Utveckling av behandlingsstrategier för HIV-1 smittade i Sverige, från 1980-talet till idag 2009

En litteraturstudie

Marie Kerttu
- en litteraturstudie

- a literature review

Marie Kerttu
Luleå Tekniska Universitet
Institutionen för hälsovetenskap
Receptarieprogrammet 2009
Handledare Staffan Andersson, Överläkare,
Docent, Avd.chef Medicinsk vetenskap
SAMMANFATTNING

Bakgrund: HIV är ett retrovirus som lagras i kroppens arvsmassa. Utan behandling angriper HIV-viruset kroppens vita blodkroppar och detta resulterar i att immunförsvar kollapsar. Slutstadiet för sjukdomen är när den smittade har ett så dåligt fungerande immunförsvar att det inte kan skydda kroppen längre, vanliga infektioner blir mycket allvarliga. Slutstadiet kallas AIDS.

Metod: Informationsinsamlingen till litteraturstudien gjordes genom att söka i tillgängliga databaser såsom Medline, PubMed, Cochrane Library mfl. Även litteratur från utbildningen användes och information från vissa Internetsidor såsom Smittskyddsinstitutet, CDC, Läkemedelsverket mfl.

Forskningen har kunnat minska den på flera sätt men inte helt utrota problemet.

Nyckelord: HIV, HIV-infection, Antiretroviraltherapy, Zidovudine, Highly Active Antiretroviral therapy, HIV-1, Monotherapy.
Innehållsförteckning

1. **INTRODUKTION** .. 6
 1.1. Vad är HIV? .. 6
 1.2. Två typer ... 6
 1.3. Hur smittar HIV? ... 6
 1.4. HIV:s struktur ... 6
 1.5. HIV:s livscykel ... 7
 1.6. Resistens .. 8
 1.7. Sjukdomsförloppet .. 8
 1.8. AIDS .. 9
 1.9. Bestämning av CD4+T-cell nivån .. 9
 1.10. Bestämning av HIV-RNA i plasma .. 9
 1.11. Utveckling av HIV i Sverige .. 10
2. **SYFTE OCH FRÅGESTÄLLNING** .. 11
3. **METOD** .. 11
4. **RESULTAT** ... 13
 4.1. Indelning av läkemedel ... 13
 4.2. Verkningsmekanism, omvänt transkriptas (RT)-hämmare 13
 4.2.1. Nukleosidanaloger (NRTI) ... 13
 4.2.2. Nukleotidanalog (NtRTI) .. 14
 4.2.3. Icke-nukleosid RT-hämmare (NNRTI) ... 14
 4.3. Verkningsmekanism, proteashämmare (PI) ... 15
 4.4. Verkningsmekanism, inträdeshämmare (EI) ... 15
 4.4.1. Fusionshämmare .. 15
 4.4.2. CCR-5 hämmare .. 16
 4.5. Verkningsmekanism, integrashämmare (II) ... 16
 4.6. Utveckling av behandlingsstrategier ... 16
 4.6.1. Avsaknad av behandling, före 1987 ... 16
 4.6.3. Dubbletterapi, 1992-1995 .. 18
 4.6.4. Kombinationsterapi, från 1995 ... 19
 4.6.5. HAART, från 1996 ... 19
 4.7. Fasta läkemedels kombinationer ... 20
 4.7.1. Combivir ... 20
 4.7.2. Boostrade PI .. 21
 4.7.3. Atripla ... 21
 4.8. Livskvalitetsregister ... 22
 4.8.1. InfcareHIV ... 22
 4.9. Terapi i dagsläget, 2009, för HIV-smittade ... 23
 4.9.1. Behandlingsstrategier ... 23
 4.9.2. Smitta mellan mor till barn ... 24
 4.9.3. Behandling av kvinnor som är eller tänker bli gravida 25
 4.9.4. Behandlingsstrategier för barn ... 26
 4.9.5. Terapisvikt ... 27
5. **DISKUSSION OCH SLUTSATSER** .. 28
1. INTRODUKTION

1.1. Vad är HIV?
HIV står för Humant Immunbrist Virus, som är ett retrovirus som lagras i kroppens arvsmassa (1). Där infekterar viruset de vita blodkropparna (antigenpresenterande celler och hjälparceller) vilket resulterar i att immunförsvaret kollapsar (2).

1.2. Två typer

1.3. Hur smittar HIV?
Viruset kan smitta genom oskyddat samlag, oralsex, blodtransfusion, organdonation, samt via injektioner om man delar sprutor med smittade individer. En smittad mor kan överföra viruset till sitt barn under fostertiden, vid förlossningen eller via amning (1).

1.4. HIV:s struktur

- Pol- kodar för ”omvänt transkriptas” (RT)
- Gag- kodar för kärnproteinerarna protein 24 och protein 17
- Env- kodar för viralt glykoprotein 120 och 41
- Pro- kodar för proteas ett enzym som klyver proteinkedjan.

(4,5)
1.5. HIV:s livscykel

När HIV-viruset kommit in i kroppen kommer de att binda till alla celler som har en CD4-receptor (transmembranprotein), dessa CD4-receptorer finns bland annat hos T-hjälpelceller. Viruset binder med hjälp av glykoprotein120. I och med att glykoprotein120 binder in och interagerar med CD4-receptorn sker en konformationsändring av glykoprotein120 och två nya bindningsställen vecklas ut. Dessa extra bindningsställen på glykoprotein120 binder till kemokinreceptorerna (CCR5 och CXCR4) på målcellen.

Nu sker ytterligare en förändring av glykoprotein120 och en förändring av glykoprotein 41. Glykoprotein 120 glider isär och glykoprotein 41 förlängs och blir mera avlång. Glykoprotein 41 kan nu komma i kontakt med målcellens yta, förankringen till cellytan är nu fullbordad.

När virusärnan med sitt RNA och RT har tagit sig in i målcellen startar DNA-syntesen som efterföljs av integreringen. RNA:t som viruset hade med sig syntetiseras till DNA. Eftersom denna process ej sker i humana celler så finns det heller inga enzymer som kodar för denna syntes. Därför har HIV-viruset med sig sitt eget enzym som utför denna syntes, enzymet är RT.

När denna integrering är utförd har ett ”pro-virus” bildats. Varje gång en smittad målcell delar sig så kommer den nya cellen innehålla HIV-genomet.

1.6. Resistens
HIV-viruset hinner under lång tid replikera sig i stor skala, denna mängd inklusive hög frekvens av felkopiering av RT leder till att mutationer bildas. Dessa avläsningsfel beror på att korrekturläsningsfunktionen som normalt finns i arvsmassan hos däggdjur inte existerar hos HIV. Denna korrekturläsningsfunktion ska dubbel kontrollerat att avläsningen av RNA-mallen som sedan används som receptor vid tillverkningen av DNA:t är korrekt och när den inte finns så uppkommer en massa fel. Därav följer resistensproblematiken för HIV(5).

1.7. Sjukdomsförloppet
Några veckor efter smittotillfället kan ett akut virusjukdomstillstånd uppstå. Feber, halsont, huvudvärk, svullna lymfkörtlar och hudutslag är tecken på detta tillstånd. Inte alla drabbas, cirka 50% av de smittade råkar ut för detta.
Detta sjukdomsstillstånd beror på en kraftig virusökning i kroppen och hur länge detta tillstånd varar beror på hur bra kroppens immunförsvar är på att normalisera läget igen. Tillståndet kallas akut eller primär HIV-infektion.

Efter detta tillstånd kommer den smittade in i ett symptomfritt skede, hur länge detta skede varar är olika. En människas immunförsvar är unikt och tål mycket innan det blir totalt utslaget. Det är när immunförsvaret inte orkar försvara kroppen längre som svåra infektioner och tumörer uppstår, de är detta som kallas för AIDS (6).
1.8. AIDS
AIDS är inget virus utan ett samlingsnamn för ett stort antal infektioner och tumörsjukdomar som en HIV smittad kan råka ut för och som slutligen leder till döden. (2).

Diagnosen AIDS sätts först när CD4-cellerna har nått en så låg nivå att den smittade börjar drabbas av någon opportunistisk komplikation (6). Man har sett att när antalet CD4+ T-celler underskrider 350 celler/mm³ så är risken för opportunistiska infektioner mycket stor (7).

Man räknar med att hälften av alla smittade som är obehandlade insjuknar i AIDS inom tio år (1).

1.9. Bestämning av CD4+T-cell nivån
Provet tas för att kontrollera hur många CD4+T-celler som finns, färre indikerar på en större immundefekt. Ett absolutvärde tas som fastställer koncentrationen T-celler och ett andels värde som ger procentandelen T-celler av andelen lymfocyer.

Med hjälp av detta test bedöms risken för att utveckla opportunistiska infektioner och avgör när antiviralbehandling ska sättas in (7,8).

Ett lågt antal CD4+T-celler medför stor risk att drabbas av opportunistiska infektioner och att sjukdomen avancerar till ett AIDS definierat tillstånd (7).

1.10. Bestämning av HIV-RNA i plasma
Detta mått är det viktigaste måttet för att se effekten av den antiviralbehandling som patienten får, den talar även om i vilket stadium sjukdomen är och hur snabbt antalet CD4+T-celler troligen kommer att sjunka (7).

Antalet HIV-RNA kopior i plasma sjunker snabbt vid advekat behandling och en ökning av HIV-RNA kopior är ett tecken på terpisvikt (8).

1.11. Utveckling av HIV i Sverige
Till och med 2008 har totalt 8455 fall av HIV anmälts i Sverige. Av dem så har 2200 insjuknat i AIDS och 1900 har avlidit av sjukdomen.

2008 rapporterades 448 nya fall av HIV (bilaga 5).
Antalet nya fall som rapporterats in har legat konstant sedan slutet av 1980-talet till och med 2002 med knappt 300 fall/år. Efter 2002 har en ökning skett, 2007 anmäldes 541 fall och det var det högsta antalet på länge (9).
2. SYFTE OCH FRÅGESTÄLLNING

3. METOD

Sökord som användes och kombinerades på olika sätt i databaserna var:
Antiretroviraltherapy
Highly active antiviraltherapy
HIV-1
HIV-2
HIV
HIV-infection
Monotherapy
Doubletherapy
Trippeltherapy
Survival
Zidovudine
Resistant HIV-strains
Nucloside RT inhibitors
Nucleotid RT inhibitors
Proteas inhibitors

Exklusionskriterierna var material som inte var inom den tidsramen.

Litteratursökningen utfördes sista veckan i mars 2009 och de två första veckorna i april 2009.
4. RESULTAT

4.1. Indelning av läkemedel

<table>
<thead>
<tr>
<th>Klasser</th>
<th>Grupper</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-hämmare</td>
<td>Nukleosid och Nukleotid analoger, Icke-nukleosid RT-hämmare</td>
</tr>
<tr>
<td>Proteashämmare</td>
<td>Har inga undergrupper</td>
</tr>
<tr>
<td>Inträdeshämmare</td>
<td>Fusionshämmare, CCR5-hämmare</td>
</tr>
<tr>
<td>Integrashämmare</td>
<td>Har inga undergrupper</td>
</tr>
</tbody>
</table>

(Se bilaga 2 för godkända läkemedel)

4.2. Verkningsmekanism, omvänt transkriptas (RT)-hämmare

Dessa hämmar enzymet omvänt transkriptas (RT) som möjliggör att viralt RNA läses av och används som mall vid produktionen av viralt DNA. Dessa läkemedel är så kallade Pro-drugs, dessa behöver aktiveras för att bli aktiva och hämma RT (4).

Klassen innehåller 3 stycken grupper:

- Nukleosidanaloger NRTI
- Nukleotid analoger NtRTI
- Icke-nukleosid RT-hämmare NNRTI (10)

4.2.1. Nukleosidanaloger (NRTI)

Alla nukleosidanaloger kan betecknas som 2´, 3´-dideoxy nukleosid analoger (ddN).

För att kunna binda in på RT:s ”active site” behöver NRTI:s fosforyleras till sin aktiva trifosfat form (ddNTP), detta sker inne i cellen och i 3 steg. När NRTI:s har nått sin aktiva form så är den en kompetitiv inhibitor till det normala substratet deoxy nukleosidtrifosfat (dNTP).

ddNTP byggs in i det blivande HIV-DNA t istället för dNTP. Eftersom ddNTP saknar en 3´-hydroxyl grupp som det naturliga substratet dNTP har så resulterar det i att den blivande DNA kedjan som håller på att byggas stoppas upp och kedjan blir nu förstörd (10).
Generellt har alla nukleosidanaloger god biotillgänglighet och de är minimalt bundna till plasma proteiner. (4).

4.2.2. **Nukleotidanalog (NtRTI)**

Dessa binder också till RT:s active site och agerar som en kompetitiv inhibitor såsom nukleosidanalogerna.

Det som skiljer NRTI och NtRTI åt är att NtRTI behöver bara fosfonyleras till sin difosfat form för att bli aktiv och kunna binda till ”active site”.

Nukleotidanalogerna innehåller även en fosfonatgrupp som binds till HIV DNA:ts 3´-terminal, denna fosfonatgrupp går inte att klyva(10).

4.2.3. **Icke-nukleosid RT-hämmare (NNRTI)**

NNRTI är hydrofobiska och binder inte till själva ”active site” på RT utan binder allostikeriskt till en hydrofobisk ficka som sitter en liten bit bort från ”active site”. Det uppstår en icke-kompetitiv reversibel hämning av RT. Det blir en så kallad ”induce fit” som gör att ”active site” stängs så att det naturliga substratet inte kan binda in och aktivera RT så att de virala RNA:t läses av och används som mall vid tillverkningen av det virala DNA:t.

Aminosyran som NNRTI interagerar med på bindningstället har förmågan att mutera mycket lätt och därför ser man en större resistensutveckling med NNRTI jämfört med övriga RT-hämmare. Denna resisten kallas ”pan-class resistance mutation, K103N” (3,10). Pan-class resistance mutation är när Lysine byts ut till en Aspargin vid position 103, mer än 100-faldig nedsättning av känsligheten har observerats hos HIV-varianter som uttrycker denna mutation (11).
NNRTI har en högre affinitet för HIV-1 än NRTI och detta medför att NNRTI är mindre toksiska. Till skillnad från NRTI är NNRTI bara aktiva mot HIV-1, de metaboliseras i levern och binder mycket hårdare till plasma proteiner (3,10).

4.3. Verkningsmekanism, proteashämmare (PI)
HIV-proteas om det får arbeta fritt ,klyver, peptidbindningar i den virala polypeptidkedjan, kvar blir två identiska virala proteiner.

Proteas är specifikt på det sättet att de kan klyva bindningen mellan en prolin och en aromatisk struktur. Denna process sker ej hos människor och det är ett av HIV:s specifika drag.

Proteashämmare går inte att klyva och när dessa bundit in hämar de det normala peptidbindingarna som sitter i polypeptidkedjan. Detta gör att HIV-proteaset inte kan klyva bindningen och virala protein kan då heller inte bildas.

Proteashämmare är ”designade” från peptider. Peptider har dålig farmakokinetik och detsamma gäller för proteasehämmarna. Detta beror bland annat på hög molekylvikt och dålig vattenlösighet (10,4).

4.4. Verkningsmekanism, inträdeshämmare (EI)
Det finns två grupper inom klassen Inträdeshämmare, det är Fusionshämmare och CCR5-hämmare. Dessa blockerar viruset från att komma in i cellen (4,7).

4.4.1. Fusionshämmare
Dessa är uppbryggda av en polypeptid bestående av 36 aminosyror som matchar glykoprotein 41 C-terminal.

Denna polypeptid bildar en α-helix som i sin tur matchar de tre α- helix armarna som glykoprotein 41 har. På grund av denna binding kan inte glykoprotein 41 genomgå sina
konformationsförändringar och ingå fusion med målcellen och bilda denna kanal som gör att HIV:s RNA och RT kan släppas in i målcellen.

På detta sätt hindras viruset från att tränga in i målcellerna (4,10).

4.4.2. CCR-5 hämmare
Detta läkemedel skall endast administreras till behandlingserfarna patienter som är smittade med HIV-1 virus med CCR5-tropism detekterbart.

HIV binder in med hjälp av att glykoprotein 120 binder till målcellens CD4-receptor.
När detta sker kommer glykoprotein 120 utseende att ändras, ”flappar” som tidigare varit osynliga fälls ut och underlättar bindningen till co-receptorerna (CCR5 och CXCR4).

Vid användning av CCR-5 hämmare hindras HIV från att binda in därför att glykoprotein 120 nu inte känner igen co-receptorerna. I och med detta så kommer heller inte glykoprotein 41 att komma närmare målcellens yta och genomgå förändringen som leder till att fusion är möjlig, inträdet har därmed hämmats (10).

4.5. Verkningsmekanism, integrashämmare (II)
Genom att hämma integras så kan inte HIV:s DNA klippas in i målcellens DNA. Sker det ingen integrering av virus-DNAt så förs inte det virala DNAt vidare vid replikering och virusets DNA kan inte spridas vidare till andra målceller (10).

4.6. Utveckling av behandlingsstrategier

4.6.1. Avsaknad av behandling, före 1987
Man såg ganska snabbt att en CD4 + T-cells nivå under 200 celler/mm³ var en kritisk gräns för sjukdomen.

När det första läkemedlet blev godkänt och utsläppt på marknaden så blev termen ”antiretroviral terapi” ett samlingsnamn för behandlingen av HIV (5).

Zidovudin tillhör gruppen NRTI och var de första läkemedlet att bli godkänt för behandling av HIV.

I början användes det enbart till patienter som var långt gångna i sjukdomen med mycket låg nivå av antalet CD4+ T-celler (<200celler/ml), många hade utvecklat AIDS. Patienterna ordinerades ganska höga doser och det var mycket korta doseringsintervall, var fjärde timma. Dessa patienter brottades med många och ganska svåra biverkningar, allt detta ledde till att följsamheten inte var så god (12).

Fettförlust (lipoatrofi) är en av de vanligaste biverkningarna för detta läkemedel. Patienter som står på behandling med detta läkemedel förlorar fett i ansiktet, på extremiteter, under fotsulorna och i glutealregionen (7). Ganska många drabbas av denna biverkan och speciellt vid högre doser, patienterna påverkas även psykiskt på grund av att deras utseende blir påverkat (13). En annan allvarlig biverkan är Laktacidos (7).

Effekten av Zidovudin sågs genom att risken för att utveckla oppoturnistiska infektioner minskade och livslängden förlängdes. Man observerade att ökad kroppsvikt och ökat antal CD4+ T-celler också var ett resultat av behandlingen.

Antalet CD4 + T-celler ökade de 4-6 första månaderna efter behandlingens start för att sedan återgå till sin ursprungsnivå.
I studier där man studerade effekten av läkemedlet mot placebo såg man att effekten av Zidovudin höll i sig i ungefär 21 månader innan man började se en tillbakagång. I placebo gruppen var överlevnaden endast 9 månader (12).
Man upptäckte också att patienter som stått på Zidovudin behandling under en längre tid hade mycket stor risk att utveckla resistens mot läkemedlet, denna resistensproblematik var vanligare hos patienter som startat med behandlingen efter de fått en AIDS diagnos.

För att komma tillrätta med biverkningsproblemen så började man göra studier för att se om man fick liknande positiv respons från läkemedlet i lägre doser och ett tidigare insättande. Resultatet blev att man sänkte dosen med 2/3 och det i sin tur gjorde att bara 10% av alla patienter som stod på behandlingen upplevde biverkningar. De som svarade bäst på behandlingen var patienter med en CD4 + T-cell nivå mellan 200-500 celler/mm³ (12, 14, 15).

Fortfarande så kunde sjukdomen inte botas och heller inte stoppas upp helt, progression till AIDS och död skedde trots behandling med zidovudin. Med hjälp av detta läkemedel kunde dock livslängden förlängas, men de goda effekterna av läkemedlet avtog efter 3 år (12, 14, 15, 16).

4.6.3. Dubbelterapi, 1992-1995

Didanosin tillhör samma grupp som Zidovudin och var de andra läkemedlet som kom ut på marknaden. Det som skiljer dom åt är att Zidovudin är en pyrimidin och Didanosin är en purin.

Redan när detta läkemedel godkändes så föddes tankarna på att man kanske kunde kombinera dessa två läkemedel. Målet var att kunna sänka dosen för Zidovudin för att minska de toxiska effekterna, komma åt resistensproblematiken, förlänga livslängden och få mer kunskap om när det är lämpligast att sätta in behandling (12, 17).

Dubbelterapi med två NRTI förlänger livslängden. Tyvärr inte så länge som man kanske hade hoppats på, förlängningen var 3-6 månader. Vad man däremot observerade var att patienter med ett CD4+ T-cells antal på 50 celler/ml när behandlingen sattes in hade sämre prognos med en kortare livslängden än de patienterna som låg på 150 celler/ml vid behandlingsstart (17).
Positivt med denna dubbelterapi var att man upptäckte att den var effektiv även mot Zidovudin resistenta HIV-1.

Följsamhetsproblemen med många doser och korta dosintervall kvarstod (12).

4.6.4. **Kombinationsterapi, från 1995**

Ungefär 45% av de som behandlas med PI som monoterapi utvecklade resistens, även detta kunde dock undvikas till stor del när man kombinerade NRTI och PI.

Det fanns dock några problem med dessa ”tidiga” PI och det var följsamheten. Patienterna hade svårt att uppnå en god följsamhet på grund av antalet tablettar man var tvungen att ta per dag, korta dosintervall, allvarliga biverkningar och stort antal interaktionsproblem.
De vanligaste biverkningarna för PI är ”buffalohump” som är när fett ackumuleras i buk, nacke och/eller bröst.

PI har en mycket stor interaktionsprofil, dom interagerar med:
- Statiner
- Calciumblockerare, ökare dess exponering.
- Benszodiazepiner, ökar dess exponering.
- Kortikosteroider för inhalation, flutikason, kan ge cushingsyndrom.
- Omeprazol

(7)

4.6.5. **HAART, från 1996**
HAART står för highly active antiretroviral therapy och introducerades 1996 och den har visat sig minska sjukdomsprogressionen och dödligheten för personer smittade med HIV.

HAART innefattar en kombination av tre antivirala läkemedel inom gruppen NRTIs, NNRTI och PI, behandlingen går ut på att hämma virusets utveckling i flera steg.

Denna behandling kräver god följsamhet. Andra kroniska sjukdomar såsom diabetes och högt blodtrycket kräver en följsamhet på 30-50% för att man ska hålla sjukdomen i schack. Följsamheten för HIV-patienter måste ligga på > 95% och det ger fortfarande ingen garanti för en lyckad behandling, en på fem upplever dålig respons. En följsamhet på > 95% kräver att inte mer än 2-3 doser per månad får missas (13).

Det rekommenderas inte att förskriva tre stycken NRTI:s eftersom önskad effekt inte kommer att uppnås med den behandlingen.

Behandlingsmålen för HAART är att hålla HIV-RNA nivån < 50 kopior/mL plasma oberoende om det är en behandlingsnaiv eller behandlings erfaren patient (20). Andra mål med HAART är att uppnå synergism mellan de läkemedel som används, kunna ge lägre doser för att minska de toxiska biverkningarna som kan uppstå och minska resistensproblematikken (10).

En del patienter kommer aldrig att uppnå HIV-RNA < 50 kopior/ml plasma även om de har god följsamhet och får en advekat behandling, där kan <150 kopior/ml plasma accepteras som lägsta nivå.

4.7. Fasta läkemedels kombinationer

4.7.1. Combivir
När Combivir, som var de första av fasta läkemedelskombinationer, kom så minskades antalet tablettar man var tvungen att ta per dag. Resultatet av detta framsteg blev att man
bättrade på följsamheten för patienterna, de i sin tur gav en bättre behandling(10). Bilaga 3

4.7.2. **Boostrade PI**

Egentligen så hade kunskapen om boostring funnits sedan 1996 då Ritonavir lanserades.

Ritonavir visade sig ha bättre biotillgänglighet än många andra PI på grund av att detta läkemedel är en potent inhibitor av cytokrome enzymet CYP3A4 och stänger av dess metabolism. Denna egenskap började att nyttjas i kombination med andra PIs som normalt metaboliseras av detta enzym. Biotillgängligheten för PI ökade ordentligt när man tillsatte en låg dos Ritonavir till behandlingen (4).

Denna effekt kom att leda fram till en fast läkemedelskombination som bestod av en PI (lopinavir) och Ritonavir. Istället fick man två läkemedel i ett och boostrade PI kom att bli förstahandsvalet vid behandlingar innehållande PIs (7).

För att bättra på följsamheten för patienter stående på behandlingar med PI forskades det mycket om hur dessa läkemedel absorberades, distribuerade och metaboliserades i kroppen. Resultatet blev att man upptäckte Amprenavirs pro-drug Fosamprenavir. Istället för att ta åtta kapslar per dag som var fallet om man stod på behandling med Amprenavir så behövde man nu bara ta två kapslar per dag (5). Bilaga 3

4.7.3. **Atripla**

Atripla som är en fast läkemedelskombination innehållande en NtRTI, en NNRTI och en NRTI är det enda av sitt slag. Doseringen för Atripla är en tablett per dag och har bättrat på följsamheten för patienter ännu mer.

Läkemedlet rekommenderas inte som ett förstahandsval utan används enbart till patienter som har en god virologisk kontroll och som aldrig har haft någon terapisvikt (7,10). Bilaga 3
4.8. Livskvalitetsregister

4.8.1. InfcareHIV

Listan för vad som behandlas är lång, här är några exempel på vad som behandlas i InfcareHIV.

- Vikt.
- CD4 + T-cells nivån
- HIV-RNA i plasman
- Eventuell resistens
- Oppoturnistiska infektioner
- Biverkningar
- Ålder
- Kön
- Typ av behandling

Målet är att alla smittade ska få en god vård oavsett hur dom smittats och vart dom än behandlas. Det finns en modifierad version av InfCareHIV till barn för att underlätta deras behandling.

HIV-patienter har ofta en stor journal som blir överskådlig till slut, InfcareHIV tillhandahåller ett system som gör det enklare att få en övergripande uppfattning över journalen och allt dess innehåll. InfcareHIV gör det också möjligt för den behandlande läkaren att få råd av andra specialister i landet.
I sin tur använder RAV (referensgruppen för antiviral behandling) sig av detta register för att utvärdera behandlingsrekommendationerna som dom har rekommenderat och se vart eventuellt förändring inför framtiden bör sättas in för att förbättra behandlingen(7, 22).

4.9. Terapi i dagsläget, 2009, för HIV-smittade

4.9.1. Behandlingsstrategier

Ån i dag så står sig HAART-behandlingen, det som har förändrats är att det tillkommit läkemedel med andra biverkningsprofiler, mindre resistensproblematik och som har en bättre följsamhet.

Dom rekommendationer som RAV ger för 2009 vid behandling av HIV är:

Behandlingsstart rekommenderas vid ca 350 CD4+ T-celler/ml.

Förstahandsval
2 NRTI + 1 NNRTI
2NRTI + 1 PI/r

Kivexa eller Truvada är förstahands preparat i gruppen NRTI, vid valet av PI rekommenderas en boostrad PI. Väljer man en NNRTI istället för en PI ska i första hand valet falla på Stocrin (Efavirenz)eftersom den är mycket väl dokumenterad.

Dosering:
Kivexa (600mg Abakavir och 300mg Lamivudin): 1 tablett per dag.
Truvada (200mg emtricitabin och 245 mg tenofivir): 1 tablett per dag.
Stocrin(600mg): 1 tablett per dag.
Kaletra(200mg Lopinavir och 50mg Ritronavir): 1 tabelett två gånger dagligen (11)

När valet står mellan en NNRTI eller en PI/r bör man ha i åtanke att NNRTIs har en ökad resistensproblematik jämfört med PI/r. Alltså skall inte NNRTIs förskrivas till patienter som man vet i förväg kommer att ha svårt med följsamheten. Detta läkemedel skall inte
förskrivs till kvinnor i fertile ålder på grund av teratogena effekter och heller inte till patienter som är psykiskt sjuka eller psykiskt instabila på grund av central nervösa biverkningar.

PI/r rekommenderas till:
- Patienter med risk för sämre följsamhet, exempelvis missbrukare.
- Patienter på metadonbehandling.
- Fertila kvinnor.
- Patienter som har en eller flera resistensmutaioner.

Integrashämmarna och inträdeshämmarna hör inte till något förstahandsval ännu för dessa läkemedel är mycket nya.

Raltegravir ordineras till behandlingserfarna patienter som har någon form av intolerans eller interaktionsproblematik. Biverknings profilen verkar vara bra, men det är svårt att säga till 100% eftersom läkemedlet inte funnits på marknaden så länge. Fördelen med detta läkemedel är att det har mycket mindre interaktionsproblem än PI och NNRTI. Vad det gäller resistensproblematiken så är det ännu oklart.

Den stora skillnaden på Maraviroc som är en inträdeshämmare och andra grupper av HIV-läkemedel är att detta läkemedel binder inte till virusproteinet utan till en värdreceptor.

4.9.2. Smitta mellan mor till barn

Dessa barn är förlösta med planerade kejsarsnitt, 2-3 veckor innan beräknad förlossning och modern har fått HAART-behandling under sin graviditet.
Utförs bara kejsarsnitt och ingen HAART-behandling så minskar risken för smitta med 50% och kejsarsnitt inklusive HAART-behandling medför en risk på 1% att barnet blir smittat.

Riskerna för en smittad kvinna att smitta sitt barn ökar ju längre graviditeten fortskrider och är som störst vid förlossningen, även amning ökar risken för smitta.
Utan behandling så är risken att en mor smittar sitt barn 15-25% och ammar hon dessutom så ökar risken ännu mer med 10-15% till (21).

4.9.3. **Behandling av kvinnor som är eller tänker bli gravida**
Man bevakar den gravida kvinnan och tar prover i graviditetsvecka 10, 20, 30 och i samband med förlossningen. Man kollar CD4+-T-celler och HIV-RNA status.

Om den gravida kvinnan redan står på en fungerade behandling så rekommenderar man att hon står kvar på den, utbyte av läkemedel sker ifall att kvinnan står på efavirez som har tertaogenaegenskaper, stavudin och etravirin rekommenderas inte heller.

Upptäcks HIV-smitta vid graviditet och kvinnan är obehandlad så sätts behandling in vid vecka 16-20 och då är förstahandsvalet zidovudin + lamivudin + Lopinavir/r.
Målet är att hålla antalet HIV-RNA <50 kopior/ml plasma, samma mål som för övriga smittade.

Får kvinnan en HIV-diagnos sent i graviditeten, när det är mindre än en månad kvar till förlossning så sätter man in samma behandling som ovan.

HIV-smitta som upptäcks i samband med förlossningen behandlas på följande sätt:
- Kvinnan får zidovudin + nevirapin som kan ta sig över placentan till fostret.
- Om möjligt skall kejsarsnitt göras.
Barnet skall få behandling med nevirapin vid födsel för att förhindra smitta (21).
4.9.4. Behandlingsstrategier för barn

Perinatalt smittade barn har i regel mycket höga virus nivåer. Ett barns immunsystem kan inte själv begränsa virussmängden som hos vuxna. Detta är på grund att ett barns immunsystem inte är fullt utvecklat förrän efter fem års ålder.

Före insättandet av behandling skall ett resistensbestämningstest göras för att undvika terapisvikt, kan ej detta utföras skall moderns behandlingshistoria undersökas om det är så att smittvägen är via mor till barn. Doseringen till barn styrs efter vikten eftersom barns kroppar växer mycket. Väljer man att inte behandla ett barn är mycket täta provtagningar med kliniska undersökningar att rekommendera.

Barn 0-1 år: behandla alla oberoende av immunstatusen.
Barn 1-5 år: Behandla alla barn som har måttliga till allvarliga sjukdomstillstånd.
(exempel på tillstånd)

<table>
<thead>
<tr>
<th>Måttliga tillstånd</th>
<th>Allvarliga</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allvarliga bakterieinfektioner</td>
<td>Lymfom</td>
</tr>
<tr>
<td>Oral candidiasis > 2 månader</td>
<td>Kaposis sarkom</td>
</tr>
<tr>
<td>Upprepade diarrer</td>
<td>Svampinfektioner i esophagus eller lungorna</td>
</tr>
<tr>
<td>Feber</td>
<td></td>
</tr>
<tr>
<td>Anemi < 80</td>
<td></td>
</tr>
</tbody>
</table>

CD4+T-cells gräns för insättning av behandling till barn utan symtom:

<table>
<thead>
<tr>
<th>Ålder</th>
<th>CD4-cell nivå</th>
</tr>
</thead>
<tbody>
<tr>
<td>1< 3år</td>
<td>750 celler/mm3</td>
</tr>
<tr>
<td>3 < 5år</td>
<td>500 celler/mm3</td>
</tr>
<tr>
<td>≥ 5år</td>
<td>< 350 celler/mm3</td>
</tr>
</tbody>
</table>

Förstahandsval av läkemedel

- 2 NRTI och 1 NNRTI
 eller
2 NRTI och 1 PI

Valet av NRTI skall vara i första hand Abakavir och Lamivudin för dessa läkemedel har en bättre biverkningsprofil och är effektivare än Lamivudin och Zidovudin i kombination. Vid valet av NNRTI skall Nevirapin väljas till barn < 3 år och Efavirenz till barn ≥3 år, första handsvalet för PI är Lopinavir/r.

Det underlättar även att Abakavir och Lamivudintabletterna innehåller en skåra så att dessa är lätta att dosera till växande barn. Tenofovir bör ej användas till barn på grund av att det läkemedlet inte är tillräckligt dokumenterat. Väljs Emtricitabin skall barnet ha en kroppsvikt över 33kg (7).

4.9.5. Terapisvikt

Hur man går till väga vid eventuell terapisvikt är mycket individuellt. Det beror helt på behandlingshistorien, eventuell resistens och biverkningar.

Vanligaste orsaken till terapisvikt är en dålig följsamhet. För att åtgärda problemet så ser man över medicineringsrutinerna, man gör en total medicingenomgång, kostgenomgång, koncentrationsbestämning av läkemedlen och genotypisk resistensbestämning utförs. Man kan konsultera specialister via InfcareHIV, det viktiga är att rätt beslut fattas inom så kort tid som möjligt för att minska lidandet för patienten.

Utifrån vad svaren visar så lägger man upp en ny behandlingsstrategi (7).
5. DISKUSSION OCH SLUTSATSER

Fortfarande så kvarstår allvarliga biverkningar, följsamhetsproblem och resistens men alls inte i samma höga utsträckning som på 1980-talet och början av 1990-talet. Individuell behandling av HIV-smittade är nyckeln till framgång och där har man gjort en
lång resa som har lett fram till InfcareHIV som nu används på kliniker runt om i Sverige (7,22).

Vad som slagit mig under arbetsgången med detta arbete är hur lite folk fortfarande vet om sjukdomen, hur stor rädsla det finns ute i samhället och skambetoningen på sjukdomen. När jag växte upp på 80-90-talet så fick vi mycket information om sjukdomen och visst fanns det mycket rädsla och skam då också men jag tycker att den borde ha stillats. Istället så känns det som att sjukdomen HIV har glömts bort, hamnat i skym undan på något sätt. Är det kanske för att inte så många dör av sjukdomen längre på grund av den effektiva behandling vi har idag ? Det är frågor som inte jag kan besvara men jag tycker att dom är intressanta.

Att vara HIV-smittad idag är att leva med en svår sjukdom resten av sitt liv, sjukdomen kräver mycket både fysiskt och psykiskt. Som smittad måste man vara otroligt insatt i sin behandling och följa den till punkt och pricka för att få ett bra resultat. Trots att man gör det är så är det ingen garanti på att behandlingen kommer att fungera till 100% (13).

En annan sak som slagit mig är att antalet nysmittade ökar (bilaga 5), kanske tar folk för lätt på sjukdomen numera(9). Man kanske tror att om man blir smittad är det bara att ta några piller och så är allt bra igen? Enligt mig så talas det för lite om sjukdomen idag, människor glömmer så fort och nya generationer måste också få möjlighet att ta del av kunskapen om sjukdomen för att kunna skydda sig själva och ha förståelse för dom smittade och problematiken som följer med sjukdomen och dess behandling.

Jag har lärt mig otroligt mycket om sjukdomen och vilka problem som patienter, läkare och forskare brottas med dagligen. Vad jag inte förstod när jag valde detta ämne var hur ofantligt stort och komplex det var. När jag sökte i databaserna fick jag otroligt många träffar, vilket gör att det kan vara svårt att bygga upp en struktur i sitt arbete med så mycket material. Jag hade kunnat skriva hur mycket som helst men jag var tvungen att vara realistisk och begränsa mig på något sätt.
Att därför göra en form av sammanfattning på hur behandlingen har utvecklats och bara använda nyckelhändelserna de senaste 25 åren gav mig den bästa förståelsen om den farmakologiska utvecklingen.

I och med min nyfunna kunskap om denna sjukdom och dess behandling kommer jag att känna mig mer trygg i min roll som receptarie när jag stöter på dessa patienter i mitt yrke.

Till slut vill jag tillägga att;
Från att ha varit en sjukdom med dödlig utgång på 80-talet, när ingen behandling fanns att tillgå, till att bli en sjukdom som är möjlig att kontrollera med advekat behandling idag är en solskenshistoria.

Tackord

Jag vill ge ett stort Tack till min handledare Staffan Andersson som har bidragit med hjälp och bra förslag under arbetes gång, det har varit skönt att ha honom som handledare för att han är så lugn. Sen vill jag också Tacka personalen på Luleå Tekniska Universitetets bibliotek för att dom har varit så hjälpsamma när jag har behövt hjälp med min sökning. Till sist vill jag Tacka min studiekamrat Moa Strömbäck som har varit till stor hjälp på vägen med goda råd och till Dan Bruhn som har hjälpt mig hur jag ska få ner mina tankar på papper på ett strukturerat sätt.
Referenser

11. FASS.se för förskrivare. Hämtad 10 april, 2009 från http://www.fass.se
22. InfCare HIV. Hämtad 10 april, 2009 från http://infcare.se/
Bilaga 1, Ordlista

Active site- Bindningsstället för ett enzym där enzymet katalyserar reaktionen
AIDS- Acquired Immune Deficiency Syndrome
Alfahelix struktur- Vanligaste formen av sekundärstruktur hos ett proteinn, spiraltrappa.
Allosteriskbindning- Proteinbindningsställe som inte används av den normala liganden, påverkar även aktiviteten hos proteinet. Gör att proteinet förändras och de normal bindningsstället förändras, den normala liganden kan ej binda in.

CD4-receptor- En ytstruktur som finns på vissa celler i kroppen och till vilken HIV fäster för att ta sig in i cellen.
Co-receptor- Yt-receptror som i HIVs fall ser till att bindningen till målcellen blir starkare.
Cushingsyndrom- Ett tillstånd med ökad produktion av binjurebarkhormon. Typiskt utseende stort, runt ansikte, bålfetma, högt blodtryck, tunna extremiteter.

DNA- Deoxyribonukleinsyra- De flesta organismer har sin genetiska information = sin arvsmassa uttryckt i DNA.
DNA-polymerasenzym- Ett enzym som påskyndar syntesen av DNA från DNA-mallen.

Fosforylering- Kemisk reaktion där en fosforylgrupp (-PO3) införs i ett ämne.
Fusion- Sammansmältning

Genom- Arvsmassan i sin helhet.
Glutealregion- Sätesregionen
Glykoprotein- Protein där kolhydrat ingår.

Hydrofobisk- Skyr vatten

Icke kompetitiv reversibel hämmare- Binder ej till active site utan bredvid, förändrar active site så att de naturliga substratet inte kan binda in.
Immundefekt- Bristande förmåga hos kroppen att reagera på tillförsel av antigen tex bakterier eller virus.

Induce fit- När enzymet ändrar form så att substratet kan passa in och reaktion kan ske.

Integras- Viralt enzym som finns i HIV som katalyserar insättandet av viralt DNA i målcellens DNA.

Kaposis sarkom- Typ av cancer som förknippas med immunbristsjukdomen AIDS. Elakartad epitcelllstumör.

Kompetitiv hämmare- Reversibla hämmare som tävlar med de normala substratet om active site, vid inbindning sänks enzymaktiviteten.

Laktacidos- Ökad surhetsgrad i kroppen (lågt pH) beroende på kraftig ökning av productionen av mjölksyra. Förekommer vid otillräcklig syretillförsel till delar av kroppen (lokalt dålig cirkulation).

Lymphocyt- Grupp av vitablodkroppar; verkställer immunreaktioner mot främmande fria eller cellbundna antigener.

Lymphom- Samlingsnamn för cancer som utvecklas i de lymfatiska systemet.

Omvänttranskriptas- Se RT

Oral candidiasis- Svampinfektion i munhålan som orsakas av järtsvampar.

Opportunistic infektioner- Allvarliga vanliga infektioner som inte förekommer hos förövrigt friska individer utan drabbar människor med ett nedsatt immunförsvar.

Peptid- Lång kedja av aminosyror mindre än 50 aminosyror. (30-50 aminosyror sammanlänkade blir en polypeptid).

Perinatalt smittade barn- Mor till barn smitta.

Peptidbindning- Karboxylgrupp som reagerar med en aminogrupp så att en vatten frigörs, förekommer främst mellan aminosyror.
Polypeptidkedja- en kedja av ett vanligtvis stort antal av anminosyror, som binder till varandra med peptidbindningar. En karboxylgrupp i en aminosyra binder till en aminogrupp i en annan aminosyra, -CO-NH.

Pro-drug- Molekyl som i sig själv är inaktiv, aktiveringen sker inne i kroppen av en enzymreaktion.

Prolin- En aminosyra som tillhör gruppen neutrala, hydrofoba, opolära aminosyror.

Proteas- Enzym som spjälkar protein.

Provirus- Komplett viralt genom som har integrerats i målcellens genom.

Purin- Kvävehaltiga ämnen, kvävebaser (adenin och guanin).

Pyrimidin- Cytosin, tymin och uracil. Kvävehaltiga föreningar.

Replikering- Cellens DNA kopieras, ordet används även vid virusförökning.

Retrovirus- En virusfamilj med arvsmassan i form av RNA vars information med hjälp av omvänt transkriptas (RT) omvandlar RNA till DNA.

RNA- Ribonukleinsyra, ett ämne som vanligtvis spelar stor roll vid produktionen av äggvitämnen och vid andra processer i cellen. En del virus, inklusive HIV, lagrar sin genetiska information i form av RNA istället för DNA.

RT- Reversed transkriptas (omvänt transkriptas)- Ett enzym som översätter arvsmassan hos HIV från RNA till DNA, för att virus-DNA skall kunna byggas in i den smittade cellens arvsmassa.

Synergism- Samverkan, i det här fallet mellan läkemedel. Deras totala effekt är större än summan av de enskilda läkemedlens effekt.

Terapisvikt- När behandlingen inte har någon verkan längre. Definition för terapisvikt för HIV-patienter är en patient som står på behandling och uppriset upprepade gånger under 6 månader en HIV-RNA nivå över 150 kopior/ml plasma.

T-hjälpparceller- En typ av lymfocyter.
Transkription - Den process vid vilken DNA översätts till RNA eller RNA till DNA. Enzym som möjliggör denna översättning av genetisk information från ett språk till ett annat kallas ofta för transkriptas. Översättningen i det här fallet betyder en verklig förvandling från DNA till RNA eller vice versa.
Bilaga 2, Tabell över alla godkända läkemedel 1987-2008

<table>
<thead>
<tr>
<th>Generiskt Namn</th>
<th>Handels Namn</th>
<th>Förkortning</th>
<th>Klass</th>
<th>Grupp</th>
<th>Godkänt År</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zidovudine</td>
<td>Retrovir</td>
<td>AZT, ZDV</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1987</td>
</tr>
<tr>
<td>Didanosin</td>
<td>Videx</td>
<td>ddl</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1991</td>
</tr>
<tr>
<td>Zalcitabin</td>
<td>Hivid</td>
<td></td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1992</td>
</tr>
<tr>
<td>Stavudin</td>
<td>Zerit</td>
<td>d4T</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1994</td>
</tr>
<tr>
<td>Lamivudin</td>
<td>Epivir</td>
<td>3TC</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1995</td>
</tr>
<tr>
<td>Saquinavir</td>
<td>Invirase</td>
<td>SQV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>1995</td>
</tr>
<tr>
<td>Ritonavir</td>
<td>Norvir</td>
<td>RTV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>1996</td>
</tr>
<tr>
<td>Indinavir</td>
<td>Crixivan</td>
<td>IDV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>1996</td>
</tr>
<tr>
<td>Nevirapin</td>
<td>Viramune</td>
<td>NVP</td>
<td>RT-hämmare</td>
<td>NNRTI</td>
<td>1996</td>
</tr>
<tr>
<td>Nelfinavir</td>
<td>Viracept</td>
<td>NFV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>1997</td>
</tr>
<tr>
<td>Delavirdin</td>
<td>Rescriptor</td>
<td></td>
<td>RT-hämmare</td>
<td>NNRTI</td>
<td>1997</td>
</tr>
<tr>
<td>Efavirenz</td>
<td>Stocrin</td>
<td>EFV</td>
<td>RT-hämmare</td>
<td>NNRTI</td>
<td>1998</td>
</tr>
<tr>
<td>Abakavir</td>
<td>Ziagen</td>
<td>ABC</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>1998</td>
</tr>
<tr>
<td>Amprenavir</td>
<td>Agenerase</td>
<td></td>
<td>Proteashämmare</td>
<td>PI</td>
<td>1999</td>
</tr>
<tr>
<td>Lopinavir+</td>
<td>Kaletra</td>
<td>LPV</td>
<td>proteasehämmare</td>
<td>PI/r</td>
<td>2000</td>
</tr>
<tr>
<td>Tenofovir</td>
<td>Vired</td>
<td>TDF</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>2001</td>
</tr>
<tr>
<td>Enfuvurtid</td>
<td>Fuzeon</td>
<td>T-20</td>
<td>Inträdeshämmare</td>
<td>EI</td>
<td>2003</td>
</tr>
<tr>
<td>Atazanavir</td>
<td>Reyatraz</td>
<td>ATV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>2003</td>
</tr>
<tr>
<td>Emtricitabin</td>
<td>Emtriva</td>
<td>FTC</td>
<td>RT-hämmare</td>
<td>NRTI</td>
<td>2003</td>
</tr>
<tr>
<td>Fosamprenavir</td>
<td>Telzir</td>
<td>fAPV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>2003</td>
</tr>
<tr>
<td>Tipranavir</td>
<td>Aptivus</td>
<td>TPV</td>
<td>Proteashämmare</td>
<td>PI</td>
<td>2005</td>
</tr>
<tr>
<td>Darunavir</td>
<td>Prezista</td>
<td></td>
<td>Proteashämmare</td>
<td>PI</td>
<td>2006</td>
</tr>
<tr>
<td>Maraviroc</td>
<td>Celsentri</td>
<td>MVC</td>
<td>Inträdeshämmare</td>
<td>/EI</td>
<td>2007</td>
</tr>
<tr>
<td>Raltegravir</td>
<td>Isentress</td>
<td>RAL</td>
<td>Integrashämmare</td>
<td>II</td>
<td>2007</td>
</tr>
<tr>
<td>Etravirin</td>
<td>Intelence</td>
<td>ETR</td>
<td>RT-hämmare</td>
<td>NNRTI</td>
<td>2008</td>
</tr>
</tbody>
</table>

(Data från referens 10 & 7)
Bilaga 3, Fasta läkemedelskombinationer

<table>
<thead>
<tr>
<th>Generiskt Namn</th>
<th>Handels Namn</th>
<th>Grupp</th>
<th>Godkänt År</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamivudin+ zidovudin</td>
<td>Combivir</td>
<td>NRTI+</td>
<td>1997</td>
</tr>
<tr>
<td>Abakavir+ zidovudin+ lamivudin</td>
<td>Trizivir</td>
<td>NRTI</td>
<td>2000</td>
</tr>
<tr>
<td>Abakavir+ lamivudin</td>
<td>Kivexa</td>
<td>NRTI+</td>
<td>2004</td>
</tr>
<tr>
<td>Tenofovir+ emtricitabin</td>
<td>Truvada</td>
<td>NtRTI+</td>
<td>2004</td>
</tr>
<tr>
<td>Efavirenz+ emtricitabin+ tenofovir</td>
<td>Atripla</td>
<td>NtRTI</td>
<td>2006</td>
</tr>
</tbody>
</table>

(Data från referens 10)
Bilaga 4, Översikt över behandlingens olika milstolpar

1981 Det första AIDS-fallet diagnostiserades

1987 Monoterapi, det första HIV läkemedlet introducerades, Zidovudin

1991 Didanosin

1992 Dubbelterapi

1995 Kombinationsterapi, PI introducerades

1996 Ritonavir lanserades
1996 NNRTI introducerades
1996 HAART

1997 Fasta läkemedelskombinationer

2000 Boostrade PI

2003 Inträdeshämmare introducerades

2006 Atripla

2007 CCR-5 och Integrashämmare introducerades

2009 Infcare HIV
Bilaga 5, Antal nyanmälda fall av HIV i Sverige 1988-2008

<table>
<thead>
<tr>
<th>År</th>
<th>Antal anmälta fall</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>448</td>
</tr>
<tr>
<td>2007</td>
<td>541</td>
</tr>
<tr>
<td>2006</td>
<td>377</td>
</tr>
<tr>
<td>2005</td>
<td>388</td>
</tr>
<tr>
<td>2004</td>
<td>430</td>
</tr>
<tr>
<td>2003</td>
<td>363</td>
</tr>
<tr>
<td>2002</td>
<td>278</td>
</tr>
<tr>
<td>2001</td>
<td>270</td>
</tr>
<tr>
<td>2000</td>
<td>242</td>
</tr>
<tr>
<td>1999</td>
<td>211</td>
</tr>
<tr>
<td>1998</td>
<td>249</td>
</tr>
<tr>
<td>1997</td>
<td>239</td>
</tr>
<tr>
<td>1996</td>
<td>225</td>
</tr>
<tr>
<td>1995</td>
<td>248</td>
</tr>
<tr>
<td>1994</td>
<td>257</td>
</tr>
<tr>
<td>1993</td>
<td>387</td>
</tr>
<tr>
<td>1992</td>
<td>348</td>
</tr>
<tr>
<td>1991</td>
<td>327</td>
</tr>
<tr>
<td>1990</td>
<td>335</td>
</tr>
<tr>
<td>1989</td>
<td>307</td>
</tr>
<tr>
<td>1988</td>
<td>304</td>
</tr>
</tbody>
</table>

(Data från Smittskyddsinstitutet)