zero as t→ a+,
which means weak convergence of the family of functions { ft} to zero as
t → a+. Therefore, from the compactness of the operator Tα,β from Lp,w to
Lq,v it follow that

lim
t→a+
‖Tα,β ft‖q,v = 0. (4)

Moreover,

‖Tα,β ft‖qq,v =
b∫

a

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

a

u(s)Wβ(s) ft(s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≥
b∫

t

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

u(s)Wβ(s) ft(s)w(s)ds

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≥
b∫

t

v(x)dx
Wq(1−α)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− q

p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

= Aq
α,β(t). (5)

From (4) and (5) it follows that lim
t→a+

Aα,β(t) = 0.

Now, we show that lim
t→b−

Aα,β(t) = 0.

From the compactness of the operator Tα,β from Lp,w to Lq,v it follows
compactness of the conjugate operator

T∗α,βg(s) = u(s)Wp(s)w(s)

b∫
s

g(x)dx

(W(x) −W(s))1−α
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from Lq′,v1−q′ to Lp′,w1−p′ .
For t ∈ I we introduce the family {gt}t∈I of functions:

gt(x) = χ[t,b)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′

W(q−1)(α−1)(x)v(x). (6)

The family {gt}t∈I of functions defined by (6) is correctly defined, since
due to condition Aα,β < ∞ the involving integrals are finite. We show that
for all t ∈ I the functions gt ∈ Lq′,v1−q′ converges weakly to zero as t→ b−.

Indeed,

‖gt‖q′,v1−q′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

|gt(x)|q′v1−q′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

|W(q−1)(α−1)(x)v(x)|q′v1−q′(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

= 1. (7)

By using (7) with f ∈ Lq,v =
(
Lq′,v1−q′

)∗
we obtain that

b∫
a

gs(x) f (x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

|gt(x)|q′v− q′
q (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ ‖gt‖q′,v1−q′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Since f ∈ Lq,v, then the last integral tends to zero as t → b−, that gives
the weak convergence to zero of {gt}t∈I in Lq′,v1−q′ as t→ b−. By compactness
of T∗α,β : Lq′,v1−q′ → Lp′,w1−p′ it follows that

lim
s→b−
‖T∗α,βgt‖p′,w1−p′ = 0. (8)
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Furthermore, we note that

‖T∗α,βgt‖p′,w1−p′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

|u(s)Wβ(s)w(s)|p′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

gt(x)dx

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

w1−p′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

up′(s)Wp′β(s)w(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

gt(x)dx

(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

W(q−1)(α−1)(x)v(x)dx
W1−α(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

= Aα,β(t).

Hence, according to (8) we have that lim
s→b−

Aα,β(s) = 0. The proof of the

necessity is complete.
Sufficiency. For a < c < d < b we define

Pc f := χ(a,c] f , Pcd f := χ(c,d] f , Qd f := χ(d,b) f .

Then
f = Pc f + Pcd f +Qd f

and since PcTα,βPcd ≡ 0, PcTα,βQd ≡ 0, PcdTα,βQd ≡ 0, we have that

Tα,β f = PcdTα,βPcd f + PcTα,βPc f + PcdTα,βPc f +QdTα,β f . (9)

We show that the operator PcdTα,βPcd is compact from Lp,w to Lq,v. Since
PcdTα,βPcd f (x) = 0 for x ∈ I\(c, d), then it is enough to show that the operator
PcdTα,βPcd is compact from Lp,w(c, d) to Lq,v(c, d). This, in turn, is equivalent
to compactness of the operator

T f (x) =

d∫
c

K(x, s) f (s)ds
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from Lp(c, d) to Lq(c, d) with the kernel

K(x, s) =
u(s)Wβ(s)v

1
q (x)χ(c,d)(x − s)w

1
p′ (s)

(W(x) −W(s))1−α .

Let {xk}k∈Z be the sequence of points defined in the proof of Theorem 3.1.
There are points xi, xn+1, xi < xn+1 such that xi ≤ c < xi+1, xn < d ≤ xn+1.
We assume that the numbers c, d are chosen so that xi+1 < xn. Similarly to
obtaining estimates of J1 and J2 in Theorem 3.1, we have that

d∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

|K(x, s)|p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx =

d∫
c

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

c

up′(s)Wp′β(s)w(s)ds
(W(x) −W(s))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

≤
n∑

k=i

xk+1∫
xk

v(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk−1∫
a

+

x∫
xk−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ up′(s)Wp′β(s)w(s)ds
(W(x) −W(s))p′(1−α)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
q
p′

dx

≤ μ(n − i + 1)Aq
α,β < ∞,

where the constant μ does not depend on i,n.
Therefore, on the basis of Kantarovich condition ([2], p.420), the opera-

tor T is compact from Lp(c, d) to Lq(c, d), which is equivalent to compactness
of the operator PcdTα,βPcd from Lp,w to Lq,v.

From (9) it follows that

‖Tα,β − PcdTα,βPcd‖ ≤ ‖PcTα,βPc‖ + ‖PcdTα,βPc‖ + ‖QdTα,β‖. (10)

We will show that the right hand side of (10) tends to zero at c→ a and
d→ b. Then the operator Tα,β as the uniform limit of compact operators is
compact from Lp,w to Lq,v.

By using Theorem 3.1 we find that

‖PcTα,βPc f ‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
a

v(x)

∣∣∣∣∣∣∣∣
x∫

a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
a<z<c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
z

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p,w
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≤ sup
a<z<c

Aα,β(z)‖ f ‖p,w.
Consequently, ‖PcTα,βPc‖ � sup

a<z<c
Aα,β(z). Hence,

lim
c→a+
‖PcTα,βPc‖ � lim

c→a+
sup
a<z<c

Aα,β(z) = lim
z→a+

Aα,β(z) = 0. (11)

To estimate ‖PcdTα,βPc‖ we assume that vε(x) = v(x) for x ∈ (c, d] and
vε(x) = εqv(x) for x ∈ (a, c], uε(s) = u(s) for s ∈ (a, c] and uε(s) = εu(s) for
s ∈ (c, d], where 1 > ε > 0. Obviously, the function uε is non-increasing on
I. Then, according to Theorem 3.1 we obtain that

‖PcdTα,βPc‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

d∫
c

v(x)

∣∣∣∣∣∣∣∣
c∫

a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

d∫
a

vε(x)

∣∣∣∣∣∣∣∣
x∫

a

uε(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� Aεα,β‖ f ‖p,w, (12)
where

Aεα,β = sup
a<z<d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

z

Wq(α−1)(x)vε(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′
ε (s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

We estimate the expression Aεα,β from above as follows:

Aεα,β ≤ sup
a<z<c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

Wq(α−1)(x)v(x)dx + εq

c∫
z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

+ sup
c<z<d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

a

up′(s)Wp′β(s)w(s)ds + εp′
z∫

c

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′
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≤ sup
a<z<c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + εAα,β

+ sup
c<z<d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

+ εAα,β

≤ 2
(
Aα,β(c) + εAα,β

)
. (13)

Since the left side of (12) does not depend on ε > 0, then substituting
(13) in (12) and letting ε→ 0, we get that

‖PcdTα,βPc f ‖ � Aα,β(c)‖ f ‖p,w.
Therefore ‖PcdTα,βPc‖ � Aα,β(c) and we conclude that

lim
c→a+
‖PcdTα,βPc‖ � lim

c→a+
Aα,β(c) = 0. (14)

Next, arguing as above we find that

‖QdTα,β f ‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
d

v(x)

∣∣∣∣∣∣∣∣
x∫

a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
d<z<b

Aα,β(z)‖ f ‖p,w.
Consequently,

lim
d→b−
‖QdTα,β‖ ≤ lim

d→b−
sup
d<z<b

Aα,β(z) = lim
z→b−

Aα,β(z) = 0. (15)

From (11), (14) and (15) it follows that the right hand side of (10) tends
to zero as c→ a+ and d→ b−. The proof is complete.

Proof of Theorem 4.2. In the case b < ∞ and 0 < q < p < ∞ the statement
of Theorem 4.2 follows from the Ando Theorem and its generalizations
[10]. Therefore, we only need to prove Theorem 4.2 in the case a = 0, b = ∞
and 1 < q < p < ∞.

Necessity. Let the operator Tα,β be compact from Lp,w to Lq,v. Then the
operator is bounded. Hence, by Theorem 3.2, Bα,β < ∞.

Sufficiency. Let Bα,β < ∞. Here Tα,β f = PdTα,βPd f +QdTα,β f . Therefore

‖Tα,β − PdTα,βPd‖ ≤ ‖QdTα,β‖. (16)
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Since d < ∞, then the operator PdTα,βPd is compact from Lp,w(0, d) to Lq,v(0, d),
which is equivalent to its compactness from Lp,w to Lq,v. We show that the
right-hand side of (16) tends to zero as d → ∞. Then the operator Tα,β is
compact from Lp,w to Lq,v as the uniform limit of compact operators.

Let 1 > ε > 0. To estimate ‖QdTα,β f ‖ we suppose that vε(x) = v(x) for
x ∈ [d,∞) and vε(x) = εqv(x) for x ∈ (0, d). Using the relations Bα,β ≈ B̃α,β
(see Remark 2.3), in view of Theorem 3.2, we have that

‖QdTα,β f ‖ ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

a

vε(x)

∣∣∣∣∣∣∣∣
x∫

a

u(s)Wβ(s) f (s)w(s)ds

(W(x) −W(s))1−α

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� B̃εα,β‖ f ‖p,w
or

‖QdTα,β‖ � B̃εα,β, (17)

where

B̃εα,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

Wq(α−1)(x)vε(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

Wq(α−1)(z)vε(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

Passing to the limit ε→ 0+, from (17) it follows that

‖QdTα,β‖ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

up′(s)Wp′β(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

Wq(α−1)(z)v(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

Hence,
lim
d→∞
‖QdTα,β‖ = 0. (18)

Obviously, (18) implies that the right-hand side of (16) tends to zero as
d→∞. The proof is complete.
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5 Some dual results

Here we consider the dual operator K∗α,β defined by

K∗α,βg(s) =

b∫
s

u(s)Wβ(s)g(x)v(x)dx

(W(x) −W(s))1−α (1)

and its mapping properties from Lp,v to Lq,w.
We define

A∗α,β(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

uq(s)Wqβ(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

Wp′(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

,

A∗α,β = sup
z∈I

A∗α,β(z).

Our first main result here reads:

Theorem 5.1. Let 0 < α < 1, 1 < p ≤ q < 1
1−α and β ≥ 0. Let u be a

non-increasing function on I. Then the operator K∗α,β defined by (1)
i) is bounded from Lp,v to Lq,w if and only if A∗α,β < ∞ and

moreover, ‖K∗α,β‖ ≈ A∗α,β;
ii) is compact from Lp,v to Lq,w if and only if A∗α,β < ∞ and

lim
z→a+

A∗α,β(z) = lim
z→b−

A∗α,β(z) = 0.

Proof. The operator K∗α,β acting from Lp,v to Lq,w is conjugate to the operator

Kα,β f (x) = v(x)

x∫
a

u(s)Wβ(s) f (s)ds

(W(x) −W(s))1−α

acting from Lq′,w1−q′ to Lp′,v1−p′ , which is equivalent to the action of the op-
erator Tα,β from Lq′,w to Lp′,v. Consequently, the operator K∗α,β is bounded
and compact from Lp,v to Lq,w if and only if the operator Tα,β is respectively
bounded and compact from Lq′,w to Lp′,v. Moreover, ‖K∗α,β‖ = ‖Tα,β‖. Since,
by the conditions of Theorem 5.1 we have 1

α < q′ ≤ p′ < ∞, then the
statements i) and ii) in Theorem 5.1 follows directly from Theorem 3.1 and
Theorem 4.1. The proof is complete. �

Similarly, in view of Theorem 3.2 we have the following:
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Theorem 5.2. Let 0 < α < 1, 1 < q < min{p, 1
α−1 }, p > 1 and β ≥ 0. Let u be

a non-increasing function on I. Then the operator K∗α,β defined by (1) is bounded
and compact from Lp,v to Lq,w if and only if B∗α,β < ∞, where

B∗α,β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

Wp′(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q ⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

uq(s)Wqβ(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

× uq(s)Wqβ(s)w(s)ds
) p−q

pq
.

Theorems 5.1 and 5.2 implies especially the following new information
in the theory of Hardy type inequalities:

Theorem 5.3. Let 0 < α < 1, β ≥ 0 and u be a non-increasing function on I.
Then

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
K∗α,β f (x)

)q
w(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

(
f (x)

)p v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(2)

holds if and only if
a) A∗α,β < ∞ for the case 1 < p ≤ q ≤ 1

1−α ,
b) B∗α,β < ∞ for the case 1 < q < min(p, 1

α−1), p > 1.
Moreover, for the best constant C in (2) it yields that C ≈ A∗α,β in case a) and

C ≈ B∗α,β in case b).

Theorem 5.3 supplements the results of [2].

6 Applications

By applying our results in special cases we obtain both new and well-
known results. Here we just consider the Riemann-Liouville, Erdelyi-
Kober and Hadamard operators mentioned in our introduction. We use
the weight functions ρ and ω and consider these operators on the forms Ĩα,
Ẽα,γ and H̃α defined by

Ĩα f (x) := ρ(x)
[
Iα( fω)

]
(x),

Ẽα,γ f (x) := ρ(x)
[
Eα,γ( fω)

]
(x),

H̃α f (x) := ρ(x)
[
Hα( fω)

]
(x),
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where ρ andω are almost everywhere positive functions locally summable
on I with degrees q and p′, respectively.

The action of the operator Tα,β from Lp,v to Lq,w is equivalent to the action
of the operator

T̃α,β f (x) = v
1
q (x)

x∫
a

u(s)Wβ(s)w
1
p′ (s) f (s)ds

(W(x) −W(s))1−α

from Lp to Lq. Therefore, in the case W(x) = x we have ρ(x) = v
1
q (x),

ω(x) = u(x)xβ and

Ĩα f (x) = ρ(x)

x∫
a

ω(s) f (s)ds

(x − s)1−α .

If W(x) = xσ, σ > 0, then u(s)Wβ(s)w
1
p′ (s) = u(s)sσβ−

σ−1
p′ = u(s)sσγ+σ−1,

where γ = β − σ−1
σp . Consequently, ρ(x) = v

1
q (x), ω(s) = u(s) and

Ẽα,γ f (x) = ρ(x)

x∫
a

ω(s)sσγ+σ−1 f (s)ds

(xσ − sσ)1−α .

Now, we assume that a > 0 and W(x) = ln x
a . Then u(s)Wβ(s)w

1
p′ (s) =

u(s)
(
ln s

a

)β ( a
s

) 1
p′
= a

1
p′ u(s)s

1
p
(
ln s

a

)β 1
s . In this case ρ(x) = v

1
q (x), ω(s) =

u(s)s
1
p
(
ln s

a

)β
and

H̃α f (x) = ρ(x)

x∫
a

ω(s) f (s)ds

s
(
ln x

s

)1−α .

Below we present statements for boundedness and compactness of the
operators Ĩα, Ẽα,γ and H̃α from Lp to Lq. These statements are consequences
of Theorems 3.1, 3.2, 4.1 and 4.2.

We define

A1
α(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

(
ρ(x)xα−1

)q
dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, A1
α := sup

z∈I
A1
α(z),

B1
α :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

|ρ(x)xα−1|qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q ⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ωp′(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.
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Corollary 6.1. Let 0 < α < 1, β ≥ 0 andω(s) = u(s)sβ. Let u be a non-increasing
function on I. Then

i) for 1
α < p ≤ q < ∞ the operator Ĩα is bounded from Lp to Lq if and only

if A1
α < ∞ and, moreover, ‖̃Iα‖ ≈ A1

α. It is compact from Lp to Lq if and only if
A1
α < ∞ and lim

z→a+
A1
α(z) = lim

z→b−
A1
α(z) = 0;

ii) for 0 < q < p < ∞ and p > 1
α the operator Ĩα is bounded (compact if b < ∞

or b = ∞ and 1 ≤ q < p < ∞) from Lp to Lq if and only if B1
α < ∞.

Remark 6.2. Corollary 6.1 generalizes the results of Theorems 1 and 2, 5 and
6 in [7], where the case β = 0 was considered. Even in this case the results of
Corollary 6.1 are different (and in a sense simpler to use) than those in [7], because
in [7] the statements are given in terms of two expressions while here we only need
one condition.

We define

A2
α,γ(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

|ρ(x)xσ(α−1)|qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

|ω(s)sσγ+σ−1|p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

,

A2
α,γ := sup

z∈I
A2
α,γ(z),

B2
α,γ :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

|ρ(x)xσ(α−1)|qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

|ω(s)sσγ+σ−1|p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(p−1)

p−q

|ω(z)zσγ+σ−1|p′dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

Corollary 6.2. Let 0 < α < 1, σ > 0, β ≥ 0 and γ = β − σ−1
σp . Let ω be a

non-increasing function on I. Then
i) for 1

α < p ≤ q < ∞ the operator Ẽα,γ is bounded from Lp to Lq if and only if
A2
α,γ < ∞ and, moreover, ‖Ẽα,γ‖ ≈ A2

α,γ. It is compact from Lp to Lq if and only if
A2
α,γ < ∞ and lim

z→a+
A2
α,γ(z) = lim

z→b−
A2
α,γ(z) = 0;

ii) for 0 < q < p < ∞ and p > 1
α the operator Ẽα,γ is bounded (compact if

b < ∞ or b = ∞ and 1 ≤ q < p < ∞) from Lp to Lq if and only if B2
α,γ < ∞.
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To formulate statements corresponding to the operator H̃α we define

A3
α(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

∣∣∣∣∣ρ(x)
(
ln

x
a

)α−1∣∣∣∣∣q dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ⎛⎜⎜⎜⎜⎜⎜⎜⎝

z∫
a

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, A3
α := sup

z∈I
A3
α(z),

B3
α :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

∣∣∣∣∣ρ(x)
(
ln

x
a

)α−1∣∣∣∣∣q dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q ⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

ωp′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

ωp′(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

Corollary 6.3. Let a > 0, 0 < α < 1, β ≥ 0 and ω(s) = u(s)s
1
p
(
ln s

a

)β
. Let u be a

non-increasing function on I. Then
i) for 1

α < p ≤ q < ∞ the operator H̃α is bounded from Lp to Lq if and only
if A3

α < ∞ and, moreover, ‖H̃α‖ ≈ A3
α. It is compact from Lp to Lq if and only if

A3
α < ∞ and lim

z→a+
A3
α(z) = lim

z→b−
A3
α(z) = 0;

ii) for 0 < q < p < ∞ and p > 1
α the operator H̃αis bounded (compact if b < ∞

or b = ∞ and 1 ≤ q < p < ∞) from Lp to Lq if and only if B3
α < ∞.

Finally, we consider the operator Ĩ∗αg(s) = ρ(s)[I∗α(gω)](s), s ∈ I, acting
from Lp to Lq, where I∗α is the Weil operator

I∗αg(s) =

b∫
s

g(x)dx
(x − s)1−α .

The action of the operator K∗α,β from Lp,v to Lq,w is equivalent to the action
of the operator

K̃∗α,βg(s) = w
1
q (s)u(s)Wβ(s)

b∫
s

v
1
p′ (x)g(x)dx

(W(x) −W(s))1−α

from Lp to Lq. Therefore, when W(x) = x we have

ρ(s) = u(s)sβ, ω(x) = v
1
p′ (x),

Ĩ∗αg(s) = ρ(s)

b∫
s

ω(x)g(x)dx
(x − s)1−α .
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We define

A∗α(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

ρq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
z

|ω(x)xα−1|p′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, A∗α := sup
z∈I

A∗α(z),

B∗α :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

|ω(x)xα−1|p′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q ⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

a

ρq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

ρq(z)dz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

From Theorems 5.1 and 5.2 we have the following result:

Corollary 6.4. Let 0 < α < 1, β ≥ 0 and ρ(s) = u(s)sβ. Let u be a non-increasing
function on I. Then

i) for 1 < p ≤ q < 1
1−α the operator Ĩ∗α is bounded from Lp to Lq if and only

if A∗α < ∞ and, moreover, ‖̃Iα‖ ≈ A∗α. It is compact from Lp to Lq if and only if
A∗α < ∞ and lim

z→a+
A∗α(z) = lim

z→b−
A∗α(z) = 0;

ii) for 1 < q < {min(p, 1
1−α )} < ∞ and p > 1 the operator Ĩ∗α is bounded

(compact) from Lp to Lq if and only if B∗α < ∞.

Remark 6.6. From the results in Corollary 6.1 - 6.3 follows some correspond-
ing Hardy type inequalities, which seem to be new even it they are special cases of
our Theorems 3.3 and 5.3.
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1 Introduction

Let 0 < p, q < ∞, I = (a, b), 0 ≤ a < b ≤ ∞, 0 < α < 1 and 1
p +

1
p′ = 1. Let W : I → R

be a strictly increasing and locally absolutely continuous function on I. Suppose that
dW(x)

dx ≡ w(x) almost every x ∈ I and W(a) = lim
t→a+

W(t) > −∞.

Let v : I → I be a non-negative locally integrable function on I and ϕ : I → I be a
strictly increasing locally absolutely continuous function with the property:

lim
x→a+
ϕ(x) = a, lim

x→b−
ϕ(x) = b, ϕ(x) ≤ x, ∀x ∈ I.

Consider the operator in the form

Kα,ϕ f (x) =

ϕ(x)∫
a

f (s)w(s)ds
(W(x) −W(s))1−α , x ∈ I, (1)

from Lp,w = Lp,w(I) to Lq,v = Lq,v(I), where Lp,w is the space of measurable functions f : I→ R
for which the functional

‖ f ‖p,w =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

| f (x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

, 0 < p < ∞,

is finite. Let
W0(x) =W(x) −W(a). (2)

Then W0(x) ≥ 0, W0(a) = 0, and the operator (1) can be written as

Kα,ϕ f (x) =

ϕ(x)∫
a

f (s)w(s)ds
(W0(x) −W0(s))1−α , x ∈ I.

Therefore, unless otherwise stated, further on we will assume that in (1) W(·) ≥ 0 and
W(a) = 0.

In the case ϕ(x) ≡ x the operator (1) is studied in the papers [1, 2], and in the case
ϕ(x) ≡ x, W(x) = x the operator (1) is the Riemann-Liouville operator and its various
aspects are considered in many papers and books, for example in [3, 4, 5, 6, 6].

Together with operator (1) we consider the operator

K′α,ϕg(s) =

b∫
ϕ−1(s)

g(x)v(x)dx
(W(x) −W(s))1−α , s ∈ I (3)

from Lp,w to Lq,v, where ϕ−1 is an inverse function to ϕ.

Throughout this paper expressions of the form 0
0 , 0 · ∞ are supposed be equal to

zero. The relation A � B (A � B) means that A ≤ CB (B ≤ CA) with a constant C
depending only on p, q, α which can be different in different places. If A� B and A� B,
then we write A ≈ B. By Z we denote the set of all integer numbers and χE denotes the
characteristic function of the set E.
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2 Auxiliary results.

Besides the operator (1) we also consider the operator

Hϕ f (x) =
1

W1−α(x)

ϕ(x)∫
a

f (s)w(s)ds, x ∈ I. (1)

From (1), (1) it is easy to see that
Kα,ϕ f ≥ Hϕ f (2)

for f ≥ 0.
In assumptions about the function ϕ the boundedness of the operator (1) from Lp,w to

Lq,v is equivalent (see [8]) to the boundedness of the Hardy type operator

H f (x) =
1

W1−α(ϕ−1(x))

x∫
a

f (s)w(s)ds, x ∈ I,

from Lp,w to Lq,̃v, where ṽ(t) = v(ϕ−1(t))(ϕ−1(t))′. Therefore, from the results of the study
the Hardy inequality (see, for example, [9]), we have

Lemma 2.1. Let 1 < p ≤ q < ∞. Then the operator (1) is bounded from Lp,w to Lq,v if and only if
A = sup

t∈I
A(t) < ∞, where

A(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

W
1
p′ (ϕ(t)).

Moreover, ‖Hϕ‖ ≈ A.

Remark 2.2. Here and below ‖T‖ denotes the norm of the operator T : Lp,w → Lq,v, where the
operator T either T = Hϕ or T = Kα,ϕ.

Lemma 2.3. Let 0 < q < p < ∞, p > 1. Then the operator (1) is bounded from Lp,w to Lq,v if
and only if

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

W
q(p−1)

p−q (ϕ(t))
v(t)dt

Wq(1−α)(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, ‖Hϕ‖ ≈ B.

We also need the following Lemma:

Lemma 2.4. Let 0 < β < 1 and the function γ(·) defined on I, such that 0 < γ(x) ≤ 1, ∀x ∈ I.
Then

γ(x)∫
0

dz
(1 − z)1−β ≤

γ(x)
β
, ∀x ∈ I.
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Indeed, using the inequality (1 − γ(x))β ≥ 1 − γ(x), we have

γ(x)∫
0

dz
(1 − z)1−β =

1
β

[1 − (1 − γ(x))β] ≤ 1
β

[1 − (1 − γ(x))] =
γ(x)
β
.

3 The main results.

Our first main result reads:

Theorem 3.1. Let 1 < p ≤ q < ∞, 1
p < α < 1 and A be defined as in Lemma 2.1. Then the

operator (1) is bounded from Lp,w to Lq,v if and only if A < ∞. Moreover,

‖Kα,ϕ‖ ≈ A. (1)

Our next main result reads:

Theorem 3.2. Let 0 < q < p < ∞, p > 1
α , 0 < α < 1 and B be defined as in Lemma 2.3. Then

the operator (1) is bounded from Lp,w to Lq,v if and only if B < ∞. Moreover,

‖Kα,ϕ‖ ≈ B. (2)

In the case 0 � W(a) > −∞, in accordance with Remark 2.2 the following theorems
follows from Theorems 3.1 and 3.2, respectively:

Corollary 3.1. Let 1 < p ≤ q < ∞, 1
p < α < 1 and W0 be defined by (2). Then the operator (1)

is bounded from Lp,w to Lq,v if and only if

A0 = sup
a<z<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

Wq(α−1)
0 (x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

W
1
p′
0 (ϕ(z)) < ∞.

Moreover, ‖Kα,ϕ‖ ≈ A0.

Corollary 3.2. Let 0 < q < p < ∞, p > 1
α , 0 < α < 1 and W0 be defined by (2). Then the

operator (1) is bounded from Lp,w to Lq,v if and only if

B0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)
0 (x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

W
q(p−1)

p−q

0 (ϕ(t))
v(t)dt

Wq(1−α)
0 (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, ‖Kα,ϕ‖ ≈ B0.

For the operator (3) we have the following results:
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Theorem 3.3. Let 1 < p ≤ q < 1
1−α , 0 < α < 1 and W0 be defined by (2). Let W(a) > −∞.

Then the operator K′α,ϕ defined by (3) is bounded from Lp,w to Lq,v if and only if

A′ = sup
a<z<b

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

z

Wp′(α−1)
0 (x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

W
1
q

0 (ϕ(z)) < ∞.

Moreover, ‖K′α,ϕ‖ ≈ A′.

Theorem 3.4. Let 1 < q < min{p, 1
1−α }, 0 < α < 1 and W0 be defined by (2). Let W(a) > −∞.

Then the operator K′α,ϕ defined by (3) is bounded from Lp,w to Lq,v if and only if

B′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wp′(α−1)
0 (x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

W
p

p−q

0 (ϕ(t))
v(t)dt

Wp′(1−α)
0 (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, ‖K′α,ϕ‖ ≈ B′.

The boundedness of the operator (1) from Lp,w to Lq,v is equivalent to the boundedness
of the adjoint operator

K∗α,ϕg(s) = w(s)

b∫
ϕ−1(s)

g(x)dx
(W(x) −W(s))1−α , s ∈ I

from Lq′,v1−q′ to Lp′,w1−p′ , which in turn is equivalent to the boundedness of the operator
K′α,ϕ defined by (3) from Lq′,w to Lp′,v. Therefore, making by replacing q′ and p′ by p and q,
respectively in Theorems 3.3 and 3.4, we obtain the assertions of Corollaries 3.1 and 3.2,
respectively.

Our main result concerning compactness of the operator Kα,ϕ reads:

Theorem 3.5. Let 0 < α < 1 and 1
α < p ≤ q < ∞. Then the following statements are equivalent:

i) Kα,ϕ : Lp,w → Lq,v is compact;

ii) A < ∞ and lim
t→a+

A(t) = lim
t→b−

A(t) = 0.

Theorem 3.6. Let b < ∞, 0 < α < 1, 0 < q < p < ∞ and p > 1
α . Then the operator Kα,ϕ is

compact from Lp,w to Lq,v if and only if B < ∞ holds.

4 Proofs of the main results.

Proof of Theorem 3.1. Necessity. Let the operator (1) be bounded from Lp,w to Lq,v. Then
from (1), (1), (6) it follows that the operator Hϕ boundedly maps from Lp,w to Lq,v and
‖Kα,ϕ‖ ≥ ‖Hϕ‖. Consequently, by virtue of Lemma 2.1,

‖Kα,ϕ‖ � A. (1)
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Sufficiency. Let A < ∞. Consider the function W(ϕ(x)). In view of the conditions
imposed on the functionϕ and W we have that the function W(ϕ(x)) is continuous, strictly
increasing and W(ϕ(a)) =W(a) = 0.

For any k ∈ Z we define xk = sup{x ∈ I : W(ϕ(x)) ≤ 2k}. Hence, a < xk ≤ xk+1 ≤ b for
any k ∈ Z and W(ϕ(xk)) ≡ lim

x→xk
W(ϕ(x)) ≤ 2k, but if xk < b, then xk−1 < xk and W(ϕ(xk)) = 2k.

Assume that ϕ(xk) = tk, Ik = [xk, xk+1), Jk = [tk, tk+1) and Z0 = {k ∈ Z : Ik � ∅}. Then

I =
⋃
k∈Z0

Ik =
⋃
k∈Z0

Jk, (2)

W(ϕ(xk)) =W(tk) = 2k, k ∈ Z0, (3)

2k ≤W(ϕ(x)) < 2k+1, for x ∈ Ik, k ∈ Z0. (4)

Let f ∈ Lp,w. By using (2) and the relation ϕ(xk−1) ≤ xk−1 < xk, k ∈ Z0 we have

b∫
a

v(x)|Kα,ϕ f (x)|qdx ≤
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫
a

| f (s)|w(s)ds
(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤ 2q−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫

ϕ(xk−1)

| f (s)|w(s)ds
(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

+
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk−1)∫

a

| f (s)|w(s)ds
(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 2q−1(F1 + F2). (5)

Here and in the sequal, the summation is taken over the set Z0 with respect to index
k.

We estimate the expressions F1 and F2 separately. Applying Hölder’s inequality, we
obtain

F1 =
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫

ϕ(xk−1)

| f (s)|w(s)ds
(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫

ϕ(xk−1)

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫

ϕ(xk−1)

w(s)ds
(W(x) −W(s))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk+1)∫
ϕ(xk−1)

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p xk+1∫

xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫
a

w(s)ds
(W(x) −W(s))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx. (6)

Making the change of the variable W(s) = W(x)z in the last integral and applying
Lemma 2.4, we find that

ϕ(x)∫
a

w(s)ds
(W(x) −W(s))p′(1−α)

≤ W(x)
Wp′(1−α)(x)

W(ϕ(x))
W(x)∫
0

dz

(1 − z)1−p′(α− 1
p )
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≤ 1
p′(α − 1

p )

W(ϕ(x))
Wp′(1−α)(x)

.

Substituting this in (6) and using (2) - (4), we obtain that:

F1 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tk+1∫

tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p xk+1∫

xk

Wq(α−1)(x)v(x)W
q

p′ (ϕ(x))dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tk+1∫

tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

2
q

p′ (k+1)

xk+1∫
xk

Wq(α−1)(x)v(x)dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tk+1∫

tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

W
q

p′ (ϕ(xk))

xk+1∫
xk

Wq(α−1)(x)v(x)dx (7)

� Aq
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tk+1∫

tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Aq

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

tk+1∫
tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Aq‖ f ‖qp,w. (8)

In order to estimate F2 we use (2), (3) and the estimate W(x) ≥ W(ϕ(x)), x ∈ I, to
deduce that

F2 :=
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk−1)∫

a

f (s)w(s)ds
(W(x) −W(s))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk−1)∫

a

f (s)w(s)ds
(W(x) −W(ϕ(xk−1)))1−α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
∑

k

xk+1∫
xk

v(x)dx
(W(x) −W(ϕ(xk−1)))q(1−α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk−1)∫

a

f (s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

.

Taking the following estimates

W(x) −W(ϕ(xk−1)) =W(x) − 1
2
· 2k =W(x) − 1

2
W(ϕ(xk))

≥W(x) − 1
2

W(xk) ≥W(x) − 1
2

W(x) =
1
2

W(x),

for xk ≤ x ≤ xk+1, into account, we obtain that

F2 ≤ 2q(1−α)
∑

k

xk+1∫
xk

v(x)
Wq(1−α)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(xk−1)∫

0

f (s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx
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�
∑

k

xk+1∫
xk

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
W1−α(x)

ϕ(x)∫
a

f (s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx ≤ ‖Hϕ f ‖qq,v. (9)

Hence, on the basis of Lemma 2.1,

F2 � Aq‖ f ‖qp,w. (10)

From (5), (8) and (10) it follows that the operator (1) is bounded from Lp,w to Lq,v,
Moreover, ‖Kα,ϕ‖ � A, which together with (5) gives (1). The proof is complete.

Proof of Theorem 3.2. Necessity. Let the operator (1) be bounded from Lp,w to Lq,v.
Then, as in Theorem 3.1, from (6) and from Lemma 2.3, we have

‖Kα,ϕ‖ � B. (11)

Sufficiency. Let B < ∞. To estimate the norm of the operator (1), we proceed from
the relation (5). By virtue of (9) and Lemma 2.3, we have

F2 � Bq‖ f ‖qp,w. (12)

Estimating F1 in a similar way as in Theorem 3.1, we obtain the relation (7) and
applying Hölder’s inequality with exponents p

q and p
p−q , we have

F1 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
tk+1∫

tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

W
q

p′ (ϕ(xk))

xk+1∫
xk

Wq(α−1)(x)v(x)dx

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

tk+1∫
tk−1

| f (s)|pw(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

W
q(p−1)

p−q (ϕ(xk))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫

xk

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
p

≤ 2
q
p ‖ f ‖qp,w

⎛⎜⎜⎜⎜⎜⎝ p
p − q

∑
k

W
q(p−1)

p−q (ϕ(xk))

×
xk+1∫

xk

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+1∫
t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q

p

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+1∫
xk

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

W
q(p−1)

p−q (ϕ(t))
v(t)dt

Wq(1−α)(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q

p

‖ f ‖qp,w

≤ Bq‖ f ‖qp,w. (13)
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From (5), (12) and (13) it follows that the operator (1) is bounded from Lp,w to Lq,v and,
moreover, ‖Kα,ϕ‖ � B, which together with (11) gives (2). The proof is complete.

Proofs of Theorems 3.3 and 3.4: The proof are similar to those of Theorems 3.1 and
3.2, respectively, so we omit the details.

Proof of Theorem 3.5. Necessity. Suppose that the operator (1) is compact from Lp,w(I) to
Lq,v(I). We show that (ii) is true.

Since the operator Kα,ϕ is compact we get that the operator (1) is bounded. Then, from
Theorem 3.1 its follows that A < ∞.

To prove lim
t→a+

A(t) = lim
t→b−

A(t) = 0 we use the well known fact that a compact operator

maps a weakly convergent sequence into a strongly convergent one. For a < s < b consider
the family of functions

fs(x) = χ(a,ϕ(s)](x)W− 1
p (ϕ(s)), x ∈ I. (14)

It is easy to see that { fs}s∈(a,b) ∈ Lp,w.
Indeed,

‖ fs‖p,w =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

| fs(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

=W− 1
p (ϕ(s))

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(s)∫
a

w(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

= 1. (15)

We show that the family of functions (14) converges weakly to zero in Lp,w.
By using properties of ϕ(x) and the Hölder inequality together with (15) we find that

b∫
a

fs(x)g(x)dx =

ϕ(s)∫
a

fs(x)g(x)dx

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

| fs(x)|pw(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p ⎛⎜⎜⎜⎜⎜⎜⎜⎝

s∫
a

|g(x)|p′w1−p′ (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
s∫

a

|g(x)|p′w1−p′ (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

(16)

for all g ∈ Lp′,w1−p′ .
Since g ∈ Lp′,w1−p′ , then last integral in (16) tends to zero when s → a+, which means

weak convergence fs → 0 at s → a+. Since a compact operator in a Banach space every
weakly convergent sequence translates into a strongly convergent one, then we get that

lim
s→a+
‖Kα,ϕ fs‖q,v = 0. (17)

On the other hand, by using properties of functions W(x) and ϕ(x) we have

‖Kα,ϕ fs‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
a

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(x)∫
a

fs(t)w(t)dt
(W(x) −W(t))1−α

∣∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q
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≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b∫
s

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(s)∫
a

W− 1
p (ϕ(s))w(t)dt

(W(x) −W(t))1−α

∣∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≥W− 1
p (ϕ(s))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q ϕ(s)∫

a

w(t)dt

=W
1
p′ (ϕ(s))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

v(x)Wq(α−1)(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

= A(s). (18)

By combining (17) and (18) we find that lim
s→a+

A(s) = 0.

Next we show that lim
t→b−

A(t) = 0. The compactness of the operator Kα,ϕ implies com-

pactness of the dual operator

K∗α,ϕg(t) = w(t)

b∫
ϕ−1(t)

g(x)dx
(W(x) −W(t))1−α , t ∈ I, (19)

from Lq′,v1−q′ to Lp′,w1−p′ .
For a < s < b we consider the family of functions

gs(x) = χ[s,b)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

v(t)Wq(α−1)(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′

W(q−1)(α−1)(x)v(x), x ∈ I. (20)

These functions are properly defined, since the integrals in the definition of the
functions gs(x), are finite because A < ∞.

In addition, gs ∈ Lq′,v1−q′ , for any s ∈ (a, b). Indeed,

‖gs‖q′,v1−q′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

|gs(x)|q′v1−q′ (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

|W(q−1)(α−1)(x)v(x)|q′v1−q′ (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

= 1. (21)

From (21) it follows that

b∫
a

gs(x) f (x)dx =

b∫
s

gs(x) f (x)dx
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≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
s

|gs(x)|qv−
q′
q (x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
s

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
s

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖gs‖q′,v1−q′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

| f (x)|qv(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

for all f ∈ Lq,v.
Since f ∈ Lq,v, the last integral tends to zero at s→ b−. Hence, the family of functions

{gs}s∈(a,b) converge weakly to zero in Lq′,v1−q′ when s→ b−.
The dual operator K∗α,ϕ is compact from Lq′,v1−q′ to Lp′,w1−p′ . Therefore,

lim
s→b−
‖K∗α,ϕgs‖p′,w1−p′ = 0. (22)

However, the following estimate holds:

‖K∗α,ϕgs‖p′,w1−p′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
b∫

a

w(t)

∣∣∣∣∣∣∣∣∣
b∫

ϕ−1(t)

gs(x)dx
(W(x) −W(t))1−α

∣∣∣∣∣∣∣∣∣
p′

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(s)∫
a

w(t)

∣∣∣∣∣∣∣∣∣
b∫

ϕ−1(t)

gs(x)dx
(W(x) −W(t))1−α

∣∣∣∣∣∣∣∣∣
p′

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≥
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(s)∫
a

w(t)

∣∣∣∣∣∣∣∣
b∫

s

W(q−1)(α−1)(x)v(x)dx
(W(x))1−α

∣∣∣∣∣∣∣∣
p′

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

b∫
s

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

s

Wq(α−1)(t)v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′ b∫
s

Wq(α−1)(t)v(t)dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(s)∫
a

w(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

= A(s).

Consequently, by using (22) we have that lim
s→b−

A(s) = 0. Thus, the implication (i) ⇒
(ii) holds.

Sufficiency. Now we will prove (ii)⇒ (i).
Let a < c < d < b. We take d such that ϕ(d) > c and put Pc f = χ(a,c] f , Pcd f = χ(c,d] f ,

Qd f = χ(d,b) f .
Then f = χ(a,c] f + χ(c,d] f + χ(d,b) f = Pc f + Pcd f +Qd f .
We find that

Kα,ϕ f = (Pc + Pcd +Qd)Kα,ϕ f = (Pc + Pcd)Kα,ϕ(Pc + Pcd +Qd) f +QdKα,ϕ f

= PcKα,ϕPc f + PcKα,ϕPcd f + PcKα,ϕQd f + PcdKα,ϕPc f

+PcdKα,ϕPcd f + PcdKα,ϕQd f +QdKα,ϕ f .



Boundedness and compactness of a class of Hardy type operators 13

Thus, since PcKα,ϕPcd ≡ 0, PcKα,ϕQd ≡ 0, PcdKα,ϕQd ≡ 0 we can conclude that

Kα,ϕ f = PcKα,ϕPc f + PcdKα,ϕPc f + PcdKα,ϕPcd f +QdKα,ϕ f . (23)

We show that the operator PcdKα,ϕPcd is compact from Lp,w(I) to Lq,v(I). Since
PcdKα,ϕPcd f (x) = 0 when x ∈ I\(c, d], then it suffices to show that the operator PcdKα,ϕPcd is
compact from Lp,w(c, d) to Lq,v(c, d) and this is equivalent to the compactness from Lp,w(c, d)

to Lq,v(c, d) of the operator K f (x) =
d∫

c
K(x, s) f (s)ds with the kernel

K(x, t) =
v

1
q (x)χ(c,d](t)θ(ϕ(x) − t)w

1
p′ (t)

(W(x) −W(t))(1−α)
,

where θ(z) is Heaviside’s unit step function, (that is, θ(z) = 1 for z ≥ 0 and θ(z) = 0 for
z < 0).

From the proof of the Theorem 3.1 there are points xk, xi such that k− i = m ≥ 1, xk ≥ d
and c ≥ xi. Therefore, making the change of the variable W(s) = W(x)z in the integral
below and applying Lemma 2.4, we have that

d∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

|K(x, t)|p′dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx =

d∫
c

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫
c

χ(c,d](t)w(t)dt
(W(x) −W(t))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

≤
d∫

c

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ(x)∫
a

w(t)dt
(W(x) −W(t))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

�
xk∫

xi

v(x)Wq(α−1)(x)v(x)W
q

p′ (ϕ(x))dx

≤W
q

p′ (ϕ(xk))

xk∫
xi

v(x)Wq(α−1)(x)dx

�W
q

p′ (ϕ(xi))

b∫
xi

v(x)Wq(α−1)(x)dx ≤ Aq < ∞.

Therefore, on the basis of the theorem in Kantorovich and Akilov (see [10], page 420),
the operator K is compact from Lp(c, d) to Lq(c, d), which is equivalent to the compactness
of the operator PcdKα,ϕPcd from Lp,w(I) to Lq,v(I).

By using (23) we find that

‖Kα,ϕ − PcdKα,ϕ‖ ≤ ‖PcKα,ϕ‖ + ‖QdKα,ϕ‖ + ‖PcdKα,ϕPc‖. (24)

We will show that the right-hand side of (24) tends to zero as c→ a+ and d→ b−. This
will imply that the operator Kα,ϕ being a uniform limit of compact operators, is compact
from Lp,w(I) to Lq,v(I).
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Consider each of the operators in (24) separately. By Theorem 3.1 we have

‖PcKα,ϕPc f ‖q,v =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c∫
a

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(x)∫
a

f (t)w(t)dt
(W(x) −W(t))(1−α)

∣∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
a<t<c

W
1
p′ (ϕ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p,w

≤ sup
a<t<c

A(t)‖ f ‖p,w.
Hence, ‖PcKα,ϕPc‖ � sup

a<t<c
A(t). Then

lim
c→a+
‖PcKα,ϕPc‖ � lim

t→a+
A(t) = 0. (25)

Let vd = Qdv. Then, by Theorem 3.1 we obtain that

‖QbKα,ϕ f ‖q,v = ‖Kα,ϕ f ‖q,vd

� sup
a<t<b

W
1
p′ (ϕ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)vd(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p,w

= sup
d<t<b

W
1
p′ (ϕ(t))

⎛⎜⎜⎜⎜⎜⎜⎜⎝
b∫

t

Wq(α−1)(x)v(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p,w = sup
d<t<b

A(t)‖ f ‖p,w.

Consequently,
lim
d→b−
‖QdKα,ϕ‖ � lim

t→b−
A(t) = 0. (26)

Now we will prove that
lim
c→a+
‖PcdKα,ϕPc‖ = 0. (27)

Since ϕ(d) > c and the function ϕ(x) is continuous then there exists a point z ∈ (c, d)
such that ϕ(z) = c. Since ϕ(x) is a strictly increasing function, then z = ϕ−1(c).

We have that

‖PcdKα,ϕPc f ‖qq,v =
ϕ−1(c)∫
c

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(x)∫
a

χ(a,c](t) f (t)w(t)dt
(W(x) −W(t))(1−α)

∣∣∣∣∣∣∣∣∣
q

dx

+

d∫
ϕ−1(c)

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(x)∫
a

χ(a,c](t) f (t)w(t)dt
(W(x) −W(t))(1−α)

∣∣∣∣∣∣∣∣∣
q

dx = J1 + J2. (28)

By Theorem 3.1, we get that

J1 ≤
ϕ−1(c)∫
a

v(x)

∣∣∣∣∣∣∣∣∣
ϕ(x)∫
a

f (t)w(t)dt
(W(x) −W(t))(1−α)

∣∣∣∣∣∣∣∣∣
q

dx
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� sup
a<t<ϕ−1(c)

Aq(t)‖ f ‖qp,w. (29)

Making the change of the variable W(t) = W(x)s in the integral below and applying
Hölder’s inequality and Lemma 2.1 we obtain that

J2 =

d∫
ϕ−1(c)

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

a

f (t)w(t)dt
(W(x) −W(t))(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤
d∫

ϕ−1(c)

v(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
c∫

a

w(t)dt
(W(x) −W(t))p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx
∥∥∥ f

∥∥∥q

p,w

=

d∫
ϕ−1(c)

v(x)
(W(x))

q
p′

(W(x))q(1−α)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
W(c)
W(x)∫
a

ds
(1 − s)p′(1−α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx
∥∥∥ f

∥∥∥q

p,w

�
d∫

ϕ−1(c)

v(x)
(W(x))

q
p′

(W(x))q(1−α)

(
W(c)
W(x)

) q
p′

dx
∥∥∥ f

∥∥∥q

p,w

=W
q

p′ (c)

d∫
ϕ−1(c)

v(x)(W(x))q(1−α)dx
∥∥∥ f

∥∥∥q

p,w

= Aq(ϕ−1(c))
∥∥∥ f

∥∥∥q

p,w . (30)

Since ϕ−1(c)→ a+ at c→ a+, then from (29), (30) and (28) we have (27).
From (25), (26) and (27) it follows that the right side of (24) tends to zero with c→ a+

and d→ b−. The proof is complete. �

Proof of Theorem 3.6. The statement of Theorem 3.6 follows by Ando Theorem and its
generalizations [11].
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1 Introduction

Let 0 < q < ∞, 1 < p < ∞, 1
p +

1
p′ = 1, R+ = (0,∞). Moreover, let u : R+ → R and v : R+ → R

be weight functions, i.e. non-negative measurable functions on R+.
Since the 70-s of the last century weighted estimates of the form

‖vK f ‖q ≤ C‖u f ‖p (1)

are intensively studied in the literature for different classes of the operators K, where ‖ · ‖p
is the usual norm of the space Lp ≡ Lp(R+).

Here the operator K is defined by

K f (x) =

x∫
0

K(x, s) f (s)ds, (2)

where K(x, s) is a kernel i.e. a measurable function on R+×R+. To characterise all weights
so that inequalities of the type (2) hold are very important questions in the theory of what
today are called Hardy type inequalities. To characterise (1) without restrictions of the
kernel K(x, s) is still an open question.

Review of research in the period 1970 − 1982, where estimates of the form (1) are
given, can be found in [5]. Some directions of research of the estimate (1) until 2009 for
integral operators are summarized in the books [6, 5, 4, 3, 12]. Estimates of the form (1) are
considered not only in Lebesgue spaces but also in other function spaces (see. e.g. [7, 8, 6]
and Chapter 11 of the book [5]). Moreover, in [8] a sequence of classes of measurable
kernels K(x, s) was considered and a full description of weights v and u was given so that
the estimate (1) holds for the operator K defined by (2). However, these results do not
include operators in the form of (2), when the kernel K(·, ·) has a singularity, for example
the Riemann-Liouville operator

Rα f (x) =

x∫
0

f (s)ds
(x − s)1−α , (3)

when 0 < α < 1. The estimate of the form (1) remains open for the operator (3) in the
general case. However, the following cases are studied: v ≡ u in [3], u ≡ 1 in [15, 20] and
u is non-decreasing in [7] and when one of the weighted functions v,u is non-increasing
in [21] .

The estimate (1) for a singular operator in a form

K f (x) =

x∫
0

sγ−1 ln
x

x − s
f (s)ds, (4)

is equivalent to an estimate
‖Kγ f ‖q ≤ C‖ f ‖p (5)

for the operator

Kγ f (x) = v(x)

x∫
0

u(s)sγ−1 ln
x

x − s
f (s)ds. (6)
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The estimate (5) is equivalent to the boundedness of the operator (6) from Lp to Lq with
the norm ‖Kγ‖ = C, where C is the best constant in (5). The operator (4) in the case γ = 0
is called a fractional integration operator of infinitesimal order [16].

The operator

K∗γ f (s) = u(s)sγ−1

∞∫
s

v(x) ln
x

x − s
f (x)dx, s > 0, (7)

is dual to the operator Kγ with respect to the scalar product
∞∫
0

f (x)g(x)dx.

The main purpose of this paper is to establish the boundedness of the operator (6)
and the dual operator (7) from Lp to Lq.

In the case u(x) ≡ 1 of boundedness from Lp to Lq of the operator (6) was studied in
[1].

The main results (Theorems 1-4) are presented in Section 3. As corollaries some
corresponding new Hardy type inequalities (Corollaries 1-4) are pointed out. The detailed
proofs are given in Section 4 and in order not to disturb the argumentations in these proofs
some auxiliary results are collected in Section 2.

Conventions: Uncertainties of the type 0 · ∞, 0
0 , ∞∞ are assumed to be zero. The

inequality of the form A ≤ βB is written in the form A� B, where the positive constant β
may be dependent on the parameters p, q, γ, and the relation A ≈ B means that A� B� A.
χ(a,b)(·) denotes a characteristic function of the interval (a, b), Z is the set of integer numbers.
The notations

∑
k

, sup
k

mean
∑
k∈Z

, sup
k∈Z

, respectively.

2 Auxiliary results

Since

ln
x

x − s
=

s∫
0

dt
x − t

for x > s ≥ 0, (1)

the following inequalities

s
x − s

> ln
x

x − s
>

s
x
, x > s > 0 (2)

hold. The function ln x
x−s decreases with respect to x and increases with respects to s when

x > s ≥ 0, and from the inequality (2) it follows that the functions x ln x
x−s , 1

s ln x
x−s also

decreases with respect to x and increases with respects to s when x > s > 0. Indeed,

∂
∂x

(
x ln

x
x − s

)
= ln

x
x − s

− s
x − s

< 0,

and
∂
∂s

(1
s

ln
x

x − s

)
=

1
s2

( s
x − s

− ln
x

x − s

)
> 0

for x > s > 0.
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From (1) we have

x∫
0

ln
x

x − s
f (s)ds =

x∫
0

s∫
0

dt
x − t

f (s)ds =

x∫
0

1
x − t

x∫
t

f (s)dsdt. (3)

In the case when the function u is positive a.e. in R+ we put u(s)sγ−1 f (s) = g′(s). Then
from (3) and (6) it follows that the inequality (5) is equivalent to the inequality

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

∣∣∣∣∣∣∣∣v(x)

x∫
0

g(x) − g(s)
x − s

ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

|g′(x)u−1(x)x1−γ|pdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(4)

for differentiable functions g.
Similarly, if the function v is positive a.e. in R+, then the inequality (5) for the operator

(7) is equivalent to the inequality

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

∣∣∣∣∣∣∣∣u(s)sγ
∞∫

s

f (x) − f (s)
x − s

dx
x

∣∣∣∣∣∣∣∣
q

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

≤ C

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

| f ′(x)v−1(x)|pdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(5)

for any differentiable functions f . In this case we have that

∞∫
s

ln
x

x − s
f (x)dx =

∞∫
s

f (x)

∞∫
x

sdt
t(t − s)

dx = s

∞∫
s

1
t − s

x∫
t

f (s)ds
dt
t
.

Along with the operator Kγ defined by (6) we consider the operator Hγ defined by

Hγ f (x) =
v(x)

x

x∫
0

u(s)sγ f (s)ds, x > 0.

It easy to see that
Kγ f ≥ Hγ f (6)

for f ≥ 0. Let

A(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

up′ (s)sγp′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

, A = sup
x>0

A(x).

For the operator Hγ the following theorem holds [5, 4, 12]:

Theorem A. Let 1 < p ≤ q < ∞. Then the operator Hγ is bounded from Lp to Lq if and only if
A < ∞. Moreover, ‖Hγ‖ ≈ A.

Remark 2.1. Here and below for any operator T the value ‖T‖ denotes the norm of the operator
T from Lp to Lq.
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The corresponding result for the case q < p reads:

Theorem B. Let 0 < q < p < ∞, p > 1. The operator Hγ is bounded from Lp to Lq if and only if

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

up′ (x)xp′γdx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞.

Moreover, ‖Hγ‖ ≈ B.

Remark 2.2. In the case 1 < q < p < ∞, the constant B is equivalent to the constant

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

3 The main results

Our first main result reads:

Theorem 3.1. Let 1 < p ≤ q < ∞, γ > 1
p , and u(x) be a non-increasing function. Then the

operator Kγ defined by (6) is bounded from Lp to Lq if and only if A < ∞ and, moreover, ‖Kγ‖ ≈ A.

Corollary 3.2. Let the function u be positive a.e. on R+ and the conditions of Theorem 3.1 be
fulfilled. Then the Hardy type inequality (4) holds if and only if A < ∞. Moreover, A ≈ C, where
C is the best constant in (4).

The corresponding result for the case q < p reads:

Theorem 3.3. Let p > 1, 0 < q < p < ∞ and γ > 1
p . Let u be a non-increasing function on R+.

Then the operator Kγ defined by (6) is bounded from Lp to Lq if and only if B < ∞ and, moreover,
‖Kγ‖ ≈ B.

Corollary 3.4. Let 0 < q < p < ∞. Let the function u be positive a.e. in R+ and the conditions of
Theorem 3.3 be fulfilled. Then the Hardy type inequality (4) holds if and only if B < ∞. Moreover,
B ≈ C for the best constant C in (4).

We define

A∗(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vp′ (t)
tp′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
o

sqγuq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

, A∗ = sup
x>0

A∗(x),
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and

B∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tp′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

sqγuq(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

xqγuq(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

We consider the operator K∗γ (defined by (7)) from Lp to Lq. If 1 < p, q < ∞, then the
operator K∗γ is bounded from Lp to Lq if and only if the operator Kγ is bounded from Lq′

to Lp′ . In this case the conditions 1 < p ≤ q < ∞ and 1 < q < p < ∞ are equivalent to the
conditions 1 < q′ ≤ p′ < ∞ and 1 < p′ < q′ < ∞, respectively. Therefore from Theorems
3.1 and 3.3, we have the following:

Theorem 3.5. Let 1 < p ≤ q < ∞ and γ > 1
p . Then the operator K∗γ defined by (7) is bounded

from Lp to Lq if only if A∗ < ∞ and, moreover, ‖K∗γ‖ ≈ A∗.

Corollary 3.6. Let the function v be positive a.e. on R+ and the conditions of Theorem 3.5 be
fulfilled. Then the Hardy type inequality (5) holds if and only if A∗ < ∞. Moreover, A∗ ≈ C,
where C is the best constant in (5).

Theorem 3.7. Let 1 < q < p < ∞ and γ > 1
p . Then the operator K∗γ defined by (7) is bounded

from Lp to Lq if only if B∗ < ∞ and, moreover, ‖K∗γ‖ ≈ B∗.

Corollary 3.8. Let the function v be positive a.e. on R+ and the conditions of Theorem 3.7 be
fulfilled. Then the Hardy type inequality (5) holds if and only if B∗ < ∞. Moreover, B∗ ≈ C for
the best constant C in (5).

4 Proofs of the main results

Proof of Theorem 3.1. Necessity. Let the operator (6) be bounded from Lp to Lq. Then, in
view of (6), the operator Hγ is bounded from Lp to Lq and ‖Kγ‖ ≥ ‖Hγ‖. Therefore, by
Theorem A the value A < ∞ and

‖Kγ‖ � A. (1)

Sufficiency. Let A < ∞. Since ln x
x−s ≥ 0 when x > s ≥ 0, then it is enough to prove the

inequality (5) for f ≥ 0. Let 0 ≤ f ∈ Lp. Then we have

‖Kγ f ‖qq =
∑

k

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

u(s)sγ−1 ln
x

x − s
f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

�
∑

k

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫
0

u(s)sγ−1 ln
x

x − s
f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

+
∑

k

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

2k−1

u(s)sγ−1 ln
x

x − s
f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx := I1 + I2. (2)
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We estimate I1 and I2 separately. Using the monotonicity of the function 1
s ln x

x−s with
respect to the variables x and s, we obtain that for x > s ≥ 0

I1 ≤
∑

k

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫
0

u(s)sγ
1

2k−1
ln

2k

2k − 2k−1
f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

≤ (ln 2)q
∑

k

2k+1∫
2k

vq(x)
(2k−1)q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫
0

u(s)sγ f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

�
∞∫

0

q(x)
xq

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

u(s)sγ f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx = ‖Hγ f ‖qq. (3)

In view of Theorem A from (3) it follows that

I1 � Aq‖ f ‖qq . (4)

By now using the fact that the function u is increasing, applying Hölder’s and Jensen’s
inequalities and making the change of the variable s = xt in the integral below, we have

I2 ≤
∑

k

uq(2k−1)

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

sp′(γ−1) lnp′ x
x − s

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(2k−1)

2k+1∫
2k

vq(x)xq(γ−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

lnp′ x
x − s

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

= β
q

p′
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(2k−1)

2k+1∫
2k

vq(x)xq(γ−1)+ q
p′ dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(2k−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣2(k−1)(γ+ 1
p′ )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣u(2k−1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫
0

sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k+1∫
2k

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k−1∫
0

sp′γup′ (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k+1∫
2k

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

q
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≤ Aq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

2k+1∫
2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Aq‖ f ‖qp, (5)

where β =
1∫

0
tp′(γ−1) lnp′ 1

1−t dt. The finiteness of β follows from the estimate

β ≤ lnp′ 2

1
2∫

0

sp′(γ−1)ds +max{1, 2−p′(γ−1)}
∞∫

ln 2

tp′e−tdt

and from the condition γ > 1
p .

From (2), (4) and (5) it follows that

‖Kγ f ‖q � A‖ f ‖p.
Hence, ‖Kγ‖ � A. This relation together with (1) gives ‖Kγ‖ ≈ A. The proof is complete.

�

Proof of Theorem 3.3. Necessity. Let the operator (6) be bounded from Lp to Lq. Then, in
view of (6), the operator Hγ is bounded from Lp to Lq and ‖Kγ‖ ≥ ‖Hγ‖. Therefore, by
Theorem B the value B < ∞ and

‖Kγ‖ � B. (6)

Sufficiency. Let B < ∞. We have the estimate (2) for 0 ≤ f ∈ Lp. In view of Theorem B and
from (3) we have that

I1 � Bq‖ f ‖qq. (7)

Moreover, from the estimate I2 in the proof of Theorem 3.1 it follows that

I2 �
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

uq(2k−1)2k q
p′ (p′γ+1)

2k+1∫
2k

vq(x)
xq dx

�
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝up′ (2k−1)

2k−1∫
2k−2

tp′γdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′ 2k+1∫
2k

vq(x)
xq dx

≤
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k+1∫

2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k−1∫
2k−2

up′ (t)tp′γdt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′ 2k+1∫
2k

vq(x)
xq dx. (8)

By now using the Hölder inequality with exponents p
q , p

p−q and the estimate

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫

2k−2

up′ (t)tγp′dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

�
2k−1∫

2k−2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

2k−2

up′ (s)sγp′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

up′ (x)xγp′dx
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in (8) we find that

I2 �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫

2k−2

up′ (t)tγp′dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

2k+1∫
2k

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p−q
q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

2k+1∫
2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

2k−1∫
2k−2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

up′ (s)sγp′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q

up′ (x)xγp′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q

q

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

2k+1∫
2k−1

f p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q
p

� Bq‖ f ‖qp. (9)

From (3), (7) and (9) we obtain the estimate

‖Kγ f ‖q � B‖ f ‖p ,

which together with (6) gives ‖Kγ‖ ≈ B. The proof is complete. �

As mentioned before the proofs of Theorem 3.5 and 3.7 follows by using Theorems
3.1 and 3.3, respectively, and a standard duality argument.

We finalize this paper with the following remarks:

Remark 4.1. This paper is an essentially improved and enlarged version of the paper [1] (in
Russian).

Remark 4.2. The current status of the mentioned open question to characterize the Hardy type
inequality (1) - (2) without restriction on the kernel K(x, s) was recently described in [13].
However, the cases considered in this paper are new and can not be found there.

Acknowledgement: The authors thank Professor Ryskul Oinarov for several gener-
ous advices, which have improved the final version of this paper.
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1 Introduction

Let 0 < q < ∞, 1 < p < ∞, 1
p +

1
p′ = 1, R+ = (0,∞). Moreover, let u : R+ → R and v : R+ → R

be weight functions, i.e. non-negative measurable functions on R+.
Weighted estimates of the form

‖vK f ‖q ≤ C‖u f ‖p (1)

are intensively studied in the literature for different classes of the operators K, where ‖ · ‖p
is the usual norm of the space Lp ≡ Lp(R+). We refer to [5] and the books [6, 5, 4, 3, 12]
when K is defined by

K f (x) =

x∫
0

K(x, s) f (s)ds, (2)

where K(x, s) is a kernel i.e. measurable function on R+ × R+.
Estimates of the form (1) are considered not only in Lebesgue spaces but also in other

function spaces (see. e.g. [7, 8, 6] and Chapter 11 of the book [5]). We also refer to [8] and
the recent review article [13].

However, all of these results do not include operators of the form of (2), when the
kernel K(·, ·) has a singularity, for example, the Riemann-Liouville operator

Rα f (x) =

x∫
0

f (s)ds
(x − s)1−α , (3)

when 0 < α < 1. Some special cases are studied in [3, 7, 15, 20, 21].
The estimate (1) for a singular operator in a form

K f (x) =

x∫
0

sγ−1 ln
x

x − s
f (s)ds, (4)

is equivalent to an estimate
‖Kγ f ‖q ≤ C‖ f ‖p (5)

for the operator

Kγ f (x) = v(x)

x∫
0

u(s)sγ−1 ln
x

x − s
f (s)ds. (6)

The estimate (5) is equivalent to the boundedness of the operator (6) from Lp to Lq with
the norm ‖Kγ‖ = C, where C is the best constant in (5). The operator (4) in the case γ = 0
is called a fractional integration operator of infinitesimal order [16].

The operator

K∗γ f (s) = u(s)sγ−1

∞∫
s

v(x) ln
x

x − s
f (x)dx, s > 0 (7)

is dual to the operator Kγ with respect to the scalar product
∞∫
0

f (x)g(x)dx.



4 A.M. Abylayeva, R. Oinarov and L.-E. Persson

When the function u is non- increasing, criterion of boundedness of the operator (6)
and the dual operator (7) from Lp to Lq are obtained in [2].

Recently, some new characterizations of (5) for the operators Kγ and K∗γ, defined by
(5) and (6), respectively, are proved in [2]. In this paper we complement these results by
establishing the exact compactness criteria of the operators Kγ and K∗γ from Lp to Lq.

In the case u(x) ≡ 1 of compactness from Lp to Lq of the operator (6) was studied in
[1].

The main results (Theorems 1-4) are presented in Section 3. The detailed proofs are
given in Section 4 and in order not to disturb the argumentations in these proofs some
auxiliary results are collected in Section 2.

Conventions: Uncertainties of the type 0 · ∞, 0
0 , ∞∞ are assumed to be zero. The

inequality of the form A ≤ βB is written in the form A� B, where the positive constant β
may be dependent on the parameters p, q, γ, and the relation A ≈ B means that A� B� A.
χ(a,b)(·) denotes a characteristic function of the interval (a, b), Z is a set of integer numbers.
The notations

∑
k

, sup
k

mean
∑
k∈Z

, sup
k∈Z

, respectively.

2 Auxiliary results.

Since

ln
x

x − s
=

s∫
0

dt
x − t

for x > s ≥ 0, (1)

the following inequalities

s
x − s

> ln
x

x − s
>

s
x
, x > s > 0 (2)

hold. The function ln x
x−s decreases with respect to x and increases with respects to s when

x > s ≥ 0, and from the inequality (2) it follows that the functions x ln x
x−s , 1

s ln x
x−s also

decreases with respect to x and increases with respects to s when x > s > 0. Indeed,

∂
∂x

(
x ln

x
x − s

)
= ln

x
x − s

− s
x − s

< 0,

and
∂
∂s

(1
s

ln
x

x − s

)
=

1
s2

( s
x − s

− ln
x

x − s

)
> 0

for x > s > 0.
For the operator Kγ the following theorem holds [2]:

Theorem A. Let 1 < p ≤ q < ∞, γ > 1
p , and u(x) - be a non-increasing function. Then the

operator Kγ defined by (6) is bounded from Lp to Lq if and only if A = sup
x>0

A(x) < ∞ and, moreover,

‖Kγ‖Lp→Lq ≈ A, where

A(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

up′ (s)sγp′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

The corresponding result for the case q < p reads (see [2]):
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Theorem B. Let p > 1, 0 < q < p < ∞ and γ > 1
p . Let u be a non-increasing function on R+.

Then the operator Kγ defined by (6) is bounded from Lp to Lq if and only if

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p(q−1)

p−q

up′ (x)xp′γdx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

< ∞

and, moreover, ‖Kγ‖Lp→Lq ≈ B.

Remark 2.1. In the case 1 < q < p < ∞, the constant B is equivalent to the constant

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

3 The main results

Our first main result reads:

Theorem 3.1. Let 1 < p ≤ q < ∞, γ > 1
p , and u(x) - be a non-increasing function. Then

the operator Kγ defined by (6) is compact from Lp to Lq if and only if A < ∞ and lim
x→0+

A(x) =

lim
x→∞A(x) = 0.

The corresponding result for the case q < p reads:

Theorem 3.2. Let 1 < q < p < ∞ and γ > 1
p . Let u be a non-increasing function on R+. Then

the operator Kγ defined by (6) is compact from Lp to Lq if and only if B < ∞.

We define

A∗(x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vp′ (t)
tp′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
o

sqγuq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

, A∗ = sup
x>0

A∗(x),

and

B∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tp′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

sqγuq(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q

xqγuq(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

.

We consider the operator K∗γ (defined by (7)) and its action from Lp to Lq. If 1 < p, q < ∞,
then the operator K∗γ is bounded (compact) from Lp to Lq if and only if the operator Kγ
is bounded (compact) from Lq′ to Lp′ . In this case the conditions 1 < p ≤ q < ∞ and
1 < q < p < ∞ are equivalent to the conditions 1 < q′ ≤ p′ < ∞ and 1 < p′ < q′ < ∞,
respectively. Therefore from Theorems 3.1 and 3.2, we have the following:
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Theorem 3.3. Let 1 < p ≤ q < ∞ and γ > 1
p . Then the operator K∗γ defined by (7) is compact

from Lp to Lq if only if A∗ < ∞ and
lim
x→0+

A∗(x) = lim
x→∞A∗(x) = 0.

Theorem 3.4. Let 1 < q < p < ∞ and γ > 1
p . Then the operator K∗γ defined by (7) is compact

from Lp to Lq if only if B∗ < ∞.

4 Proofs of the main results

Proof of Theorem 3.1. Necessity. Let the operator Kγ be compact from Lp to Lq. Then
the operator is bounded and therefore, by Theorem A, A < ∞. First, we prove that
lim
z→0+

A(z) = 0.

Consider the family of functions { ft}t∈I, where

ft(x) = χ(0,t)(x)up′−1(x)x(p′−1)γ(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

up′ (s)sp′γ(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p

. (1)

Then
∞∫

0

| ft(x)|pdx =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

up′ (s)sp′γ(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1 t∫

0

up′ (x)xp′γ(x)dx ≡ 1. (2)

Next we show that the family of functions { ft} converges weakly to zero in Lp. Let
g ∈ Lp′ = (Lp)∗.

Applying the Hölder inequality and using (2) we have that

∞∫
0

ft(x)g(x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

| ft(x)|pdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

|g(x)|p′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

|g(x)|p′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

Since g ∈ Lp′ , then the last integral converges to zero as t → 0+, which means the
weak convergence to zero for the family of functions { ft}. Then, by the compactness of
the operator Kγ from Lp to Lq

lim
z→0+
‖Kγ ft‖q = 0. (3)

Since ln x
x−s ≥ s

x for x > s > 0 we find that

‖Kγ ft‖qq =
∞∫

0

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

0

u(s)sγ−1(s) ln
x

x − s
ft(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx
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≥
∞∫

t

vq(x)
xq

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

u(s)sβ(s) ft(s)w(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

dx

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

up′ (s)sp′γ(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− q

p
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
0

up′ (s)sp′γ)(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q ∞∫

t

vq(x)
xq dx

= (A(t))q . (4)

By combining (3) and (4) we obtain that lim
t→0+

A(t) = 0.

Now we prove that lim
t→∞A(t) = 0.

The compactness of the operator Kγ : Lp → Lq implies the compactness of the dual
operator (7) from Lq′ to Lp′ .

We introduce the family of functions {gt}t∈I, where

gt(x) = χ(t,∞)(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

q′
vq−1(x)

xq−1 .

Since A < ∞, then the function gt is well defined.
In view of the equality

∞∫
0

|gt(x)|q′dx =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
t

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠ = 1

for f ∈ Lq = (Lq′ )∗ we see that

∞∫
0

f (x)gt(x)dx ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

| f (x)|qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

|gt(x)|q′dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

| f (x)|qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Consequently, lim
t→∞

∞∫
0

f (x)gt(x)dx = 0 for any f ∈ Lq, which means the weak conver-

gence to zero of the family of functions {gt}. Then, by the compactness of the operator K∗γ
from Lq′ to Lp′ , it follows that

lim
t→∞ ‖K

∗
γgt‖p′ = 0. (5)

Again using that ln x
x−s ≥ s

x for x > s > 0, we obtain that

‖K∗γgt‖p′p′ ≥
t∫

0

|u(s)sγ−1(s)|p′
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

v(x) ln
x

x − s
gt(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

w1−p′ (s)ds
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≥
t∫

0

up′ (s)sp′γ(s)ds

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− p′

q′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

a

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′

= Ap′ (t). (6)

By combining (5) and (6) it follows that lim
t→∞A(t) = 0. Thus, the necessity is proved.

Sufficiency. Let A < ∞ and lim
z→0+

A(z) = lim
z→∞A(z) = 0.

For 0 < c < d < ∞we define

Pc f = χ(0,c] f , Pcd f = χ(c,d] f , Qd f = χ(d,∞) f .

Then
f = Pc f + Pcd f +Qd f

and since PcKγPcd ≡ 0, PcKγQd ≡ 0, PcdKγQd ≡ 0, we have that

Kγ f = PcdKγPcd f + PcKγPc f + PcdKγPc f +QdKγ f . (7)

We show that the operator PcdKγPcd is compact from Lp to Lq. Since PcdKγPcd f (x) = 0
for x ∈ I \ (c, d), then it is enough to show that the operator PcdKγPcd is compact from
Lp(c, d) to Lq(c, d). This, in turn, is equivalent to compactness of the operator

T f (x) =

d∫
c

K(x, s) f (s)ds

from Lp(c, d) to Lq(c, d) with the kernel

K(x, s) = u(s)sγ−1v(x)χ(c,d)(x − s) ln
x

x − s
.

Next we note that there are the points 2i, 2n, n > i such that 2i ≤ c < 2i+1, 2n−1 < d ≤ 2n.
We assume that the numbers c and d are chosen so that 2i+1 < 2n−1. Then arguing as in
the estimates of I1 and I2 in Theorem 3.1 in [2] (see Theorem A), we find that

d∫
c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
d∫

c

|K(x, s)|p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx =

d∫
c

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

c

up′ (s)sp′(γ−1)
(
ln

x
x − s

)p′

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

�
n−1∑
k=i

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2k−1∫
0

up′ (s)sp′(γ−1)
(
ln

x
x − s

)p′

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

+

n−1∑
k=i

2k+1∫
2k

vq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x∫

2k−1

up′ (s)sp′(γ−1)
(
ln

x
x − s

)p′

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p′

dx

≤ μ(n − i + 1)A < ∞,
where the constant μ does not depend on i and n. Therefore, on the basis of Kantarovich
condition [2] (page 420), the operator T is compact from Lp(c, d) to Lq(c, d), which is
equivalent to the compactness of the operator PcdKγPcd from Lp to Lq .
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From (7) it follows that

‖Kγ − PcdKγPcd‖ ≤ ‖PcKγPc‖ + ‖PcdKγPc‖ + ‖QdKγ‖. (8)

We show that the right side of (8) tends to zero at c→ 0+ and d→∞. Then it follows
that the operator Kγ as the uniform limit of compact operators is compact from Lp to Lq.

By Theorem A we have that

‖PcKγPc f ‖q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
0

vq(x)

∣∣∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x − s
f (s)ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
0<z<c

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

c∫
z

vq(x)x−qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p

≤ sup
0<z<c

A(z)‖ f ‖p.
Consequently, ‖PcKγPc‖ � sup

0<z<c
A(z). Hence,

lim
c→0+
‖PcKγPc‖ � lim

c→0+
sup
0<z<c

A(z) = lim
c→0+

A(c) = 0. (9)

Let vd = Qdv. Then, by Theorem A, we find that

‖QdKγ f ‖q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

vq
d(x)

∣∣∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x − s
f (s)ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
0<z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
z

vq
d(x)x−qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p

≤ sup
d<z

A(z)‖ f ‖p.

Therefore,
lim
d→∞
‖QdKγ‖ � lim

d→∞
A(d) = 0. (10)

Now we will prove that
lim
c→0+
‖PcdKγPc‖ = 0. (11)

We put vcd = Pcdv and uc = Pcu. It is obvious that the function uc is non-increasing.
Therefore, according to Theorem A, we get that

‖PcdKγPc f ‖q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

vq
cd(x)

∣∣∣∣∣∣∣∣
x∫

0

uc(s)sγ−1 ln
x

x − s
f (s)ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

� sup
0<z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

up′
c (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ ⎛⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
z

vq
cd(x)x−qdx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

‖ f ‖p
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≤ A(c)‖ f ‖p.
and we conclude that equality (11) holds.

From (9), (10) and (11) it follows that the right side of (8) tends to zero at c→ 0+ and
d→∞. Hence, also the sufficiency is proved. The proof is complete. �

Proof of Theorem 3.2. Necessity. Let the operator Kγ be compact from Lp to Lq. Then the
operator is bounded and therefore, by Theorem B, B < ∞.
Sufficiency. Let A < ∞. Here we have Kγ f = PdKγPd f + PdKγQd f +QdKγ f . Therefore

‖Kγ − PdKγPd‖ ≤ ‖PdKγQd‖ + ‖QdKγ‖. (12)

Since d < ∞, then from the Ando theorem and its generalizations (see e.g. [10]) the
operator PdKγPd is compact from Lp(0, d) to Lq(0, d), which is equivalent to the compactness
of it from Lp to Lq. We show that the right-hand side (12) tends to zero as d→∞. Then the
operator Kγ is compact from Lp to Lq as the uniform limit of compact operators. Similarly
as in the proof of Theorem 3.1 we find that

‖QdKγ f ‖q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

vq
d(x)

∣∣∣∣∣∣∣∣
x∫

0

u(s)sγ−1 ln
x

x − s
f (s)ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

.

Then, by Theorem 3.1,

‖QdKγ‖ �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

×
(∫ z

d
vq(x)x−qdx

) q
p−q

vq(z)z−qdz

⎞⎟⎟⎟⎟⎟⎠
(p−q)

pq

.

From this estimate and the fact that B < ∞ it follows that

lim
d→∞
‖QdKγ‖ = 0. (13)

Let vdd = Pdv and ud = Qdu. Then, using again Theorem A, we obtain that

‖PdKγQd f ‖q =
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

vq
dd(x)

∣∣∣∣∣∣∣∣
x∫

0

ud(s)sγ−1 ln
x

x − s
f (s)ds

∣∣∣∣∣∣∣∣
q

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q

�
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

d

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′ (∫ d

0
vq(x)x−qdx

) 1
q

‖ f ‖p = A(d)‖ f ‖p. (14)

We also note that, by Remark 2.1, B ≈ B̃. Since

A(d)� B̃(d,∞)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

d

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

x

vq(t)
tq dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q

p−q
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

up′ (s)sp′γds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q(p−1)

p−q

vq(x)
xq dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
p−q
pq

,
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then from (14) we have that lim
d→∞
‖PdKγQd‖ = 0. From this and from (13) it follows that

the right-hand side of (12) tends to zero at d → ∞. Therefore also the sufficiency part is
proved. The proof is complete. �

Finally, we remark that as mentioned before the proofs of Theorems 3.3 and 3.4 follow
by using Theorems 3.1 and 3.2, respectively, and a standard duality argument.

We also include the following final remark:

Remark 4.1. This paper is an essentially improved and enlarged version of the paper [1] (in
Russian).

Acknowledgement: The author thanks Professor Ryskul Oinarov and Professor Lars-
Erik Persson for several generous advices, which have improved the final version of this
paper.
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Abstract: Inequalities of the form

‖uK f ‖q ≤ C
(
‖ρ f ‖p + ‖vH f ‖p

)
, f ≥ 0,

are considered, where K is an integral operator of Volterra type and H is the

Hardy operator. Under some assumptions on the kernel K we give necessary and

sufficient conditions for such an inequality to hold.

1 Introduction

Let I = (0,+∞), 1 ≤ p, q < ∞. Let u(·), v(·) and ρ(·) be weighted
functions, i.e. positive measurable functions on I. Let K+, K−,
H+ and H− be integral operators of the form

K+ f (x) =

x∫
0

K(x, s) f (s)ds, K− f (x) =

∞∫
x

K(t, x) f (t)dt,

H+ f (x) =

x∫
0

f (s)ds, H− f (x) =

∞∫
x

f (s)ds, x > 0,

where K(x, s) ≥ 0 as x ≥ s ≥ 0.
Denote by Lp the set of all measurable functions f such that

∥∥∥ f
∥∥∥

p
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

∣∣∣ f (x)
∣∣∣p dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

< ∞.
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Inequalities of the form∥∥∥uH f
∥∥∥

q
≤ C

∥∥∥v f
∥∥∥

p
, (1)

where H is some of the operators H+, H−, K+ and K− are called
Hardy type inequalities in the literature. For the standard
Hardy operators H+ and H− almost everything is nowadays
known, see e.g. the books [4], [5], [12] and [3] and the ref-
erences given there. However, for the case with a general
positive kernel k(x, y) a characterization of the weights so that
(1) holds for K+ or K− is a long standing open question. How-
ever, for some kernels and parameters the answer of this open
question is known. The most typical such example is when
k(x, y) is a so called Oinarov kernel (in particular satisfying (4)
below) and when 1 < p ≤ q < ∞ or 0 < q < p < ∞, p ≥ 1. See
especially Chapter 2 in [4] and the references therein. Later on
R.Oinarov [9] generalized such results to cover also the case
with so called generalized Oinarov conditions, for definitions
and some of these results see Section 2.

In this paper we consider the following more general addi-
tive weighted inequalities

‖uK+ f ‖q ≤ C
(
‖ρ f ‖p + ‖vH+ f ‖p

)
, f ≥ 0, (2)

and
‖uK− f ‖q ≤ C

(
‖ρ f ‖p + ‖vH− f ‖p

)
, f ≥ 0. (3)

In particular, our results give new information related to the
open question mentioned above.

Inequalities of the form (2)-(3) were considered in [6, 7,
10, 11, 8]. In [8] the inequalities (2)-(3) have been studied
assuming that the kernels K(·, ·) of the operators K+, K− satisfy
”Oinarov’s condition”, i.e., that there exist a number d ≥ 1 such
that the relation

d−1 (K(x, t) + K(t, s)) ≤ K(x, s) ≤ d (K(x, t) + K(t, s)) (4)
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holds for x ≥ t ≥ s > 0.
In this paper we study the inequalities (2)-(3) when the

kernels of the operators K+ and K− satisfy weaker conditions
than the conditions (4), namely, we assume that the kernels of
the operators K+ and K− belong to the classes O+n , O−n , n ≥ 0,
respectively, which was first introduced in [9]. (for definitions
see Section 2)

This paper is organized as follows: In Section 3 we present
our main results with proofs. In order not to disturb our
presentations we present some Preliminaries of independent
interest in Section 2.

Conventions: If A and B are functionals, then A� B means
that there exist a constant C > 0 independent of the arguments
of the functionals A and B and the inequality A ≤ CB holds.
In the case A� B� A we write A ≈ B.

2 Preliminaries

In [9] the classes O+n and O−n of the kernels of the form K+, K−
are defined for each n ≥ 0. We agree to write K(·, ·) ≡ K±n (·, ·), if
K(·, ·) ∈ O±n .

Let K+(·, ·) and K−(·, ·) be nonnegative measurable functions
inΩ = {(x, s) : x ≥ s ≥ 0} and besides the function K+(·, ·) is non-
decreasing in the first argument and K−(·, ·) is non-increasing
in the second argument.

We say that the function K(·, ·) ≡ K±0 (·, ·) belongs to the class
O±0 (Ω) if only if K+0 (x, s) = v(s) ≥ 0, K−0 (x, s) = u(x) ≥ 0 for all
(x, s) ∈ Ω.

The classesO±n , n = 1, 2, ... are defined recursively as follows:
Let the classes O±i (Ω), i = 0, 1, . . . ,n− 1, n ≥ 1 be defined. Then
K(·, ·) ≡ Kn(·, ·) ∈ O±n (Ω) if and only if there exist functions
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K±i (·, ·) ∈ O±i (Ω), i = 0, 1, . . . ,n − 1 such that

K+n (x, s) ≈
n∑

i=0

K+n,i(x, t)K
+
i (t, s), (1)

K−n (x, s) ≈
n∑

i=0

K−i (x, t)K−i,n(t, s), (2)

when 0 < s ≤ t ≤ x < ∞ and K±n,n(·, ·) ≡ 1, where the func-
tions K+n,i(·, ·), K−i,n(·, ·), i = 0, 1, . . . ,n − 1, generally speaking,
are arbitrary nonnegative measurable functions defined onΩ,
satisfying the conditions (1) or (2), respectively. In fact, these
functions can be defined in the following form (see [9]):

K+n,i(x, t) = inf
0<s≤t

K+n (x, s)
K+i (t, s)

,

K−i,n(t, s) = inf
t<x

K−n (x, s)
K−i (x, t)

, i = 0, 1, . . . ,n − 1.

From (1) and (2) we have for n = 1 that the functions K+1 (·, ·),
K−1 (·, ·) belong to the classes O+1 , O−1 , respectively, if there exist
functions v1 ≥ 0 and u1 ≥ 0 such that

K+1 (x, s) ≈ K+1,0(x, t)v1(s) + K+1 (t, s),

K−1 (x, s) ≈ K−1 (x, t) + K−0,1(t, s)u1(x),

respectively, for all x ≥ t ≥ s > 0.
In particular, we note that each function, satisfying the con-

dition (4), belong to O+1 and O−1 . However, functions from O+1
and O−1 need not to satisfy the condition (4). For example,
the functions K+1 (x, s) = xβ − (x − s)β and K+1 (x, s) = lnγ (x+1)β

s ,
x ≥ s > 0, γ > 0, β > 1, do not satisfy the condition (4).
However, they belong to the class O+1 (Ω) since

xβ − (x − s)β ≈ (x − t)β−1s + tβ − (t − s)β, x ≥ t ≥ s > 0,
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and

lnγ
(x + 1)β

s
≈ lnγ

x + 1
t + 1

+ lnγ
(t + 1)β

s
, x ≥ t ≥ s > 0.

Consider the inequality (1) with H = K+ or H = K−, i.e.

‖uK f ‖q ≤ C‖v f ‖p, (3)

where K is one of the operators K+ or K−. The following
Theorems were proved in [9]:

Theorem A+. Let 1 < p ≤ q < ∞ and the kernel of the operator
K+ belong to the class O+n (Ω), n ≥ 0. Then the inequality (3) holds
for the operator K+ if and only if one of the conditions

A+1 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

uq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

∣∣∣K+(x, s)v−1(s)
∣∣∣p′ ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

< ∞,

A+2 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

v−p′(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

∣∣∣K+(x, s)u(x)
∣∣∣q dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′
q

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

< ∞

holds and for the best constant C > 0 in (3) holds the relation
A+1 ≈ C ≈ A+2 .

Theorem A−. Let 1 < p ≤ q < ∞ and the kernel of the operator
K− belongs to the class O−n (Ω), n ≥ 0. Then the inequality (3) holds
for the operator K− if and only if one of the conditions:

A−1 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

uq(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

∣∣∣K−(x, s)v−1(s)
∣∣∣p′ ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

< ∞,

A−2 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

v−p′(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

∣∣∣K−(x, s)u(x)
∣∣∣q dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′
q

ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

< ∞
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holds and A−1 ≈ C ≈ A−2 , where C > 0 is the best constant from (3).

Let 1 < p < ∞. We introduce the functions

ϕ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ inf
0<t<x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
t

ρ−p′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

vp(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
−1

,

and

ψ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩inf
x<t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

t∫
x

ρ−p′(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
t∫

0

vp(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
−1

.

The following result was proved in [8]:
Theorem B+. Let 1 < p < ∞, g is a nonnegative non-increasing

function and the functions ρ, v satisfy the conditions ρ−1 ∈ Lloc
p′ (I),

v ∈ Lp(t,∞), t > 0, and ϕ(0) = 0. Then

sup
f≥0

∞∫
0

f (s)g(s)ds

‖ρ f ‖p + ‖vH+ f ‖p ≈
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′(s)dϕp′(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, (4)

where ϕ(0) = lim
x→0
ϕ(x).

Also the next result was formulated in [8]:
Theorem B−. Let 1 < p < ∞, g is a nonnegative non-decreasing

function and the functions ρ, v satisfy the conditions ρ−1 ∈ Lloc
p′ (I),

v ∈ Lp(t,∞), ∀t > 0, and ψ(∞) = 0. Then

sup
f≥0

∞∫
0

f (s)g(s)ds

‖ρ f ‖p + ‖vH− f ‖p ≈
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′(s)d(−ψp′(s))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, (5)

where ψ(∞) = lim
x→∞ψ(x).
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Remark: The assertion in Theorem B− was given without
proof in [8]. However, this result is crucial for the proof of one
of our main result so for completeness we present a proof also
of Theorem B− as a part of our main results given in the next
Section.

3 The main results

Our first main result reads:

Theorem 3.1. Let 1 < p ≤ q < ∞, ϕ(0) = 0, ρ−1 ∈ Lloc
p′ (I),

v ∈ Lp(0, t), t > 0, and the kernel of the operator K+ belongs to the
class O−n (Ω), n ≥ 0. Then the inequality (2) holds if and only if one
of the conditions

E+1 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

Kp′(x, s)dϕp′(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

uq(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

< ∞,

E+2 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

Kq(x, s)uq(x)dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′
q

dϕp′(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

< ∞

holds. Moreover, for the sharp constant C > 0 in (2) it holds that
E+1 ≈ E+2 ≈ C.

The corresponding main result for the operator K− reads:

Theorem 3.2. Let 1 < p ≤ q < ∞, ψ(∞) = 0, ρ−1 ∈ Lloc
p′ (I),

v ∈ Lp(t,∞), t > 0, and the kernel of the operator K− belongs to the
class O+n (Ω), n ≥ 0. Then the inequality (3) holds if and only if one
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of the conditions

E−1 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

Kq(x, s)uq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′
q

d
(
−ψp′(x)

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

< ∞,

E−2 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

Kp′(x, s)d
(
−ψp′(x)

)⎞⎟⎟⎟⎟⎟⎟⎟⎠
q
p′

uq(s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
q

< ∞

holds. In this case E−1 ≈ E−2 ≈ C, where C > 0 is the sharp constant
in (3).

We will begin by proving Theorem 3.2. However, since this
proof heavily depends on the (unproved) Theorem B− we first
prove this Theorem.

Proof of Theorem B−: First we assume that the inequalities⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

f ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p−1

f (t)ψ−p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

�
(
‖ρ f ‖p + ‖vH− f ‖p

)
, f ≥ 0

(1)
and

(
‖ρ f ‖p + ‖vH− f ‖p

)
�

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

| f (t)|p(ψ)−1
∣∣∣∣∣dψdt

∣∣∣∣∣1−p

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(2)

hold.
By virtue of (2) and the principle of duality in Lp spaces we

have

sup
f≥0

∞∫
0

f (s)g(s)ds

‖ρ f ‖p + ‖vH− f ‖p � sup
f≥0

∞∫
0

f (s)g(s)ds

⎛⎜⎜⎜⎜⎝∞∫
0
| f |pψ−1|dψdt |1−p

⎞⎟⎟⎟⎟⎠
1
p
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′
⎛⎜⎜⎜⎜⎝ψ−1

∣∣∣∣∣dψdt

∣∣∣∣∣1−p⎞⎟⎟⎟⎟⎠
1−p′

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′ψp′−1 dψ
dt

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

(
1
p′

) 1
p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′(t)dψp′(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

. (3)

Moreover, from the results of [1] the inequality

∞∫
0

f gds ≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p−1

f (t)ψ−p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

×
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′(s)dψp′(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

, f ≥ 0, (4)

holds for all functions g, which are non-negative and non-
decreasing.

Therefore, according to (1) and (4), we have

sup
f≥0

∞∫
0

f (s)g(s)ds

‖ρ f ‖p + ‖vH− f ‖p � sup
f≥0

∞∫
0

f (s)g(s)ds

⎛⎜⎜⎜⎜⎝∞∫
0

(∞∫
t

f ds
)p−1

f (t)ψ−p(t)dt

⎞⎟⎟⎟⎟⎠
1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

gp′(s)dψp′(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

.

This estimate combined with (3) implies (5). And now
we prove (1). First, we note that by definition ψ is a non-
increasing function. Let f ≥ 0 and k ∈ Z. Assume that Tk =

{x ∈ I :
∞∫
x

f (s)ds ≤ 2−k}, xk = inf Tk, if Tk � 0 and xk = ∞, if
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Tk = ∅. Let Z0 = {k ∈ Z : xk < ∞}. From the definition xk it

follows that 2−(k+1) ≤
∞∫
x

f (s)ds ≤ 2−k for xk ≤ x ≤ xk+1, k ∈ Z0,

xk+1∫
xk

f (s)ds = 2−(k+1), I =
⋃

k∈Z0

[xk, xk+1).

Thus ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p−1

f (t)ψ−p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑
k∈Z0

xk+1∫
xk

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p−1

f (t)ψ−p(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

ψ−p(xk+1)

xk+1∫
xk

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

t

f (s)ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p−1

f (t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+2∫
xk+1

ρ−p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− 1

p′

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+2∫
0

vpds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

p

2−k(p−1) · 2−(k+1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

�
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+2∫

xk+1

ρ−p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
− p

p′

2−kp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p

+

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

2−kp

xk+2∫
0

vpds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

:= I1+ I2. (5)

We estimate I1 and I2 separately .
By the Hölder inequality we have

I1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

22p

⎛⎜⎜⎜⎜⎜⎜⎜⎝
xk+2∫

xk+1

ρ−p′ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1−p ⎛⎜⎜⎜⎜⎜⎜⎜⎝

xk+2∫
xk+1

f (t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
p
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�
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

k

xk+2∫
xk+1

|ρ f |pdt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤ ‖ρ f ‖p (6)

and

I2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑
k∈Z0

2−kp
∑
i≤k

xi+2∫
xi+1

vpds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

i

xi+2∫
xi+1

vpds
∑
k≥i

2−kp

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

�
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

i

xi+2∫
xi+1

vpds2−(i+2)p

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

≤
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∑

i

xi+2∫
xi+1

vpds

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

s

f (t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p⎞⎟⎟⎟⎟⎟⎟⎟⎠

1
p

≤ ‖vH− f ‖p.
This inequality together with (5) and (6) implies (1).
Finally, we prove (2). Let 0 < x < z. From the definition of

ψwe find

ψp′(x) ≤ sup
x<t<z

t∫
x
ρ−p′ds

⎡⎢⎢⎢⎢⎢⎢⎣1 +
( t∫

x
ρ−p′(s)ds

) 1
p′ ⎛⎜⎜⎜⎜⎝ z∫

0
vpds

⎞⎟⎟⎟⎟⎠
1
p
⎤⎥⎥⎥⎥⎥⎥⎦

p

+ sup
z<t

z∫
x
ρ−p′ds +

t∫
z
ρ−p′ds

⎡⎢⎢⎢⎢⎢⎢⎣1 +
( z∫

x
ρ−p′(s)ds +

t∫
z
ρ−p′ds

) 1
p′ ⎛⎜⎜⎜⎜⎝ t∫

0
vpds

⎞⎟⎟⎟⎟⎠
1
p
⎤⎥⎥⎥⎥⎥⎥⎦

p

≤ 2

z∫
x

ρ−p′ds + ψp′(z).
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We note that 0 < ψp′(x) − ψp′(z) ≤ 2
z∫

x
ρ−p′ds. Hence, the

function ψ is locally absolutely continuous and

p′ψp′−1(z)
(
−dψ

dz

)
= lim

x→z

ψp′(x) − ψp′(z)
z − x

≤ 2 lim
x→z

1
z − x

z∫
x

ρ−p′ds = 2ρ−p′(z).

for almost all z ∈ I. Therefore,

ρp(z)ψ(z)
∣∣∣∣∣dψdz

∣∣∣∣∣p−1

� 1 or

ρp(z)� ψ−1(z)
∣∣∣∣∣dψdz

∣∣∣∣∣1−p

a.e. z ∈ I. (7)

According to (7) we have

‖ fρ‖p �
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

| f |pψ−1(z)
∣∣∣∣∣dψdz

∣∣∣∣∣1−p

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

. (8)

By the Hardy inequality (see e.g. [4]) we obtain

‖vH− f ‖p �
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

| f |pψ−1(z)
∣∣∣∣∣dψdz

∣∣∣∣∣1−p

dz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

(9)

since

sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

vpds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

ψp′−1(t)(−ψ′(t))dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

=

(
1
p′

) 1
p′

sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

vpds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p

ψ(z)� 1.
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By combining (8) and (9) we get (2). Theorem B− is proved.

Proof of Theorem 3.2: Let C > 0 be the sharp constant in
(3). Then, by using the duality principle in Lq, 1 < q < ∞, we
have

C = sup
f≥0

‖uK− f ‖q
‖ρ f ‖p + ‖vH− f ‖p = sup

f≥0
sup

0≤g∈Lq′

∞∫
0

guK− f ds(
‖ρ f ‖p + ‖vH− f ‖p

)
‖g‖q′

= sup
g≥0

1
‖g‖q′ sup

f≥0

∞∫
0

f (x)(K+gu)dx

‖ρ f ‖p + ‖vH− f ‖p .

Hence, by using the fact that the function (K+gu)(x) is non-
decreasing we can apply Theorem B− to obtain that

C ≈ sup
0≤g∈Lq′

⎛⎜⎜⎜⎜⎝∞∫
0

(
K+gu

)p′ (x)d(−ψp′(x))

⎞⎟⎟⎟⎟⎠
1
p′

‖g‖q′ = C̃.

Therefore, the inequality (3) is equivalent to the inequality⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

(
K+gu

)p′ (x)d(−ψp′(x))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≤ C̃

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

|g(t)|q′dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

, g ≥ 0,

or the inequality⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

(
K+g

)p′ (x)d(−ψp′(x))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

≤ C̃

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

0

∣∣∣u−1g
∣∣∣q′ dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q′

, g ≥ 0, (10)

and C ≈ C̃.
The inequality (10) is the inequality of the form (3). Since

1 < p ≤ q < ∞ implies that 1 < q′ ≤ p′ < ∞, then applying
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Theorem A+ to the inequality (10), we get that the inequality
(10) holds if and only if one of the conditions

A∗1 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

⎛⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

∣∣∣K+(x, s)u(s)
∣∣∣q ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
p′
q

d
(
−ψp′(x)

)⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
1
p′

= E−1 < ∞,

A∗2 = sup
z>0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
z∫

0

uq(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

z

∣∣∣K+(x, s)
∣∣∣p′ d (

−ψp′(x)
)⎞⎟⎟⎟⎟⎟⎟⎟⎠

q
p′
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
q

= E−2 < ∞

holds and, moreover, C̃ ≈ E−1 ≈ E−2 . But C ≈ C̃ and, thus, also
C ≈ E−1 ≈ E−2 . The proof is complete.

Proof of Theorem 3.1: The proof is similar to that of The-
orem 3.2 so we omit the details. We only remark that in this
case we use Theorem B+ and Theorem A− instead of Theorem
B− and Theorem A+, respectively.

Finally, we will consider the case p = 1. In this case for
f ≥ 0 we have

‖ρ f ‖1 + ‖vH+ f ‖1 =
∞∫

0

ρ(t) f (t)dt +

∞∫
0

v(t)

t∫
0

f (s)dsdt

=

∞∫
0

ρ(t) f (t)dt+

∞∫
0

f (s)

∞∫
s

v(t)dtds =

∞∫
0

f (s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ρ(s) +

∞∫
s

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ds

=

∞∫
0

w+(s) f (s)ds; where w+(s) ≡ ρ(s) +

∞∫
s

v(t)dt,
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and

‖ρ f ‖1 + ‖vH− f ‖1 =
∞∫

0

ρ(t) f (t)dt +

∞∫
0

v(t)

∞∫
t

f (s)dsdt

=

∞∫
0

f (s)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ρ(s) +

s∫
0

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠ ds =

∞∫
0

w−(s) f (s)ds,

where w−(s) ≡ ρ(s) +

s∫
0

v(t)dt.

Therefore, in the case p = 1 the inequalities (2) and (3) have
the forms

‖uK+ f ‖q ≤ C+‖w+ f ‖1, f ≥ 0, (11)

‖uK− f ‖q ≤ C−‖w− f ‖1, f ≥ 0, (12)

respectively, i.e. the problem in this case reduces to the prob-
lem boundedness of the operators K+, K− from L1,w± to Lq,u.

Thus, on the basis of Theorem 4 of Chapter XI from [2], we
have the following:

Proposition 3.3. Let p = 1 and 1 ≤ q < ∞. Then the inequalities
(2) and (3) hold if and only if

C+ = ess sups>0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎝
∞∫

s

∣∣∣u(x)K+(x, s)
∣∣∣q dx

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝ρ(s) +

∞∫
s

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ < ∞,

and

C− = ess supx>0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎜⎜⎝

x∫
0

∣∣∣u(s)K−(x, s)
∣∣∣q ds

⎞⎟⎟⎟⎟⎟⎟⎟⎠
1
q
⎛⎜⎜⎜⎜⎜⎜⎜⎝ρ(s) +

x∫
0

v(t)dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−1
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ < ∞

hold, respectively. Moreover, for the best constant C in (2) and (3),
it yields that C+ ≈ C and C− ≈ C, respectively.
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