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Abstract—A dual two-tone technique for the characterization
of memory effects in concurrent dual-band transmitters is revis-
ited to modify a 2D-DPD model for the linearization of concurrent
dual-band transmitters. By taking into account the individual
nonlinear memory effects of the self- and cross-kernels, a new
2D modified digital pre-distortion (2D-MDPD) model is proposed,
which not only supersedes the linearization performance but
also reduces the computational complexity compared to the 2D-
DPD model in terms of number of floating point operations
(FLOPs). Experimental results show an improvement of 1.7 dB
in normalized mean square error (NMSE) and a 58% reduction
in number of FLOPs.

I. INTRODUCTION

Digital pre-distortion (DPD) is one of the most cost effec-
tive and commonly used techniques for mitigating nonlinear
distortions in radio frequency (RF) power amplifiers (PAs). The
idea of DPD is to invert the nonlinear transfer function of the
PAs such that the cascade of the pre-distorter and PA is a linear
function. With the increase in data rates, multi-band multi-
standard RF PAs are being considered that can concurrently
amplify signals in widely separated bands [1],[2].

When operating PAs with concurrent dual band signals of
large frequency separation, single-input single-output (SISO)
models are not used; the input signals are generated and
up-converted separately and the output signals are received
individually. Also, SISO models do not include the effects of
cross modulation (CM)[3]. Thus, DPD models that include
both IM and CM terms are required [1]. In [3], a 2D-DPD
model was proposed for linearization of concurrent dual-band
PAs, which is an extension of SISO parallel Hammerstein (PH)
model [4]. The major draw-back with the 2D-DPD model is its
large number of model coefficient which may lead to numerical
instability [1],[2]. In [5] and [6], the 2D modified memory
polynomial model and the 2D augmented Hammerstein model
were proposed for reducing the model parameters. However,
models in [5] and [6] requires combersome identification
algorithms which increases the implementation complexity of
these models. To alleviate the ill-condition of the 2D-DPD
model, an orthogonal 2D-DPD model is proposed in [2],
however, the linearization performance is lower than the 2D-
DPD model.

An interesting similarity between previously published
models is that for self- and cross-kernels, these models use
the same memory depth which leads to an increase in compu-
tational complexity of the DPD models while implementing in
digital platforms. However, studies conducted in [7] contradict

Fig. 1: Measurement setup.

with the above assumption. It is shown in [7] that the self-
kernels show significantly larger memory effects compared
to the cross-kernels. In this paper, we utilize the method
proposed in [7] to characterize the individual memory effects
of self- and cross-kernels in a concurrent dual-band PA. Based
upon the characterization of memory effects, the 2D-DPD
model is modified to alleviate its computational complexity.
The proposed model is referred to as 2D-modified DPD (2D-
MDPD) model.

II. THEORY

A. Dual two-tone test

A two-tone technique is a finger print method for charac-
terizing the memory effects of dynamic nonlinear systems [8].
In a two-tone test, frequency dependency and the asymme-
try between upper and lower intermodulation (IM) distortion
products versus tone spacing are used as a qualitative mea-
sures of memory effects. In [7], the technique is extended
to characterize the memory effects of a concurrent dual-
band transmitters. The technique proposed in [7] gives the
possibility to characterize the memory effects that contribute
to the asymmetry of upper and lower IM (self-kernels) and
CM (cross-kernels) products individually. This in return helps
to identify whether the self- and cross-kernels have the same
or different memory effects. Moreover, with the dual two-tone
test, the similarity between the memory effects appearing at
two different carrier frequencies can also be analyzed. Note
that, the technique in [7] has not been used for improving the
DPD performance of any published models.

In dual two-tone test, each band is excited with a two-
tone test signals that are symmetric around their respective
carrier frequencies. The test signals are designed according
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Fig. 2: Asymmetry energy surface of upper and lower intermodulation (IM) (top-left) and cross-modulation (CM) (top-right)
products at carrier frequency of 2.0 GHz. Asymmetry energy surface of upper and lower intermodulation (IM) (bottom-left) and
cross-modulation (CM) (bottom-right) products at carrier frequency of 2.3 GHz.

to [7] and the tone spacing is defined as, ∆ωL > ∆ωU ;
where ∆ωL is the tone spacing of the signal operating at lower
band and ∆ωU is the tone spacing of the signal operating at
upper band. The difference in tone space between the two two-
tone signals is necessary to distinguish IM and CM distortion
products and to avoid overlapping of these products [7]. For the
evaluation of asymmetry between different distortion products,
3D energy surfaces are used [7]. 3D energy surfaces have been
previously used to study the memory effects that contribute to
the asymmetry between upper and lower IM products [9], as
a function of frequency spacing and input power levels.

Fig. 2 shows the 3D energy surfaces of the IM and
CM products at the carrier frequencies of 2.0 and 2.3 GHz,
respectively. From Fig. 2, a noticeable difference between
the asymmetric behavior of the IM (top-left) and the CM
(top-right) products can be observed at carrier frequency of
2.0 GHz, where the IM products exhibit significant memory
effects which contribute to the asymmetry compared to the
CM products. A similar observation can be made from Fig. 2,
where the IM products (bottom-left) at a carrier frequency of
2.3 GHz also exhibit significant memory effects compared to
the CM products (bottom-right).

The analysis yields two important observations; first, the
IM products exhibit larger memory effects than the CM
products. Second, the IM and CM products at two different

carrier frequencies exhibit approximately the same asymmetric
behavior, indicating similar memory effects that contribute to
the asymmetry at two bands. This information can be utilized
for modifying a 2D-DPD model in terms of memory depth.
Note that the analysis above is not restricted to concurrent
dual-band transmitters and DPD models. This technique could
also be used for DPD models of MIMO transmitters.

B. 2D modified DPD model

A 2D-DPD model can be described as [3],

yi(n) =

M
∑

m=0

P−1
∑

p=0

p
∑

q=0

h(i)
mpqxi(n−m)

× |xi(n−m)|(p−q)|xj(n−m)|q, where i 6= j,

(1)

where h
(i)
mpq are the model parameters, xi(n), xj(n) are the

input signals of ith and jth channels, respectively, and yi(n)
is the output of ith channel. M is the memory depth and P is
the nonlinear order.

For a third nonlinear order, (1) will contain linear terms
xi(n − m), self-kernels xi(n − m)|xi(n − m)|2, and two
cross-kernels given as xi(n − m)|xj(n − m)|2 and xi(n −
m)|xi(n − m)||xj(n − m)|, respectively. Notice that, in (1)
both the self- and cross-kernels have the same memory depth.



However, from the dual two-tone test, it is observed that the IM
(self-kernels) and CM (cross-kernels) products do not exhibit
the same memory effects. Thus, by using different memory
depth for the IM and CM terms overmodelling can be avoided
and the computational cost can be reduced.

In the following, we present a 2D modified DPD model
(2D-MDPD), where the modification is being made in terms
of memory depth. The 2D-MDPD model can be described as,

yi(n) =

M1
∑

m1=0

P+1

2
∑

p=1

h(i)
s xi(n−m1)|xi(n−m1)|

2(p−1)+

M2
∑

m2=0

P+1

2
∑

q=2

h(i)
c1
xi(n−m2)|xj(n−m2)|

2(q−1) +

M3
∑

m3=0

P−1
∑

p=2
even

p−1
∑

q=1

h(i)
c2
xi(n−m3)|xi(n−m3)|

(p−q)|xj(n−m3)|
(q),

(2)

where h
(i)
s are the model parameters for self-kernels, h

(i)
c1 and

h
(i)
c2 are the model parameters for cross-kernels. In (2), M1,

M2 and M3 are the respective memory depths of the self- and
cross-kernels.

III. EXPERIMENTAL

A. Test setup

The experimental setup is shown in Fig. 1 and is composed
of two R&S SMBV100a vector signal generators (VSGs),
a wide-band down converter and an ADQ 214 SP devices
analog-to-digital converter. The VSGs have baseband and RF
coherency. Baseband coherency ensures that the signals from
the VSGs are triggered at the same time. The baseband and
RF coherency is needed to have full control of the signals
at the RF level, required for DPD scheme. The setup was
automated with a computer that allows full control over the
excitation signals. The device under test (DUT) was a wide-
band Mini-Circuits ZVE8G+ power amplifier. Two separate
wide-band code division multiple access (WCDMA) signals
with peak-to-average-power-ratio (PAPR) of 7.74- and 7.3-dB,
respectively, were used to analyze the DPD performance of the
models given in (1) and (2). The WCDMA signals, x1 and x2,
each with 40960 samples were created in the baseband and
up-converted to the carrier frequencies of 2.0 and 2.3 GHz,
respectively. The combined signal was fed to the DUT.

A similar setup was used for the characterization of mem-
ory effects using dual two-tone test signals, where the signals
were two two-tone signals with varying tone spacing and input
power. During the dual two-tone test, ∆ωL was defined as
2π(∆f + δf ) and ∆ωU was defined as 2π(∆f ), where ∆f

was varying from 2− 20 MHz, whereas, δf was constant and
had a value of 100 kHz. The input power for the test signals
was swept from −10 to 0 dBm with a step size of 0.25 dBm.

B. System identification

The output signal model of a concurrent dual-band PA can
be written as

[

y1
y2

]

=

[

Φ1 0
0 Φ2

] [

θ1

θ2

]

where yi is a column vector containing the measured and
sampled output signal of ith channel, θi denotes the vector of
the model parameters to be estimated, and Φi = f(x1, x2) is
the regression matrix, whose columns are the basis functions of
the 2D-MDPD model. To estimate the pre-distorter, the input
and output signals are interchanged in (1) and (2). This is in
accordance with indirect learning architecture, where the post-
distorter function is the same as pre-distorter [10]. To estimate
the model parameters, a least square technique is used.

θ̂i = (ΦH
i Φi)

−1
Φ

H
i yi,where i = {1, 2}. (3)

The performance of the proposed model was evaluated in terms
of normalized mean square error (NMSE) and adjacent channel
power ratio (ACPR). The computational complexity of the
models is also evaluated in terms of number of complex-valued
model coefficients and in number of floating point operations
(FLOPs).

IV. RESULTS

The performance of the proposed 2D-MDPD model is
compared to the 2D-DPD model. For PA linearization, the
nonlinear order and memory depth for (1) was P = 9 and
M = 4 and for 2D-MDPD (2), the nonlinear order was same,
and the memory depths were M1 = 4, M2 = 2, and M3 = 1.
This choice of nonlinear order and memory depth resulted in
the lowest model error.

Table I summarizes the performance comparison of the 2D-
DPD and 2D-MDPD models in terms of NMSE and ACPR
for channel 1 and 2, respectively. In the absence of any pre-
distorter, the measured NMSE was −30.3- and −29.7-dB
for channel 1 and 2, respectively; the measured ACPR for
channel 1 and 2 was −40.1- and −39.9-dB, respectively. In
terms of NMSE, the 2D-DPD model resulted in an NMSE
of −42.6 dB for channel 1, whereas, the 2D-MDPD resulted
in an NMSE of −44.3 dB, i.e., an improvement of 1.7 dB
compared to the 2D-DPD model. Similarly for channel 2, the
2D-MDPD model resulted in an NMSE of −45.1 dB, i.e., a
2.4 dB improvement compared to the 2D-DPD model, which
resulted in an NMSE of −42.7 dB. In terms of ACPR, both
the 2D-DPD and 2D-MDPD models resulted in approximately
the same performance, where the 2D-DPD resulted in slightly
higher ACPR by 0.8 dB in channel 1 and 0.3 dB in channel
2 compared to the 2D-MDPD model. In terms of number of
complex-valued coefficients, the 2D-DPD model resulted in
180 coefficients per channel, whereas, the 2D-MDPD model
resulted in 69 coefficients, i.e., 2.6 times fewer than the 2D-
DPD model.

Model complexity in this paper has also been measured
based upon the number of FLOPs. Following the methodology
in [11], the computational complexity of the models is eval-
uated as the sum of the total number of FLOPs required in:
(a) creation of the basis functions and (b) multiplication of the
basis functions with their respective model coefficients referred
to as the filtering process. The number of FLOPs required for
various arithmetic operations is given in [11]. Therefore, the
complexity of creating basis functions in the 2D-DPD model,
C2D-DPD

b , can be described as,

C2D-DPD
b = 18 + (P − 1)2. (4)



TABLE I: Comparison of the 2D-DPD and 2D-MDPD predis-
torters

Model # of FLOPs NMSE ACPR

(# of coefficients) CH1 / CH2 CH1 / CH2

No DPD − −30.3 / −29.7 dB −40.1 / −39.8 dB

2D-DPD 1162 (180) −42.6 / −42.7 dB −59.6 / −56.5 dB

2D-MDPD 457 (69) −44.3 / −45.1 dB −58.8 / −56.2 dB
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Fig. 3: Measured power spectral density (PSD) vs frequency
for DPD.

The filtering process involves complex-valued multiplications

of the model parameters h
(i)
mpq with the corresponding basis

functions. Therefore, the filtering complexity, C2D-DPD
f , de-

pends on the number of basis functions and can be described
as,

C2D-DPD
f =

6MP (P + 1)

2
. (5)

The basis functions of the 2D-MDPD exhibits the same
structure as the 2D-DPD model but do not include even order
terms. Therefore, the complexity of creating basis functions in
the 2D-MDPD model, C2D-MDPD

b , can be described as,

C2D-MDPD
b = 18 +

(P + 1)
2

4
. (6)

The filtering complexity of the 2D-MDPD model, C2D-MDPD
f

can be described as,

C2D-MDPD
f = 6

{

(M1 + 1)(
P + 1

2
)+

(M2 + 1)(
P + 1

2
− 1) + (M3 + 1)









P
∑

p=3
p odd

p− 2























(7)

where, (M1 + 1)P+1
2 are the number of basis functions

of the self-kernels and, (M2 + 1)(P+1
2 − 1) and (M3 +

1)

(

∑P
p=3
p odd

p− 2

)

are the number of basis function of the

cross-kernels. The total number of FLOPs required by 2D-
MDPD model are 457, which is approximately 2.5 times less
than the 2D-DPD model, which resulted in 1162 FLOPs.

V. DISCUSSION AND CONCLUSION

The continual strive for increasing data rates and use of
advance multi-band multi-standards RF transmitter to accom-
modate multiple signals requires techniques for the character-
ization of nonlinear dynamic effects of multi-band PAs. These
techniques can be utilized to modifying previously published
DPD models.

A reference method is used to characterize the individual
memory effects of self- and cross-kernels in a dual-band PA.
The results show that the memory effects are more dominant
in the self-kernels than the cross-kernels. The information
extracted from the dual two-tone test resulted in a modification
of 2D-DPD model. The proposed 2D-MDPD model not only
resulted in an improvement of 1.7- and 2.4-dB in NMSE for
channel 1 and 2, respectively, and a comparative performance
measured in terms of ACPR; the computation complexity is
also reduced by 58 % in terms of number of FLOPS compared
to the state of the art 2D-DPD model.

The dual two-tone technique can also be used to charac-
terize MIMO transmitters and for the modification of MIMO
DPD model, where the computation complexity is more pro-
nounced than the concurrent dual-band transmitter [7].
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