
MASTER'S THESIS

Analysis of UDP-based Reliable Transport
using Network Emulation

Andreas Vernersson
2015

Master of Science in Engineering Technology
Computer Science and Engineering

Luleå University of Technology
Department of Computer Science, Electrical and Space Engineering

Abstract

The TCP protocol is the foundation of the Internet of yesterday and today. In most
cases it simply works and is both robust and versatile. However, in recent years there
has been a renewed interest in building new reliable transport protocols based on UDP
to handle certain problems and situations better, such as head-of-line blocking and IP
address changes.

The first part of the thesis starts with a study of a few existing reliable UDP-based
transport protocols, SCTP which can also be used natively on IP, QUIC and uTP, to see
what they can offer and how they work, in terms of features and underlying mechanisms.

The second part consists of performance and congestion tests of QUIC and uTP imple-
mentations. The emulation framework Mininet was used to perform these tests using
controllable network properties. While easy to get started with, a number of issues were
found in Mininet that had to be resolved to improve the accuracy of emulation.

The tests of QUIC have shown performance improvements since a similar test in 2013
by Connectify, while new tests have identified specific areas that might require further
analysis such as QUIC’s fairness to TCP and performance impact of delay jitter.

The tests of two different uTP implementations have shown that they are very similar,
but also a few differences such as slow-start growth and back-off handling. A previously
identified problem with increasing queuing-delay could be replicated with both uTP
implementations but new experiments show that a small amount of packet loss seems to
prevent this problem.

This work has shown how Mininet can be used to build test systems to analyze UDP-
based transport protocol implementations.

iii

Contents

Chapter 1 – Introduction 1
1.1 Background . 2
1.2 Problem description and goals . 2
1.3 Demarcations . 3
1.4 Thesis outline . 3

Chapter 2 – Theory 5
2.1 A short history of TCP . 7
2.2 TCP mechanisms . 8
2.3 Why UDP . 10
2.4 Overview of UDP-based protocols . 11
2.5 Delays, BDP and fairness . 12
2.6 SCTP . 14
2.7 QUIC . 16

2.7.1 QUIC Implementation . 18
2.7.2 Related work on QUIC . 18

2.8 uTP . 21
2.8.1 uTP Implementations . 23
2.8.2 Related work on uTP . 24

2.9 Mininet . 25
2.9.1 Python example . 26

2.10 Brief overview of used tools . 27

Chapter 3 – Methodology 29
3.1 Alternative test methods . 30
3.2 Selection of tests . 31

Chapter 4 – Mininet 33
4.1 Rationale . 33
4.2 Test system setup . 34
4.3 Test system verification . 35

4.3.1 Packet delay and jitter . 35
4.3.2 Packet loss . 36
4.3.3 Queue length . 37

4.3.4 Bandwidth and congestion . 38
4.4 Issues and solutions . 38

Chapter 5 – Google QUIC 47
5.1 Test setup . 47
5.2 Connectify performance comparison test 48

5.2.1 Connectify performance comparison results 48
5.3 New performance tests . 50

5.3.1 New performance tests results . 52
5.4 Congestion tests . 56

5.4.1 Congestion tests results . 56
5.5 Conclusions for QUIC . 59

Chapter 6 – uTorrent Transport Protocol (uTP) 61
6.1 Test setup . 61
6.2 Performance tests . 62

6.2.1 Performance tests results . 62
6.3 Congestion tests . 66

6.3.1 Congestion tests results . 67
6.4 Growing queuing delay . 68

6.4.1 Growing queuing delay results . 69
6.5 Conclusions for uTP . 74

Chapter 7 – Conclusions 75
7.1 Discussion . 75
7.2 Conclusions . 76
7.3 Further work . 77

References – 79

Appendix A – Test system details I

Appendix B – List of abbreviations III

vi

Chapter 1

Introduction

The Transmission Control Protocol (TCP) is the foundation of the Internet of yesterday
and today. In most cases it simply just works and is both robust and versatile. However, in
recent years there has been a renewed interest in building new reliable transport protocols
based on the unreliable User Datagram Protocol (UDP).

In this thesis, we will first study three reliable UDP-based protocols to learn what prob-
lems and situations they are trying to handle better and how they are different from
TCP.

Stream Control Transport Protocol (SCTP) is a generic transport protocol that designed
to run directly over IP[1], but can also be used over UDP when the operating systems
that lacks a kernel implementation of SCTP[2]. Thereby, a user space implementation of
SCTP can be used.

Google’s Quick UDP Internet Connections (QUIC) is used for transporting web requests
and responses[3].

uTorrent Transport Protocol (uTP) which is used by BitTorrent for peer to peer file
sharing[4].

Looking at SCTP, QUIC and uTP, several features that are not widely possible with
TCP emerge. For example QUIC connections can handle IP address changes[3], which
are not uncommon when smart phones switch between Wi-Fi and mobile networks, and
uTP that can transfer files using low bandwidth priority[4].

1

2 Introduction

The second part of this thesis examines QUIC and uTP in more detail to test actual
protocol implementations using network emulation. These tests are performed to evaluate
the implementations’ performance characteristics in different network situations, and
their congestion handling to see how they react to concurrent TCP connections.

The tests were performed using Mininet[5], a software based network emulator, which
makes it possible to test implementations using different network properties in a con-
trolled environment.

1.1 Background

The background of this thesis was to learn more about new UDP-based reliable transport
protocols and the limitations of TCP. Not for implementing or improving a specific appli-
cation, but to be able to consider alternative protocols when developing new applications
in the future. Depending on the situation and the set of requirements, there might be a
more suitable protocol than TCP.

The tests are performed to evaluate the implementations, both to gain better experience
and understanding of them but also to create a test system that can be useful to test
other implementations in the future. The performance characteristics in different net-
work situations and comparison with TCP are important decision factors when selecting
an implementation. To check their congestion handling is important to avoid causing
unintended effects for other users or the networks.

QUIC was selected because it’s a new and relatively complex protocol that has already
been deployed by Google servers and in Chrome browser[3][6], and because it has not
seen much public analysis yet. uTP was selected because of its unique low priority con-
gestion control and it’s wide usage[7] and that multiple implementations exists and can
be compared[8][9].

1.2 Problem description and goals

The goal of this thesis is to examine the design of the protocols SCTP over UDP, QUIC
and uTP and to test the implementations of QUIC and uTP to evaluate their network
performance and congestion handling.

1.3. Demarcations 3

In particular, the thesis tries to answer the following questions:

• What limitations of TCP can reliable UDP-based protocols handle better?

• Which features do reliable UDP protocols offer compared to TCP and how do they
work?

• How can Mininet be used to test reliable UDP implementations?

• How does the QUIC implementation perform compared to TCP?

• What differences are there between the popular uTP implementations and how do
they perform compared to TCP?

1.3 Demarcations

To limit the scope of the thesis and keep time constraints, the following was not included.

• Detailed review of the protocol design or implementations.

• Complete evaluations of the implementations, for example their compatibility, scal-
ability or security.

• The effects when emulating corruption and reordering to network packets.

1.4 Thesis outline

Chapter 2 begins with a short refresher on reliable transport protocols, a few relevant
TCP mechanisms, why UDP is necessary and a few words about delays and fairness.
Thereafter follows the study of three existing reliable UDP transport protocols to see
what problems they are trying to solve and how they work, including related work. The
chapter ends with an introduction to Mininet, the network emulator used to test and
measure different aspects of the implementations.

Chapter 3 describes the methodology of the work.

4 Introduction

Chapter 4 details how Mininet was used, including verification that the network emulation
works as expected. Problems and solutions that were encountered during the process are
also described.

Chapter 5 and 6 contains the actual tests of two reliable UDP protocols, QUIC and uTP.
First describing how the tests were performed, followed by results and analysis.

Chapter 7 contains the concluding words of this thesis; about the protocols, implemen-
tations and Mininet.

Appendix A lists details about the test system, hardware, software and tested versions.
Appendix B describes the abbreviations used.

Chapter 2

Theory

The Internet protocol suite is typically described using five layers, which include a trans-
port protocol layer. The purpose of the transport layer is to transport application-layer
messages between endpoints. This will provide a logical communication channel between
applications running on different endpoints. The service level that this channel provides
is widely different for the two main transport protocols UDP and TCP[10]. A bare mini-
mum is the separation of messages from different applications through the use of abstract
”ports”, but may also include error control and flow control.[11]

The service level offered by UDP is essentially the minimum level, which is also known
as a connectionless, unreliable transport protocol since UDP makes little to improve the
shortcomings of the underlying network layer. UDP does not try to detect or retransmit
lost packets, check that packets arrive in the original order or to control the packet
flow[12].

TCP on the other hand is the transport protocol which has essentially defined the mean-
ing of a connection-oriented, reliable transport protocol. Such a reliable protocol consists
of multiple services, summarized in table 2.1. Essentially, TCP detects lost packets and
automatically resends them, divides the application’s data into multiple packets and com-
bines them in the correct order. It should also match the sending rate with the receiver’s
capacity to process data. It needs to detect when the network experiences congestion and
make sure multiple users will get a fair bandwidth share[11].

5

6 Theory

Service Description
Separation Data is separated through usage of ”ports”.
Connection-oriented A virtual connection is established between two hosts.
Corruption Verification that data is unmodified.
Resending Lost or corrupted packets are retransmitted.
Duplication Duplicated packets are discarded.
Framing Large data is divided into multiple packets and later reassembled.
Ordering Data is delivered in the correct order.
Flow control Adapts sending rate to receiver’s capacity.
Congestion control Network congestion is detected and avoided.
Fairness Multiple concurrent connections will get a fair share of bandwidth.

Table 2.1: Requirements of a reliable transport protocol

In practice, since TCP is so dominating, new reliable transport protocols are expected
to behave similarly to TCP and not claim a larger bandwidth share, largely to avoid
creating new congestion problems or downgrading the performance of TCP connections.

The service level for different transport protocols is displayed in table 2.2. Note that even
unreliable protocols such as UDP include some but far from all of the requirements.

The UDP-based protocols can utilize the UDP services, separation and corruption, but
this is not always done. uTP depends on UDP’s checksum for corruption and partially on
UDP’s ports for separation. QUIC and SCTP over UDP make minimal use of the UDP
services, using their own mechanisms instead. This will be explained in their respective
sections.

1Typical underlying ”link layer”

2.1. A short history of TCP 7

Service UDP[12] TCP[13] SCTP[1] QUIC[3] uTP[4]
Underlying layer1 IP IP IP or UDP[2] UDP UDP
Separation Y Y Y Y Y
Connection-oriented N Y Y Y Y
Corruption Y Y Y Y Y
Resending N Y Y Y Y
Duplication N Y Y Y Y
Framing N Y Y Y Y
Ordering N Y Y Y Y
Flow control N Y Y Y Y
Congestion control N Y Y Y Y
Fairness N Y Y Y Y
”Reliable transport” N Y Y Y Y

Table 2.2: Service level for different transport protocols

2.1 A short history of TCP

The historical context is worth considering since the introduction of TCP in the 1970s.
The networks of that time often had bandwidths that were measured in a Kbit/s and
packet delays were normally in the seconds. The networks were not for public access
and had relatively few numbers of users. The applications that used TCP were mainly
text-oriented, such as remote computer login, file transfer and electronic mail[14].

TCP has been able to improve and stay dominant through the years. The original TCP
specification did not include congestion control[15] and the early Internet experienced
multiple ”congestion collapses” before the development of congestion avoidance and con-
trol[16] resulted in an updated TCP specification in 1998[13]. The congestion control
has also been improved, many variants have been researched and host systems now use
several different algorithms such as ”New Reno”, ”Cubic” and ”Compound TCP’.

Today’s bandwidths are magnitudes higher and latencies much lower but still limited by
distance and the speed of light. The extension mechanism of TCP options has enabled
gradual improvement while maintaining compatibility. Specifically ”window scaling” that
increases the maximum window size from previously only 64 KB to 1 GB has been es-
sential to reach higher speeds over long distances and ”timestamps” for better round-trip
time estimation[17]. Another important TCP option is the ”Selective Acknowledgments”
(SACK) to improve the effectiveness of handling packet loss[18].

TCP is designed to transport a single byte stream not preserving the individual message

8 Theory

sizes. Today’s application protocols are less based on text that can be parsed without
preserved message lengths and more on binary messages that do require preservation of
message-boundaries, which require applications to include message lengths. This data
overhead might not be large, but since TCP doesn’t understand these boundaries it can
lead to unfavorable ”packetization” or buffering. This problem is partly solved by Nagle’s
algorithm that tries to avoid unnecessary division of data in small packets.

Several modern applications utilize a single connection for doing multiple tasks at once,
such as Hypertext Transfer Protocol version 2 (HTTP/2) that can request and download
multiple files simultaneously[19]. Multiplexing is used for example to reduce redundancy
of using multiple connections that use the same HTTP headers or encryption handshake.
Such multiplexing of streams in TCP leads to a problem called head-of-line blocking.
When a single packet is lost other streams not related to the loss are blocked until the
lost packet is retransmitted. This introduces unnecessary latency in the other streams.
Since TCP uses a single byte-oriented stream it can’t deliver data out of order to the
application layer.

Other modern requirements such as increased level of data protection and privacy have
mostly been solved on top of TCP using Transport Layer Security (TLS)[20] or in the
application protocol, such as SSH[21]. One exception is the QUIC protocol, which has
integrated encryption and will be described later in this chapter.

The limitations of TCP yet to be solved are probably not critical enough to require
large and possibly non-backward compatible changes. Since TCP is both governed by
IETF standards and implemented at the center of operating systems, any changes to the
protocol would take a very long time to gain widespread support.

2.2 TCP mechanisms

Many of TCP’s mechanisms and algorithms that have evolved over the years are also
used in other reliable transport protocol and implementations. This is described in much
more detail in for example[11], but here are brief descriptions of the most relevant parts
for this thesis.

To establish a new connection, TCP typically uses a 3-way handshake using different
flags in the TCP header. The client sends a packet with the SYN-flag, which the server
acknowledges by a packet with SYN- and ACK-flags which is finally acknowledged by
the client with a packet with the ACK-flag. Other flags are used to signal the end of a
connection.

2.2. TCP mechanisms 9

To support separation and allow multiple connections and applications, TCP uses the
4-tuple (IP source address, IP destination address, TCP source port, TCP destination
port) as a unique identifier for each connection on a host. The IP addresses are already
present in the IP header and the port numbers are included in the TCP header. If either
host changes its IP address, there is no possibility to tell the other of the new address
to continue established connections. A single TCP connection cannot utilize multiple
interfaces with different IP addresses to improve performance or availability in case of
failure.[13]

Accidental corruption of packets is detected by including a checksum in each packet of
the TCP header and data, which the receiver will verify. Corrupted packets are discarded
and the sender has to resend the data later.

TCP uses sequence numbers to keep track of the transmitted data. These sequence num-
bers refer to byte offsets, starting at a randomized value. Sequence numbers allow the
receiver to reassemble packets in the correct order, discard duplicate packets and send
acknowledgment numbers with information about the data received. The receiver will
only tell the sender the highest sequence number of contiguously received data. The
sender has to keep transmitted data in a ”sliding window” until their acknowledgement
has been received. To retransmit lost packets, the sender must first realize which packets
are missing, either indirectly by receiving multiple ACKs for the same sequence number,
duplicate ACKs, or after waiting enough time for the acknowledgment (timeout).

When the TCP option ”Selective ACK” is used, the receiver can also specify multiple
ranges of data that has been received instead of just the first contiguous range. Surpris-
ingly SACKs are only advisory so a sender can’t remove data from the send-window,
because a receiver is allowed to change its mind and later ”un-acknowledge” the data.
Due to size limitations of TCP options and the SACK format requiring 8 bytes per range,
only 3 or 4 different ranges can normally be specified.

A window-based rate control of sending speed allows a window-size amount of data to be
transmitted before having to wait a round-trip time (RTT) to receive an update on the
window-size. This effectively limits sending rate R from window-size W packets, packet
size S bits and RTT seconds to R = W ∗ S/RTT

TCP uses window-based flow control to match the sending rate with the receiver’s ca-
pacity. The receiver uses the ”window-size” header field to indicate the number of bytes
available in its receive buffer. The sender cannot transmit more data than the latest
advertised window-size.

TCP’s congestion control also uses a window-based rate control, where the congestion

10 Theory

window-size, CWND, is the number of outstanding bytes that can be transmitted be-
fore acknowledgement. Variants of TCP’s congestion control calculate CWND in differ-
ent ways but two common phases are slow-start and congestion-avoidance. In slow-start
CWND starts very small but while receiving ACKs it can grow exponentially, thus quickly
increasing send rate. Slow-start is kept until CWND reaches a certain level, slow-start
threshold, and then changes to congestion avoidance. Here CWND grows only linearly
while receiving ACKs, but is reduced exponentially when packet loss or congestion is
detected. This is called Additive Increase Multiplicative Decrease (AIMD) and is central
for TCP’s congestion control.

To combine both flow control and congestion control, the sending rate is determined by
the minimum of advertised window-size and congestion window-size.

2.3 Why UDP

When building a new reliable transport protocol, the logical choice would be to use IP
as the underlying network layer. This however doesn’t work in deployed networks and
systems for two main reasons.

Firstly, endpoints in both residential and mobile networks are now almost always using
NAT with IPv4. In the future this will be even more common with the limitations of
IPv4 space. This means that endpoints can only use transport protocols supported by
the NAT-device if they want to talk bidirectionally with an ”outside” peer. The only
viable transport protocols that work through NAT, firewall and other ”middle boxes”
are TCP and UDP[3].

Secondly, for applications to send own IP-packets they would either need to use a non-
standard operating system feature or implement the transport protocol as a kernel-mode
driver, similar to TCP or UDP. Both of these options require special privileges which can
be problematic. For mobile applications neither option is widely possible.

One downside of UDP is the requirement of a UDP header: source port, destination port,
length and checksum. This information can be redundant for other transport protocols
since identifying connections can be done by other means than the typical 4-tuple. Length
is already conveyed by the IP-layer and the checksum can only detect accidental packet
modifications.

Another downside with UDP when used through NAT is the short timeout of UDP
bindings compared to TCP. The recommended minimum timeout value is 120 seconds

2.4. Overview of UDP-based protocols 11

for UDP[22] compared to 2 hours and 4 minutes for TCP[23].

The upside is that applications can deploy and use their own protocols and implemen-
tations, independently of operating system limitations or Internet standard processes.
They also have a chance of working across NAT-boundaries and other existing infras-
tructure[2][3].

2.4 Overview of UDP-based protocols

The first sections offer an introduction to the requirements a reliable UDP-based protocol
has to implement. The overview of TCP shows some of its limitations that UDP-based
protocols can solve.

Keeping the basic reliability requirements, a UDP-based protocol is relatively free to
innovate and implement new features. A summary of such features present in the studied
protocols are shown in table 2.3 and will be explained in more detail in the following
sections.

Feature TCP[13] SCTP[1] QUIC[3] uTP[4]
Unordered delivery N Selectable N N
Partial reliable delivery N Optional[24] N N
Message boundary preservation N Y N N
Low Priority Congestion Optional[25] Optional[25] N Y
Selective ACKs Optional[18] Y Y Y
Large window-size Optional[17] Y Y Y
Forward error correction N N Y N
Multiple streams N Y Y N
Change interface or IP address N Y Y N
Multiple interfaces or IP addresses N2 Y N N
Chunked packet format3 N Y Y N
Data encryption N N Y N
SYN-flood protection Optional[27] Y Y N
Malicious ACK protection N N Y N
Socket API Y Y4 N N

Table 2.3: Features in the studied reliable transport protocols

2Multipath TCP is a new experimental standard[26].

12 Theory

2.5 Delays, BDP and fairness

Kurose and Ross[10] describe the delays on intermediate network nodes as the sum of
four components:

nodal_delay = processing + queuing + transmission + propagation (2.1)

• Processing is the time it takes for handling a packet, before entering the send queue.

• Queuing is the time the packet waits in a queue until transmission starts. Depends
on the current utilization of the link and indirectly on bandwidth.

• Transmission is the time it takes to send a packet to the ”wire”. Depends on packet
size and bandwidth.

• Propagation is the time it takes for a packet to reach the receiving node. Depends
on propagation speed and length of the ”wire”.

For a network where a packet passes through multiple nodes, the total delay or ”actual
latency” can be described as the sum of all intermediate nodal delays. When using em-
ulated networks the parameter called ”delay” is used to simulate the propagation delay,
the minimum delay all packets are subject to.

One simple but important relationship is the calculation of transmission time:

transmission_time = packet_bits/bandwidth (2.2)

This relationship is also used in the Bandwidth Delay Product, BDP, which given band-
width and time will tell how many bits can be transmitted. BDP can also calculate the
required window size or queue size to avoid waiting for acknowledgement packets, using
round-trip-time (RTT) as delay:

BDP = bandwidth ∗ delay (2.3)
3Whether each packet can contain multiple data chunks
4If SCTP is implemented in the operating system

2.5. Delays, BDP and fairness 13

Regarding fairness, that multiple simultaneous protocols get a fair share of bandwidth.
For N flows through a bottleneck link with rate R, each should use an average rate of
R/N . There are many ways of testing this property. One is to visualize the individual
bandwidths over time.

Another is the Jain’s Fairness Index to quantify fairness into an intuitive number, where
1.0 means that all of the flows get exactly equal share and 0.5 means that only 50% of the
flows get an equal share. It can be calculated for N flows where flow i uses xi bandwidth
using equation 2.4.[28]

F = (∑N
1 xi)2

N ∗∑N
1 x2

i

(2.4)

Individual tests of bandwidth share can be significantly different, so in practice many
runs must be made and statistically analyzed to get a useful result.

Other methods of testing fairness include ”TCP Friendly Rate Control” equation[29] or
”relative fairness” to compare transfer rate for different loss probabilities[11][p.768].

14 Theory

2.6 SCTP

The Stream Control Transport Protocol (SCTP) was developed to transport telephone
signaling over IP, but is a generic reliable transport protocols with some unique features.
The original standard from 2000[30] has been updated in 2007[1] and multiple extensions
exist. SCTP can also be used over UDP using a simple encapsulation format [2]. The
following brief description is these specifications.

A SCTP connection is established through a four-way handshake, using the sequence
of INIT, INIT-ACK, COOKIE-ECHO and COOKIE-ACK. This is designed to avoid
SYN-flooding attacks with the wrong source-IP addresses, similar to a previous cookie
mechanism[31]. Essentially the server can avoid allocating resources when receiving INIT.
Instead the server sends INIT-ACK containing a specially constructed cookie value that
the client has to include in COOKIE-ECHO. The server can verify that the cookie is
correct and only after knowing the client’s source IP to be true, allocate connection
resources and finish the handshake with COOKIE-ACK.

SCTP is one of few transport protocols where a single connection can utilize multiple
interfaces and IP-addresses to improve fault tolerance (reachability when a link fails).
This is called multi-homing, and each host must advertise their IP-addresses where they
can be reached. A host will continuously probe the other host’s addresses to determine
current reachability and automatically select a primary path. In case of SCTP with
NAT, the hosts can be unaware of their external IP-addresses which require the Dynamic
Address Reconfiguration extension[32] where the source addresses of incoming packet is
used instead.

To support multi-homing, connections are not primarily identified by the 4-tuple as TCP,
but by 32-bit verification tags established during the handshake. Each direction of the
connection uses a unique verification tag and all SCTP packets must contain the correct
one.

SCTP supports multiple streams in each connection, called multi-streaming. Each stream
transports a separate sequence of application messages, where individual lengths and
inter-message ordering are preserved. Each stream is independent of the others so that
packet loss in one stream does not affect others, as messages are delivered separately
to the application to avoid head-of-line blocking. Application messages can also select
unordered delivery, which are delivered as soon as they arrive to the application layer.

By default, chunks from different streams can be sent together in a packet, called chunk
bundling, either by allowing a certain delay for filling packets or without introducing extra

2.6. SCTP 15

delays. An application can choose to avoid chunk bundling, but in case of congestion the
implementation is still allowed to bundle.

Similar to TCP and UDP, SCTP also uses 16-bit source and destination port numbers to
implement separation, and a 32-bit checksum to detect network corruption. SCTP over
UDP still includes SCTP own ports and checksum in addition to the UDP ports and
checksum when used over UDP. This allows multiple SCTP applications to use the same
SCTP port by using different UDP ports.

Because the SCTP packet format is based on chunks with type, length and data fields,
along with guidelines on how to introduce new chunk types, SCTP can be extended while
maintaining backward compatibility.

An example of such extension that introduces new chunk types is the Partial Reliability
Extension[24] which enables the sender to control how many (if any) retransmissions it
will try before telling the client to ignore lost messages and continue with new messages.
This feature is wanted for services that need a reliable control channel along with data
that quickly becomes obsolete, such as real-time audio and video.

16 Theory

2.7 QUIC

Quick UDP Internet Connections (QUIC) is a new protocol designed by Google that
first was made public in 2012. It is still under development and experimentation, with
an evolving design document[3], cryptography document[33] and packet specification[34]
available online. QUIC is already supported by the Google’s Chrome browser and services
such as Google Search and Youtube[3].

QUIC aims to replace both TCP and TLS to transport HTTP/2, the next generation
HTTP protocol. The goals of QUIC are many but essentially Google wants a protocol that
can be deployed on today’s Internet that reduces latency and also solves problems with
multiple streams over a single TCP connections. Other goals include improved latency
and efficiency for mobile platforms, privacy comparable to TLS and mitigations against
denial of service attacks.[3, GOALS]

Lower latency is wanted to reduce the effects of round-trip time (RTT) when establishing
new connections. By integrating TCP and TLS in a single protocol QUIC can avoid two
sequential handshakes. QUIC can more importantly completely avoid round-trips, called
0-RTT connection latency. This can be done when a client already knows the server’s
public key so that it can send the ”SYN” and proposed and encrypted session key in the
first ”Hello” packet. If the public key is still valid, the server can decrypt and establish
this new connection directly or require an additional round trip to mitigate against source
IP spoofing. The 0-RTT mechanism builds on previous ideas/works, including ”TCP Fast
open”[35] and ”TLS Snap Start”[36]. See figure 2.7.1 for a brief connection establishment
comparison between TCP/TLS and QUIC.

QUIC solves head-of-line blocking by supporting multiple streams that have individual
flow control and are designed not to introduce unwanted dependencies. Individual QUIC
streams can for example be decrypted independently. Multiplexing streams in TCP also
leads to a bandwidth disadvantage compared to parallel connections, partly because a
lost packet reduces all streams bandwidth and partly because multiple connection can
increase the total bandwidth faster during slow-start. To compensate for this, QUIC’s
streams also have individual congestion control.

QUIC supports different congestion control algorithms, which are negotiated upon con-
nection establishment. The default algorithm is based on TCP-Cubic and other variants
based on are also going to be available.[34].

Other notable features in QUIC:

2.7. QUIC 17

Figure 2.7.1: Best case TCP/TLS and QUIC connection establishment

• Connections can survive a change of source IP and port by including a Connection
ID in the packet header.

• Uses forward error correction (FEC) to reduce the risk of retransmission latency
when packet loss occurs by sending parity packets every N packets. If single packet
in a ”packet train” is lost, the data can be recovered without any retransmission.

• Protection against malicious ACKs to make the sender send faster by requiring
ACKs to include a proof that the packets were actually received.

Since QUIC supports that IP address changes, great care have been taken not to become
vulnerable to sending too much data to the wrong recipient when forged source addresses
are used by an attacker. This is done using protocol features where the server can require
the client to prove it both can send and receive packets on the new IP. Such proofs are
time limited and for repeat connections they could have expired.

18 Theory

2.7.1 QUIC Implementation

QUIC has been implemented as part of the Chromium project and is available as open
source5. Unfortunately, no publicly available web server currently supports QUIC.

The Chromium implementation is written in C++ as in a extensive collection of classes
and unit tests. Also available are command-line test tools that can be used to do simple
HTTP-like requests and responses with QUIC, called test-server and test-client. Table
2.4 shows brief source code metrics that were captured using the ”Count Lines of Code”
(CLOC) utility6.

Component Files Classes Lines of code Lines of comment
Protocol 227 430 30042 6835
Protocol unit tests 129 219 27405 3679
Test tools 34 83 3367 659
Test tools unit tests 36 65 4627 687

Table 2.4: CLOC statistics for the QUIC implementation

2.7.2 Related work on QUIC

QUIC is such a new protocol that the only found study of QUIC is a blog post by the
company Connectify in late 2013[37].

This test compares QUIC to HTTP in three different cases. All cases measure the time
it takes to download a single 10 MB file with random content. This time measurement
includes connection establishment, file request, file download and connection close. The
elapsed time is converted to Mbit/s and is called ”goodput” to make comparisons with
the bandwidth limit more intuitive.

goodput = file_size_bits/download_time (2.5)

The tests were made by using two computers connected via a hardware router running
Linux/OpenWRT using Netem to simulate different network properties. Three different

5http://src.chromium.org/viewvc/chrome/trunk/src/net/quic/
6http://cloc.sourceforge.net

http://src.chromium.org/viewvc/chrome/trunk/src/net/quic/
http://cloc.sourceforge.net

2.7. QUIC 19

cases were tested and the results are shown in figure 2.7.2.

• Varying bandwidth, 2-70 Mbit/s symmetric bandwidths with 20 ms RTT and 0%
loss.

• Varying network delay, 80-800 ms RTT with 10 Mbit/s symmetric bandwidth and
0% loss.

• Varying packet loss probability, 0-5% loss with 5 Mbit/s symmetric bandwidth and
160 ms RTT.

The results showed that QUIC were generally slower than HTTP in all cases except when
there is more 1% packet loss. The logical explanation why it was faster in the loss case is
QUIC’s forward error correction, except for it was disabled in QUIC’s code at the time.
The discussion why it could be faster anyway was not presented.

In all cases QUIC would stay below 9 Mbit/s which was explained by QUIC’s use of packet
pacing which would only send one packet every 1 ms, which means 1000 packets/s. This
limit transfer rate in the base case of timer resolution to:

1000packet/s ∗ 1500bytes/packet ∗ 8bits/byte=̃12Mbit/s (2.6)

The Connectify test received some feedback from the QUIC developers on QUIC’s mailing
list7, which noted that FEC was disabled at the time and also that the congestion window
size was temporary limited for avoiding or finding a bug.

7https://groups.google.com/a/chromium.org/forum/#!topic/proto-quic/
xoooxrixCis

https://groups.google.com/a/chromium.org/forum/#!topic/proto-quic/xoooxrixCis
https://groups.google.com/a/chromium.org/forum/#!topic/proto-quic/xoooxrixCis

20 Theory

0 1 2 3 4 5

Packet loss (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
o
o
d
p
u
t

(M
b
it

/s
)

Goodput vs Loss

HTTP
QUIC

0 100 200 300 400 500 600 700 800

Round trip time (ms)

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

(M
b
it

/s
)

Goodput vs Latency

HTTP
QUIC

0 10 20 30 40 50 60 70

Bandwidth (Mbit/s)

0

10

20

30

40

50

60

G
o
o
d
p
u
t

(M
b
it

/s
)

Goodput vs Bandwidth

HTTP
QUIC

Figure 2.7.2: Connectify’s QUIC/HTTP results with goodput (Y) compared to the varying pa-
rameter (X).

2.8. uTP 21

2.8 uTP

The uTorrent Transport Protocol (uTP) was released in 2009 to be used for the BitTorrent
file sharing application protocol[4]. The congestion control algorithm in uTP was later
standardized as Low-Extra-Delay BAckground Transport (LEDBAT)[38], and can be
applied to other protocols such as TCP and SCTP. By some accounts uTP is used for
between 13 and 20% of the traffic on the Internet[7].

The goal was to fully utilize bandwidth only when there is no other traffic usage. This
was to minimize delays or freeze in interactive usage such as web browsing, real-time
audio/video or gaming while running BitTorrent. These delays was caused by TCP filling
the uplink’s send-buffer, which in DSL and Cable modems often have seconds worth of
buffer space. These seconds of delays turns out much worse because TCP slow-start often
requires several round-trips to transfer the wanted data. This overly usage of send-buffer
causing delays is called buffer-bloat.

uTP introduces both a new UDP-based reliable transport protocol and to avoid buffer-
bloat a novel delay based congestion control algorithm. The algorithm measures one-way
queuing-delay and adjusts the sending-rate proportionally to a target delay, the queuing
delay that is ”allowed” to be introduced by uTP’s own traffic.

The protocol uses regular mechanisms such as 3-way handshake to initiate connections,
sequence-numbers, acknowledgements, receive window, congestion windows and round-
trip-time estimation from ACKs and timeouts for packet resending.

Compared to TCP, large receive windows are supported without requiring a window-scale
option8 and SACKs are always supported. Sequence-numbers and ACKs refer to packet
number, not byte number. This allows SACKs to use bit fields to mark which individual
packets have been received, to effectively notify multiple missing packets.

To enable the congestion algorithm, the protocol headers include a high resolution time-
stamp when the packet is sent and a time-stamp difference. The time-stamp difference is
calculated when receiving a packet between the current local time and the packet’s time-
stamp. This difference is then used in the next outgoing packet. The received difference
values are stored in a sliding history list. The specification says that this history list
should keep track of the minimum value, called base_delay for the last 2 minutes. The
difference values individually are meaningless since the two hosts have different time
references but by subtracting base_delay, actual one-way queuing delay samples can be
extracted, called our_delay. This method is used to remove non-queuing delays caused

8Max window size for uTP is 4 GB compared to TCP without/with WSOPT 64 KB/1 GB

22 Theory

by processing, transmission and propagation which should stay roughly constant while
the route stays the same.

Figure 2.8.1 shows how these time-stamps are calculated and propagated back. Host1
will learn from t_diff history that its uplink queuing delay is increasing. Host2 will see
that its uplink queuing delay is constant. Host1 can also store sent differences and also
understand that Host2’s uplink looks good. The situation is simplified so receiving time
and the next packet is sent on the same time value. The two hosts’ clocks are also not
drifting or wrapping around their max value, both of which requires special handling.

Figure 2.8.1: Example of measuring one-way queuing delays using uTP transmission time-
stamps (t) and time-stamp differences (t_diff)

The congestion control changes the sending rate by updating the allowed window size
(max_window) according the equations in figure 2.8.2. [4]

2.8. uTP 23

delay_factor = (target_delay− cur_delay)/target_delay (2.7)

window_factor = outstanding_packet/max_window (2.8)

max_window = max_window + gain ∗ delay_factor ∗ window_factor (2.9)

Figure 2.8.2: uTP congestion control calculation

So depending if current delay is below or above target_delay, the window size is either
increased or decreased. The size of the change depends both on how far off delay is and
how many bytes are actually ”in-flight”. gain is a constant that controls the maximum
change to the window in bytes per RTT.

The uTP specification recommends using 100 ms as target_delay, but not how to
set gain. While LEDBAT RFC recommends target_delay 100 ms and gain less than
1*MSS bytes/RTT. The influence of these parameters have been previously researched,
see section 2.8.2.

2.8.1 uTP Implementations

Many, but not all BitTorrent applications currently support the uTP protocol. The actual
number of uTP implementations is much less and essentially consists of the libraries
libutp[8], libtorrent[9] and libktorrent. Since these uTP implementations are available
as open source they can more easily be studied and tested separately from the whole
BitTorrent application protocol.

9BitTorrent client statistics vary quite a bit, this data is from the Tribler P2P research group at Delft
University, available at [39].

10Vuze supports uTP through ’azutp’ plug in which uses libutp on Windows/OSX.

24 Theory

Application uTP implementation Popularity9

uTorrent libutp 48%
Vuze libutp10 22%
BitTorrent libutp 13%
Transmission libutp 7%
BitComet unsupported 1%
Deluge libtorrent n/a
qBitTorrent libtorrent n/a
Tribler libtorrent n/a
Ktorrent libktorrent n/a

Table 2.5: Bittorrent applications and their uTP implementations

2.8.2 Related work on uTP

There have been quite a few articles about uTP and many are naturally focused on
the congestion control algorithm LEDBAT and the influence of the parameters tar-
get_delay and gain.

• “A hands-on assessment of transport protocols with lower than best effort prior-
ity”[40] - Performance comparison of different low priority congestion in TCP-LP,
TCP-NICE and uTP-LEDBAT using ns2 simulations. Including inter and intra-
protocol fairness, LEDBAT parameter sensitivity (target-delay and gain) and tune-
ability.

• “On the existence of optimal LEDBAT parameters”[41] - How LEDBAT parameters
should be chosen to better achieve Lower-than-Best-Effort transfers that doesn’t
impact competing TCP streams too much. Their conclusion is to use 5 ms target-
delay and 10 as decrease gain (when delay_factor<0) and a low increase gain (when
delay_factor>0) to limit growth to the TCP level. Compared to LEDBAT RFC,
which says 100 ms target_delay and gain less than 1. Also notes that LEDBAT
requires that queuing delay is possible, to be able to measure and react to it. They
also found situations where LEDBAT could be more aggressive than TCP. Used
ns2 simulations.

• “Assessing LEDBAT’s Delay Impact”[42] - That LEDBAT over time can grow
queuing delay over the specified maximum target delay, because uTP over time
will include its own induced delay in base_delay history. Verified against the libutp
implementation. The simple solution that is suggested is to temporary stop the
transfer minimum target_delay ms before updating base_delay. It is likely that

2.9. Mininet 25

other implementations are affected since the issue originates in the protocol spec-
ification. Also shows that LEDBAT doesn’t yield quickly enough for short TCP
transfers.

2.9 Mininet

Mininet[5] is network emulator that uses existing Linux features to enable both virtual
networks and light weight virtual machines. Mininet is implemented in Python and also
offers a Python API to construct different environments and run tests. Using Python also
makes it easy to implement automatic tests of many different test cases. Mininet also
offers a way to run test manually after the network is constructed. 11

The functionality it uses and provides is:

• Processes in network name spaces: Each process group can have different virtual
network interfaces, routing tables and CPU usage limitations. This enables each
process to be a simple ”virtual machine”. However, the hosts are not further isolated
and all have same access to the host’s file system.

• Traffic Control (TC), network emulation (Netem) and virtual network interfaces: To
build virtual networks with different characteristics for example queuing disciplines,
latency, bandwidth and packet loss.

• Software switches and routers. Mininet supports different software switches, and
Mininet 2.2 supports virtual routers using Linux routing functionality.

Mininet was further developed as part of the Ph.d. thesis “Reproducible Network Re-
search with High-fidelity Emulation”[43] which increased the accuracy of emulation with
a set of tests to verify that the network parameters and corresponding invariants are true.
The thesis also aims to use VM-containers in the cloud (Amazon EC2 virtual machines) to
run network tests in self-contained environments. The idea is to publish network research
in such VM-containers that can be distributed and then others can easily reproduce and
continue the research.

Mininet has been used in the Stanford University course ”CS244: Advanced Topics in
Networking” where students recreated results from network research papers, which orig-
inally didn’t published a complete test environments. Many of these students’ projects

11https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet#what

26 Theory

are now available, mostly in the form of Python scripts that uses Mininet and can run
in cloud VMs12.

The critical Linux functionality that Mininet uses, TC and NetEm, have previously been
tested thoroughly, for example in [44] with results true to the input parameters, except
when jitter in non-normal distributions. They have also been used in other papers such
as [42] and [45].

Mininet uses the Linux Network Emulator, NetEm, to provide emulation of other network
parameters:

Delay One-way delay for all packets. The round-trip time is 2*delay.
Jitter How much should delay change between different packets.

Expressed as the standard deviation from a normal distribution.
Loss How frequently are packets dropped, in percent.
Queue size How many packets the send queue can hold. When full, the last is

dropped. Test parameters are shown using the notation q=BDP*x (bits)
which corresponds to a queue size of BDP*x/(8*1500.0) packets.

2.9.1 Python example

The basic usage of Mininet as shown below will create a network with two hosts, a switch
and links with the emulated network properties: bandwidth, delay, no loss and limited
queue size:

from mininet.net import Mininet
from mininet.link import TCLink
from mininet.node import OVSController
net = Mininet(link=TCLink, controller=OVSController)
h1 = net.addHost(’h1’)
h2 = net.addHost(’h2’)
s1 = net.addSwitch(’s1’)
c1 = net.addController(’c1’)
net.addLink(h1, s1, bw=10, delay="25ms", loss=0, max_queue_size=50)
net.addLink(h2, s1, bw=10, delay="25ms", loss=0, max_queue_size=50)
net.start()
h1.cmd("ifconfig")
h2.cmd("ping %s" % h1.IP())
net.stop()

12http://reproducingnetworkresearch.wordpress.com/about/

http://reproducingnetworkresearch.wordpress.com/about/

2.10. Brief overview of used tools 27

2.10 Brief overview of used tools

A few standard utilities were utilized and their functionality is briefly described here.

• Tcpdump - To record packets headers and/or data to packet capture files (PCAP-
files), including time stamp when each packet was received.

• Ping/Hping3 - Utilities to send Internet Control Message Protocol (ICMP) echo
packets and display round-trip-time, latency and packet loss.

• Iperf - Bandwidth measurement utility that can also function as a traffic generator.

• Nginx - Web server that supports HTTP and HTTPS.

• Curl - Command-line web client.

• Wireshark - Utility to graphically and interactively analyze network packets.

• Tshark - Command-line version of Wireshark to analyze and extract packet fields
and statistics.

• Matplotlib - Python library to plot graphs.

• Numpy - Python library to perform statistical analysis.

Chapter 3

Methodology

The first part of this work naturally consisted of looking into available reliable UDP pro-
tocol and refreshing the knowledge about TCP from books like Computer networking[10]
and TCP/IP Illustrated, volume 1 [11]. SCTP, uTP and QUIC were chosen mostly due to
their widespread usage on the Internet compared to other candidates such as Structured
Stream Transport (SST)[46] or UDP-based Data Transfer (UDT)[47].

The next step was to read the protocols specifications and published articles to get an
understanding of the protocols and current knowledge. This was also used to decide what
kinds of tests that would be interesting to perform, such as verifying a specific feature or
goal in a protocol or further analyzing a known problem.

The implementation of QUIC was tested because it’s a new and relatively complex pro-
tocol which has not seen much public analysis yet. QUIC is also interesting because of
its wide deployment and availability in the Chrome browser[6][48]. The implementations
of uTP was selected because of the unique low priority congestion control, the wide us-
age[7] and that multiple implementations exists and can be compared. Previous papers
that were found, such as [45] and [42], have only used libutp, which makes it interesting
to test and compare another implementation. Time constraints limited the tests to the
two most popular uTP implementations, libutp and libtorrent (see table 2.5). Because
QUIC and uTP have widely different goals and properties it will be interesting to see
whether Mininet can be useful to test both of them. SCTP implementations were not
tested because of time limitations.

Since the goal was to test the actual protocol implementations in different scenarios, a

29

30 Methodology

network emulator was selected as the test method. This enables controlled experiments
with actual implementations. Tests can be repeated while changing one parameter at
the time. Tests can be repeated with constant parameters to see the variations of the
results. This method was used to compare implementations in a wide variety of network
situations and show the results in a few graphs, without having to test all combinations.

Emulators can be software or hardware based and runs in real-time and can usually
interact with the real world. It can often use real implementations and applications. A
downside is that emulators can be influenced by external factors such as current time,
system performance and process scheduling. If a hard to reproduce bug is encountered,
one cannot simple restart the test and expect the exact same sequence to occur again.

An issue when using network emulation is to know how accurate the emulation is com-
pared to the selected parameters and ”real-world” results. Even though Mininet has been
verified before[43], the actual usage matter so verification tests of Mininet itself were per-
formed as will be described in Chapter 4. The results have not been compared with tests
in real networks, which is left as further work.

3.1 Alternative test methods

Often network simulators are used for analyzing network protocols. The main difference
is that a simulator runs in a isolated environment with a virtual time which either can
be faster or slower than real-time. This enables the simulation to run unaffected by
external factors and results can be exactly repeated. The main downside is that real
implementations or applications can’t be used in a simulator; instead special simulation
implementations must be used, which was not the goal of this thesis.

A downside of using network emulation is that the simplified models can’t represent
the full dynamics of network paths across the Internet. To do that, implementations
can simply be tested on the Internet. This can be done at different scales from a few
hosts, or using test beds for network research that can have hundreds of hosts or large
scale tests involving millions of test hosts. The larger the scale the wider spectrum of
network conditions can be tested. However, reproducing tests can also be a challenge on
real networks since parameters can’t be controlled and outside factors such as concurrent
traffic will change over time.

Such testing depends largely on what resources are available. Test beds such as PlanetLab

3.2. Selection of tests 31

EU1 is only available for participating partners. Large scale tests can be performed by
Google since they control both the server side and the Chrome browser[6].

The small scale available for this work would only have provided a limited set of different
network properties, such as round-trip times, packet loss rates and bandwidths. This
along with the problem of reproducing results made me dismiss this method.

3.2 Selection of tests

The tests were selected according to the thesis goals, and consist of two categories:
performance and congestion tests.

The performance tests were selected to examine how the implementations perform in
a variety of network conditions. When selecting between different implementations and
TCP, one would want to know both performance benefits and weaknesses. The first test
of QUIC was to repeat the Connectify test using the same network parameters. This was
made to compare the previous result with a newer version of the QUIC implementation.
To exercise QUIC’s multiple streams, a test of transferring ten small files in parallel,
a crude representation of a web page with resources. Also added were tests to see the
influence of delay jitter, which is interesting because jitter can be common for wireless
links. Additional test metrics were to compare the overhead, which is relevant especially
since QUIC uses forward error correction to trade overhead for better performance. The
performance tests of uTP uses the same selection of tests and parameters, because the
same basic performance is also interesting to see here, and because the test system could
be reused with few changes.

The congestions tests were selected to examine how the implementations react to concur-
rent traffic. This is relevant for any transport protocol to verify the fairness. These test
have been performed for evaluation purposes, to know that the implementation function
as intended and does not cause unintended problems. The two selected protocols have
very different congestion goals so the tests were designed differently.

QUIC uses a new congestion control algorithm which is affecting its multiple streams.
The tests were made to verify if the implementation are true to the specification. First
by testing whether two QUIC connections are fair to two TCP connections, and secondly
if a single connection with two streams in QUIC are fair to two TCP connections. While
this could also be tested with many more concurrent connections, the result can be an

1http://www.planet-lab.eu/

http://www.planet-lab.eu/

32 Methodology

indication whether further analysis is needed.

For uTP, the first congestion test was to see how the implementations react to occasional
TCP connections, which is the main purpose of the whole protocol. It is interesting to
see differences between the implementations for the same protocol. The second test was
made to check if the growing queuing delay issue (see 2.8.2) can be replicated and to see
if is still relevant for the implementations. Experiments with adding packet loss was also
tried to see what effect it would have, because that was not tried in the previous work.

The implementations can be different in a number of areas, for example some features can
be implemented without explicit requirement or support in the protocol. Other details
are not specified which can lead to different implementations.

Chapter 4

Mininet

4.1 Rationale

Mininet was selected for several reasons.

The offered functionality seemed to coincide with the needs of the test cases. The ability
to test real implementations in an emulated network environment with control over the
different network properties. The envisioned network speed, number of links and processes
were well within what Mininet can handle[43, p 64]. With a limited number of links which
have bandwidths less than 100 Mbit/s and the total number of virtual machines much
less than 100.

The ease of installation and that each ’host’ doesn’t require a separate ”guest operating
system” installation was also helpful. Because Mininet ’hosts’ can access the same direc-
tory structure, there’s no need to distribute binaries or test-files to the virtual hosts. All
of this makes it an easy to use environment for test and development.

The ability to run tests on a laptop without requiring external hardware and to be able
to easily move back and forth to a desktop computer was also helpful.

However, for testing non-application level such as different operating systems or kernel
mode drivers, Mininet might not be as practical since all Mininet’s hosts are running the
same kernel.

33

34 Mininet

4.2 Test system setup

The tests have been performed on a regular computer, running Ubuntu and utilizing
Mininet. Appendix A contains the hardware specifications and exact software versions
that have been used.

The tests of QUIC and uTP both requires similar test environments where different
network properties and hosts where commands executed. Figure 4.2.1 shows the actual
network layout that has been used in all of the tests. It is used to model the dumbbell
layout where a number of hosts talk to other via a limited link in between. The extra
switch switch1 was needed to be able to capture packets after being subject to the
restricted link.

Figure 4.2.1: Utilized network layout in Mininet

All network links can have different properties, but in this thesis only the link between
switch2 and switch3 have the interesting properties. All other links have unlimited band-
widths and packet-queues, and uses no delay, jitter or packet loss.

The hosts called client1 and server1 will be used for the main protocol under test, while
client2..n and server2..n can be used to run other network traffic simultaneously, cross-
traffic, to study congestion and fairness properties.

Two different test systems were been developed to run test cases. They are both very
similar, and use simple data structures to define a number of test-cases, which describes
network properties, the commands to run and how to capture and extract results.

mininet-performance.py is used to run performance tests to compare how the proto-
cols handle different network environments. Each test case consists of a set of network
parameters and the varying parameter’s test interval. The protocols are then tested re-

4.3. Test system verification 35

peatedly while different results are captured, such as completion time and the number of
transmitted packets. These results are later plotted to show how the varying parameter
(on X-axis) yields different results (Y-axises). Each set of network parameters is also
repeated a number of times to capture the variance of the result, which is shown using
an error-bar with minimum, median and maximum in the plots.

mininet-congestion.py is used to run congestion and fairness tests to show how the
protocols utilize bandwidth when multiple protocols are used simultaneously. Each test
case describes the network parameters and a schedule when the commands should run.
Tcpdump is used to capture packet headers into a PCAP file for each test case. Then
Tshark is used to extract the number of bytes transmitted per time slice for each con-
nection and plotted. Similar to the ”IO Graph” functionality in Wireshark1 but done
automatically from a script. Can optionally include ping RTT measurements and Jain’s
Fairness Index calculations.

4.3 Test system verification

Verification that a test system works as intended is of great importance and this have
previously been done extensively on Netem and Mininet, for example in [43] and [44].

Since the combination of used hardware, operating system, software versions and test
scripts also will influence the result; a few initial test verifications have been performed.
These tests were also helpful in trying to better understand how the test system behaves
and the influence of different parameters.

4.3.1 Packet delay and jitter

Packet delay is specified in milliseconds as the minimum one-way delay. The total delay
can be larger depending on current queuing delays. Jitter adds randomness to the delay
of each packet and is specified as the standard deviation in milliseconds from the normal
distribution. Netem also supports other random distributions, but these have not been
used.

To verify delay, ping packets were sent from client1 to server1 and the RTT time was
captured with Tcpdump at switch12. This round trip time should be close to 2 ∗ delay

1Menu option: Statistics →IO Graph
2To get higher RTT precision than normal ping output

36 Mininet

since the delay is applied in both directions.

Target delay Average RTT Standard error Min Max Sent packets
0 ms 0.054 0.045 0.028 0.490 100
10 ms 20.091 0.011 20.066 20.125 100
25 ms 50.093 0.012 50.069 50.123 100
50 ms 100.095 0.015 100.066 100.137 100

Figure 4.3.1: Validation of delay

To verify jitter, ping packets were sent from server1 to client1 at specific intervals (20
ms) and their inter-arrival times were recorded at switch1 with Tcpdump and extracted
with Tshark. The average inter-arrival time should be close to the sending interval and
standard deviation of inter-arrival times should be close to the specified jitter. The arrival
times were also plotted using a histogram to verify the normal distribution.

Target jitter Arrival standard error Arrival average Min Max Sent packets
0.0 ms 0.019 20.064 19.812 20.120 450
1.0 ms 0.807 20.075 18.191 22.003 450
2.0 ms 1.607 20.077 16.583 23.981 450
3.0 ms 2.436 20.079 14.677 25.843 450
4.0 ms 3.078 20.064 12.706 27.028 450
5.0 ms 3.970 20.067 10.799 29.445 450

Figure 4.3.2: Validation of delay jitter

The actual jitter is thus a little lower than the specified value, which is a known issue in
Netem[44].

The specified jitter values in this thesis are the actual inputs, not adjusted inputs or
resulting jitter.

4.3.2 Packet loss

Packet loss is specified as the probability p that a packet is loss. Netem also supports
different models of packet loss correlation (e.g. Gilbert-Elliot or Bernoulli) but these have
not been used.

4.3. Test system verification 37

To verify this property, x ping packets are sent from server1 to client1 and the received
packets are recorded on switch1 using Tcpdump, where close to x− x ∗ p packets should
be seen.

Target loss Actual loss Receive count Sent packets
0.0 % 0.00 % 1500 1500
0.1 % 0.13 % 1498 1500
0.5 % 0.46 % 1493 1500
1.0 % 1.20 % 1482 1500
2.5 % 2.13 % 1468 1500
5.0 % 4.13 % 1438 1500

Figure 4.3.3: Validation of packet loss

The actual loss rate is close to the target loss, but for higher loss rates accuracy it is not
very exact.

4.3.3 Queue length

Tested by burst sending 10*queue_size number of packets from s1 and counting the
number of packets that arrives at c1. When the packet queue is full, additional packets
should have been dropped. This requires the total sending time to be less than the one-
way delay.

Different bandwidths and packet-sizes were used with 100 ms RTT to verify this property.

Bandwidth Received packets Queue length Sent packets
1 50 50 500
5 50 50 500
10 50 50 500
25 50 50 500
50 50 50 500
100 50 50 500

Figure 4.3.4: Validation of queue length

38 Mininet

4.3.4 Bandwidth and congestion

Verified by running Iperf between clientn and servern for n ∈ (1, 2, 3). Tested multiple
available bandwidths and verified that both TCP-Reno and TCP-Cubic could utilize it.

This test was also interesting to get an idea how regular TCP fairness would look like.
While the individual stream’s share varied quite a lot between different runs the feeling
was that TCP-Reno overall resulted in better fairness both visually and by Jain’s Fairness
index. However, not enough runs were made to analyze the fairness values statistically.

See figures 4.3.5, 4.3.6 and 4.3.7 for example results of TCP-Reno, which utilizes the
available bandwidth with good fairness numbers (all above 0.92). The last chart with the
50 Mbit/s bandwidth limit shows that the exponential slow-start ends before 5 Mbit/s
per stream before continuing with a linear increase, which indicates that TCP’s slow-start
threshold could be set higher.

TCP-Cubic results are shown in 4.3.8, 4.3.9 and 4.3.10. Where the first two also show
good bandwidth utilization and fairness scores (both above 0.95), while the last chart
with 50 Mbit/s shows that the bandwidth can’t continuously be fully utilized and the
fairness score is quite bad - ”tcp3” stream hardly use any bandwidth. Repeating this
would be necessary to see if this is a one-off result or not. But it is reasonable to suspect
that the queue length needs to be larger to get full bandwidth utilization.

4.4 Issues and solutions

Mininet 2.1 could only use switches as intermediate nodes. This makes the network
require Address Resolution Protocol (ARP) requests and responses, which can introduce
unwanted effects with testing network congestion and network delay. When this was
realized, there was a convenient option to be found in Mininet3 to add static ARP entries
and avoid this issue.

To capture the result of packets after passing the limited network link there was a need to
add switch1. If switch1 was removed and Tcpdump used on switch2 (interface sw2-eth2)
the packets from switch3 would be captured before being subject to network parameters.
If Tcpdump could listen on the specific interfaces between clients and the switch, the
extra switch would not be necessary.

3autoStaticArp=True

4.4. Issues and solutions 39

The results for 0%, 0.1% and 0.5% packet loss were initially the same, which was solved
by adding support for decimals in Mininet when constructing Netem parameters for loss.

When looking at pcap files, it became apparent that TCP used very large IP packets
(>10 KB). Even though the emulated links had the proper MTU set (1500) and the
MSS Option field was also correct (1460). The cause was eventually found and turned
out to be the ”Offload Engine” in the Linux kernel. Even virtual network adapters could
apparently be subject to ”hardware” acceleration. This problem was solved by using
ethtool to disable ”TCP segmentation offload” for all virtual adapters. All other types
of offloading were also disabled to avoid similar problems elsewhere. This is something
that is not fixed or documented in Mininet and it doesn’t look like anyone has noticed
this. Such large packets from TCP made it look like the other protocols use very many
packets in comparison.

40 Mininet

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.90

Cumulative
result = 0.966

Figure 4.3.5: Bandwidth utilization for 3 x TCP-Reno, started at t=3, rtt=100 ms, bw=1 Mbit/s,
q=BDP*1

4.4. Issues and solutions 41

0 10 20 30 40 50 60
0

2

4

6

8

10

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.91

Cumulative
result = 0.923

Figure 4.3.6: Bandwidth utilization for 3 x TCP-Reno, started at t=3, rtt=100 ms, bw=10
Mbit/s, q=BDP*1

42 Mininet

0 10 20 30 40 50 60
0

10

20

30

40

50

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.98

Cumulative
result = 0.983

Figure 4.3.7: Bandwidth utilization for 3 x TCP-Reno, started at t=3, rtt=100 ms, bw=50
Mbit/s, q=BDP*1

4.4. Issues and solutions 43

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.89

Cumulative
result = 0.957

Figure 4.3.8: Bandwidth utilization for 3 x TCP-Cubic, started at t=3, rtt=100 ms, bw=1
Mbit/s, q=BDP*1

44 Mininet

0 10 20 30 40 50 60
0

2

4

6

8

10

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.99

Cumulative
result = 0.996

Figure 4.3.9: Bandwidth utilization for 3 x TCP-Cubic, started at t=3, rtt=100 ms, bw=10
Mbit/s, q=BDP*1

4.4. Issues and solutions 45

0 10 20 30 40 50 60
0

10

20

30

40

50

M
b
it

/s

total

tcp1

tcp2

tcp3

0 10 20 30 40 50 60

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Timeslice
median = 0.65

Cumulative
result = 0.658

Figure 4.3.10: Bandwidth utilization for 3 x TCP-Cubic, started at t=3, rtt=100 ms, bw=50
Mbit/s, q=BDP*1

Chapter 5

Google QUIC

5.1 Test setup

QUIC has been tested using Mininet to measure performance and study congestion han-
dling. The performance tests include comparisons with the TLS protocol, which QUIC
intends to replace, and also TCP as an additional reference. TLS and TCP were per-
formed using the web server Nginx and the web client Curl. The congestion tests used
Iperf for generating competing TCP streams that used the TCP-Cubic congestion con-
trol.

To test QUIC the utilities test-client and test-server were used. They could be used from
a scripting environment to run the different tests automatically.

First, the Chromium source code was downloaded and the utilities compiled. The func-
tionality was verified and a few minor issues that prevented testing were resolved.

• Output file - By default the test programs could only show output on standard
output, and there was a problem of using file redirects (’>’) with Mininet. An
option to save the output to a file was added.

• Output NULLs - The whole response is now saved in the output file, not stopping
at NULL characters as the original did.

• Output headers - An option was added to hide the HTTP header in the output
file. This was to make it easier to verify that the resulting files were transferred

47

48 Google QUIC

correctly by comparing file checksums.

• Listen IP - The original test_server could only accept connection from localhost,
preventing the virtual hosts with other IP addresses in Mininet to connect. This
patch is the same as the one Connectify used.

A few words of caution of the QUIC test tools. Since they doesn’t save state such as
session keys between different runs, the improvements in connection establishment (0-
RTT) has not been utilized in these tests. Also included in the timing measurement is
the connection close sequence, which doesn’t really affect page load time in a browser.

5.2 Connectify performance comparison test

The first test was performed according to the same network parameters used in the
Connectify test - Talking Google’s QUIC for a test drive (see 2.7.2). Mainly to see how
the newer QUIC version (2014-09-01) performed compared to Connectify’s version (2013-
11-01), and partly to see if HTTP results was similar even though the test system was
different. The main difference was the usage of Mininet instead of an external Linux
router with Netem.

In addition to HTTPS comparison, another improvement is that each test is repeated 5
times and shown in the graphs as error bars with the minimum, median and maximum
values. This is used to show variations in the results.

5.2.1 Connectify performance comparison results

The results for HTTP are almost identical to Connectify’s in all three cases, which shows
that the test systems will produce very similar results.

The bandwidth test in figure 5.2.1 shows that QUIC no longer has the 8 Mbit/s goodput
limit, and can follow HTTPS until available bandwidth is 30 Mbit/s, after which goodput
don’t increase linearly with available bandwidth. QUIC ends at 36 Mbit/s and HTTPS
at 56 Mbit/s.

The reason for QUIC not performing as well in the higher bandwidths can be understood
using Wireshark’s ”IO Graph” for PCAPs from the 70 Mbit/s test. The 10 MB file

5.2. Connectify performance comparison test 49

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

G
o
o
d
p
u
t

[M
b
it

/s
]

bandwidth vs 10MB transfer
QUIC

HTTP

HTTPS

0 10 20 30 40 50 60 70

Bandwidth
[Mbit/s]

0

10

20

30

40

50

60

G
o
o
d
p
u
t

[M
b
it

/s
]

Original Connectify result

Figure 5.2.1: Bandwidth test 2-70 Mbit/s, 20 ms RTT and 0% loss

completes very quickly and QUIC doesn’t increase it’s transfer speed as fast as TCP. A
larger test file would have shown more equal QUIC goodput.

The latency test result in figure 5.2.2 shows that QUIC have improved it’s performance
for low latencies and are now equal to HTTP. However, latencies above 200 ms have a
large impact of QUIC performance.

The packet loss in figure 5.2.3 shows how QUIC forward error correction will improve
goodput when there’s packet loss. QUIC is almost unaffected by 0.1% loss and for higher
loss it has twice the speed compared to HTTPS. The overhead cost of the parity packets
will be shown later.

However, even if QUIC could recover from a packet loss the congestion window has to
be reduced. But is QUIC’s reduction enough for ”relative fairness”?

50 Google QUIC

100 200 300 400 500 600 700 800
2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
it

/s
]

latency vs 10MB transfer
QUIC

HTTP

HTTPS

100 200 300 400 500 600 700 800

Round trip time
[ms]

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
it

/s
]

Original Connectify result

Figure 5.2.2: Latency test 80-800 ms RTT, 10 Mbit/s bandwidth and 0% loss

5.3 New performance tests

Performance tests have been performed in another a scenario that transfers multiple
files on a single connection to test the stream multiplexing feature in QUIC. This can
be performed using the standard QUIC test tools. The TCP comparison uses curl with
sequential requests on the same connections. Ideally, the comparison should have been
done with multiple parallel TCP connections.

A web page with additional resources come in an many different shapes, which makes
it difficult to choose the number of files and file sizes to test. HTTP is also often used
to load dynamic content through XMLHttpRequest of widely different sizes. The tests
here were made using 10 files of 100 KB each, giving a total size of 1000 KB as a crude
representation of a web page.

5.3. New performance tests 51

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
o
o
d
p
u
t

[M
b
it

/s
]

loss vs 10MB transfer
QUIC

HTTP

HTTPS

0 1 2 3 4 5

Packet loss
[%]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

G
o
o
d
p
u
t

[M
b
it

/s
]

Original Connectify result

Figure 5.2.3: Packet loss test 0-5%, 5 Mbit/s bandwidth and 160 ms RTT

The network parameters are detailed below each graph and are based on the Connectify
parameters with a few adjustments. The latency case is now using 10-500 ms RTT instead
of 80-800 ms because that felt more relevant. The loss case also uses a lower RTT 100
ms instead of 160 ms for the same reason.

A new test was added to study the influence of delay jitter on goodput, which can be
important to know for mobile applications.

To see the overhead of forward error correction, the plots also shows how much extra
data (sent-bytes) and how many packets (sent-packets) the server transmitted.

52 Google QUIC

5.3.1 New performance tests results

The bandwidth test in figure 5.3.1 shows how QUIC continues to grow with available
bandwidth, while HTTP and HTTPS is limited at 10 Mbit/s goodput even when available
bandwidth increases.

Because HTTP and HTTPS could only request one file at the time in this test, each file
will cause a delay of at least one RTT. For these small file sizes that will have a large
impact on transfer rate.

The overhead of QUIC’s parity packets is about 1.6 percentage points higher than HTTP
when the bandwidth is above 5 Mbit/s.

0 10 20 30 40 50
0

5

10

15

20

25

30

G
o
o
d
p
u
t

[M
b
it

/s
]

bandwidth vs 10x100K transfer
QUIC

HTTP

HTTPS

0 10 20 30 40 50
4

5

6

7

8

9

10

11

12

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 10 20 30 40 50

Bandwidth
[Mbit/s]

700

720

740

760

780

800

820

840

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 5.3.1: Bandwidth test for 10 files, 2-50 Mbit/s, 20 ms RTT, 0% loss

5.3. New performance tests 53

The latency test in figure 5.3.2 shows that QUIC is still affected by the increase of
RTT, but less than TCP. If multiple parallel TCP requests had been used, the latency
dependency would have been lower.

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
it

/s
]

latency vs 10x100K transfer
QUIC

HTTP

HTTPS

0 100 200 300 400 500
4.8

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

6.6

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 100 200 300 400 500

Round trip time
[ms]

700

720

740

760

780

800

820

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 5.3.2: Latency test for 10 files, 10 Mbit/s, 10-500 ms RTT, 0% loss

54 Google QUIC

The loss test in figure 5.3.3 shows how QUIC clearly outperforms when there’s packet
loss. QUIC speed is almost unaffected by 0.5% loss or less. The larger variation in QUIC
goodput compared to HTTPS, could be explained that with FEC, QUIC can only some-
times recover for losses depending on which packets are lost.

Also interesting here are the overhead numbers, in bytes and packet count. It looks like
QUIC’s parity uses around 1.6 percentage points more bytes than HTTP, or 1 parity
packet every 62 data packets. For all protocols the byte counts increase is closely related
to the loss, i.e. increase of 1% loss requires 1% more bytes to be transmitted. QUIC is
only designed to handle low loss, also QUIC increases linearly with greater loss.

The impact of loss for packet count is also almost linear, but it is much less visible because
of the scale used in the plot.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

8

G
o
o
d
p
u
t

[M
b
it

/s
]

loss vs 10x100K transfer
QUIC

HTTP

HTTPS

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4

5

6

7

8

9

10

11

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Packet loss
[%]

700

720

740

760

780

800

820

840

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 5.3.3: Loss test for 10 files, 10 Mbit/s, 100 ms RTT, 0-5% loss

5.3. New performance tests 55

The jitter test in figure 5.3.4 show that QUIC is very affected by even small amounts
of jitter in packet delays. The effect of normal distributed jitter with 0.5 ms standard
deviation to the 25 ms one-way delay (50 ms RTT) cuts the transfer rate from 7 to 2
Mbit/s.

Similar to uTP, it seems that QUIC also measures the packet’s inter-packet arrival times
and adjust the sending rate.

The result of 10 ms jitter seems to trigger a bug or corner case in the QUIC implemen-
tation because the number of packet transmission goes through the roof.

The impact on jitter for HTTP and HTTPS is almost none.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

G
o
o
d
p
u
t

[M
b
it

/s
]

jitter vs 10x100K transfer
QUIC

HTTP

HTTPS

0 2 4 6 8 10
0

200

400

600

800

1000

1200

1400

1600

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 2 4 6 8 10

Round trip time jitter
Standard deviation [ms]

0

20000

40000

60000

80000

100000

120000

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 5.3.4: Delay jitter test for 10 files, 10 Mbit/s, 50 ms RTT, 0% loss, 0-10 ms std jitter

56 Google QUIC

5.4 Congestion tests

QUIC’s basic fairness handling against TCP was tested by running multiple large trans-
fers by TCP-Cubic using Iperf and QUIC using test_client and test_server.

First, two separate QUIC connections and two TCP connections, all started at the same
time. The bandwidth utilization should be shared roughly equally, and the overall Jain’s
Fairness Index should be close to 1. The test was repeated 30 times and the median
fairness calculated.

Then, one QUIC connection that has two streams and two TCP connections, all started at
the same time. The goal of QUIC is that it’s two streams should use the same bandwidth
as two separate TCP-Cubic streams. Jain’s Fairness was not calculated since only the
combined bandwidths of the two QUIC streams were available. This was also repeated
30 times and the number of runs where QUIC used more total bandwidth than the two
TCP was counted.

5.4.1 Congestion tests results

A single result from the first test can be seen in 5.4.1, where the two QUIC streams used
15.2 Mb and two TCP used 8.9 Mb, giving a fairness of 0.92. When repeating this test
30 times, QUIC used more bandwidth than TCP in all of them. The median fairness was
0.84 which is even less than the test pictured.

From the second test, a single result in shown in 5.4.2, where a QUIC connection’s two
streams uses 13.5 Mb and the two TCP uses 10.6 Mb. When repeating this test 30 times,
in 60% of the cases QUIC used more bandwidth than TCP.

5.4. Congestion tests 57

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

M
b
it

/s

total

tcp1

tcp2

quic1

quic2

0 5 10 15 20 25 30 35 40

Time (s)

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 F

Instantaneous

Cumulative
result = 0.931

Figure 5.4.1: Congestion test, 2 x TCP and 2 x QUIC, bw=5 Mbit/s, q=BDP*5, RTT=100 ms

58 Google QUIC

0 5 10 15 20 25 30 35 40

Time (s)

0

1

2

3

4

5

M
b
it

/s

total

tcp1

tcp2

2 x quic

Figure 5.4.2: Congestion test, 2 x TCP and 1 QUIC with 2 streams, bw=5 Mbit/s, q=BDP*5,
RTT=100 ms

5.5. Conclusions for QUIC 59

5.5 Conclusions for QUIC

One of the problems with the Connectify tests was that the used version of the QUIC
implementation didn’t have FEC enabled and that CWND had been temporarily limited.
Using a newer version we can now see that both FEC is working and that CWND no
longer have that limitation.

The performance in low delay without packet loss is very similar to HTTPS, except
for higher bandwidth which is mostly due to the slower CWND growth rate. The tests
confirm that QUIC does work well when there’s a small probability of packet loss, which
is what QUIC is designed for. To cover larger packet loss would result in even more
overhead, but packet loss must also affect the congestion control even if the packets can
be recovered. The performance in high latencies could need some improvements to match
HTTPS results, although having more than 300 ms latency is less common today.

The performance in delay jitter probably does need a closer look. When used over a
wireless network that often have naturally occurring jitter, such as a LTE network, QUIC
should use another congestion algorithm that doesn’t use packet timing as an indication
of network congestion. TCP is unaffected by jitter since it typically only uses packet loss
as the congestion indicator. There’s already support for negotiating which congestion
control to be used in QUIC, so a mobile app could use the current network technology
to decide. QUIC could also fall back automatically by detecting when the jitter is above
a certain threshold and then renegotiate the congestion control.

Looking at the transfer of multiple files, it’s clear that QUIC is faster than sequential
HTTPS requests. However, since web sites will use multiple domains to avoid connection
limitations, the test should have used multiple parallel HTTPS connections to compare.

The tests in this thesis also show that the variations in the results, which can be caused
both by the protocols and test system, for most parts have been quite low. One exception
is the packet loss case with its random selection of lost packets, which QUIC can either
repair directly or both need to resend and lower the CWND, causing variations in QUIC’s
performance.

The tests of QUIC’s congestion handling show that the case of one QUIC connection with
two streams seems to use just a little more than two TCP connections, and could still
be considered fair. However, the case with two separate QUIC connections and two TCP
connections strongly suggests that QUIC is not completely fair. More analysis is needed
to understand exactly when and why, to properly adjust the algorithm or parameters to
be more TCP-friendly.

Chapter 6

uTorrent Transport Protocol (uTP)

The basic performance characteristics and congestion handling in uTP has been tested
using similar tests as with QUIC.

Additionally, tests were made to see if the growing queuing-delay issue identified in
“Assessing LEDBAT’s Delay Impact”[42] is still present in libutp and if libtorrent is also
affected. Experiments were also made to see how a low rate of packet loss would affect
this issue.

6.1 Test setup

In order to test the uTP implementations, simple file transfer programs were developed
for each implementation. These can either wait for a connection and then send a file or
connect to another host and receive a file.

libutp already had a similar utility called ’ucat’ that could easily be adapted to be used
as the file transfer program.

libtorrent was a greater challenge since there were no existing stand-alone utility for it’s
uTP implementation. This work consisted of figuring out how to use uTP separately and
implementing a stand-alone test program.

61

62 uTorrent Transport Protocol (uTP)

6.2 Performance tests

The performance tests are similar to the QUIC performance tests in section 5.3, using
same network parameters and a 10 MB test file instead. The same measurement, goodput,
or effective bandwidth is also used. Each test is repeated 5 times and shown in the graphs
as error bars with the minimum, median and maximum values.

The TCP comparison used the same setup of Nginx and Curl.

6.2.1 Performance tests results

The bandwidth result is shown in 6.2.1 where TCP can utilize the available bandwidth
linearly, closely followed by libtorrent with gap to libutp which isn’t following linearly.

The differences between libutp and libtorrent depends almost entirely of the initial
CWND growth, slow-start, where libtorrent’s growth is faster than libutp. For the high
bandwidths, this makes a big difference since the total transfer time is so short for a 10
MB file.

The initial growth will be shown later in the congestion test.

The overhead graphs show how libutp uses a higher packet count than libtorrent. This
can be explained by libutp having a 1430 byte limit on IP packet size. libtorrent have
built in MTU probing and can use 1500 byte IP packets.

6.2. Performance tests 63

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

G
o
o
d
p
u
t

[M
b
it

/s
]

bandwidth vs 10MB transfer
libutp

libtorrent

tcp

0 10 20 30 40 50
4.0

4.5

5.0

5.5

6.0

6.5

7.0

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 10 20 30 40 50

Bandwidth
[Mbit/s]

7200

7250

7300

7350

7400

7450

7500

7550

7600

7650

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 6.2.1: Bandwidth test, 2-50 Mbit/s, 20 ms RTT, 0% loss

The latency test in figure 6.2.2 shows that libtorrent handles the increase quite well,
while libutp loses much performance as latency increases. This can also be explained by
the slower CWND growth, which is more affected by the latency increase.

64 uTorrent Transport Protocol (uTP)

0 100 200 300 400 500
1

2

3

4

5

6

7

8

9

10

G
o
o
d
p
u
t

[M
b
it

/s
]

latency vs 10MB transfer
libutp

libtorrent

tcp

0 100 200 300 400 500
4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 100 200 300 400 500

Round trip time
[ms]

7200

7250

7300

7350

7400

7450

7500

7550

7600

7650

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 6.2.2: Latency test, 10 Mbit/s, 10-500 ms RTT, 0% loss

The packet loss test in figure 6.2.3 shows that libutp and libtorrent are not affected as
must as TCP in case of packet loss.

6.2. Performance tests 65

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
it

/s
]

loss vs 10MB transfer
libutp

libtorrent

tcp

0.0 0.5 1.0 1.5 2.0 2.5 3.0
4

5

6

7

8

9

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Packet loss
[%]

7200

7300

7400

7500

7600

7700

7800

7900

8000

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 6.2.3: Loss test, 10 Mbit/s, 100 ms RTT, 0-5% loss

The delay jitter test in figure 6.2.4 shows how sensitive uTP is to jitter. It is not surprising
since the one-way packet timings directly influence uTP’s congestion controller and the
transfer speed.

66 uTorrent Transport Protocol (uTP)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

G
o
o
d
p
u
t

[M
b
it

/s
]

jitter vs 10MB transfer
libutp

libtorrent

tcp

0 2 4 6 8 10
4

5

6

7

8

9

10

11

S
e
n
t

b
y
te

s
o
v
e
rh

e
a
d

[%
]

0 2 4 6 8 10

Round trip time jitter
Standard deviation [ms]

7000

7500

8000

8500

9000

9500

10000

10500

S
e
n
t

P
a
ck

e
ts

[c
o
u
n
t]

Figure 6.2.4: Delay jitter, 10 Mbit/s, 50 ms RTT, 0% loss, 0-10 ms std jitter

6.3 Congestion tests

The implementations were also tested to see how their congestion control reacts to con-
current TCP connections.

These tests transfer a large file with uTP and after 20 seconds, Iperf is executed for 10
seconds. After 40 seconds from the start, Iperf is again executed for 10 seconds. uTP
should notice the increase in the queuing delay and slow down it’s transfer rate.

The tests results also shows the current delay, based on extracting ping packets’ RTT
values using Tshark. Since RTT is 100 ms and TARGET queuing delay is 100 ms, the
use of uTP should only increase the ping time to an average of 200 ms. While TCP will
try to maximize the delay.

6.3. Congestion tests 67

6.3.1 Congestion tests results

The test results show how both implementations manages to keep the queuing delay
near or below 200 ms when TCP is not used. Both quickly reacts to concurrent TCP
connections and drop their transfer rate.

One visible difference is the beginning, where libtorrent in 6.3.1 quickly grows to almost
full speed and libutp in 6.3.2 takes significantly longer time to reach full speed.

Looking at the source code, libutp uses a slow-start state, but the code actually have a
linear growth limit. It will only grow window-size up to a maximum of MTU bytes1 when
the full CWND size is acknowledged. This comment suggests another intention:

// true if we’re in slow-start (exponential growth) phase
bool slow_start;

libtorrent uses slow-start in the exponential sense, where CWND will grow with the
number of acknowledged bytes up to the current CWND size.

Between and after the two TCP transfers, the LEDBAT congestion control can be seen
to linearly grow CWND. Because libutp uses a higher GAIN than libtorrent it rises faster
in this case.

1get_packet_size()

68 uTorrent Transport Protocol (uTP)

0 20 40 60 80 100
0

5

10

15

20

25

M
b
it

/s

total

tcp1

tcp2

libtorrent

0 20 40 60 80 100

Time (s)

0

200

400

600

800

1000

1200

m
s

Ping RTT

Figure 6.3.1: Congestion test for libtorrent, bw=25 Mbit/s, RTT=100 ms, q=BDP*10

6.4 Growing queuing delay

To measure the growing queuing delay issue, each implementation was tested with a long
running transfer (60 minutes). To avoid overly large input and output files, the bandwidth
limit was set to 1 Mbit/s.

The first test did not use any packet loss or other concurrent traffic sources.

The next test added a small amount of packet loss, 0.1%, to the network link to see if
the issue persists.

6.4. Growing queuing delay 69

0 20 40 60 80 100
0

5

10

15

20

25

30

M
b
it

/s

total

tcp1

tcp2

libutp

0 20 40 60 80 100

Time (s)

0

200

400

600

800

1000

1200

m
s

Ping RTT

Figure 6.3.2: Congestion test for libutp, bw=25 Mbit/s, RTT=100 ms, q=BDP*10

6.4.1 Growing queuing delay results

The first test result for libutp is shown in figure 6.4.1, and libtorrent in figure 6.4.2. Both
start with the expected delays (100 ms + 100 ms TARGET) but then they grow over
time. libutp grows 100 ms every 13 minutes and libtorrent grows 100 ms every 20 minutes.
This corresponds well to the code where libutp uses 13 entries in it’s delay history2, and
libtorrent have 20 entries3.

Adding packet loss, the both results are different and delay will stay close to 200 ms over
the entire 60 minutes. See figures 6.4.3 and 6.4.4. Since the detection of packet loss leads
to a great reduction in CWND, this causes a temporary stop in the transfer, which seems
to be enough to measure the real one-way delay.

2utp_internal.cpp, delay_base_hist[DELAY_BASE_HISTORY=13]
3timestamp_history.hpp, m_history[history_size=20]

70 uTorrent Transport Protocol (uTP)

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

M
b
it

/s

libutp

0 500 1000 1500 2000 2500 3000 3500

Time (s)

200

250

300

350

400

450

500

550

600

m
s

13 min interval

Ping RTT

Figure 6.4.1: Growing queuing delay test for libutp, bw=1 Mbit/s, q=BDP*10, RTT=100 ms

6.4. Growing queuing delay 71

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

M
b
it

/s

libtorrent

0 500 1000 1500 2000 2500 3000 3500

Time (s)

200

250

300

350

400

450

500

m
s

20 min interval

Ping RTT

Figure 6.4.2: Growing queuing delay test for libtorrent, bw=1 Mbit/s, q=BDP*10, RTT=100
ms

72 uTorrent Transport Protocol (uTP)

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

M
b
it

/s

libutp

0 500 1000 1500 2000 2500 3000 3500

Time (s)

206

208

210

212

214

216

218

220

m
s

13 min interval

Ping RTT

Figure 6.4.3: Growing queuing delay test for libutp, bw=1 Mbit/s, q=BDP*10, RTT=100 ms,
loss=0.1%

6.4. Growing queuing delay 73

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

M
b
it

/s

libtorrent

0 500 1000 1500 2000 2500 3000 3500

Time (s)

200

250

300

350

400

450

m
s

20 min interval

Ping RTT

Figure 6.4.4: Growing queuing delay test for libtorrent, bw=1 Mbit/s, q=BDP*10, RTT=100
ms, loss=0.1%

74 uTorrent Transport Protocol (uTP)

6.5 Conclusions for uTP

The tests have shown the basic performance and congestion characteristics of uTP imple-
mentations. Similarities between the implementations can be seen, and not surprisingly
also a few differences.

The performance of libtorrent was generally better than libutp, especially the high band-
width tests, which is largely related to differences in their slow-start. This was clearly
visible in the congestion plots and code, but if this is the intended behavior is unclear.
Considering for TCP, that slow-start growth should be limited by
MIN(newly_acked_bytes, SMSS)[49], it might be the other way around, and that
libtorrent slow-start growth is too aggressive. This is listed as further work to clarify
and resolve.

Compared to TCP, especially the libtorrent implementation can achieve almost matching
performance across different network scenarios. The exception is delay jitter, which affects
uTP performance greatly, since packet timings are used in its congestion algorithm.
Another difference to TCP visible in the tests, is the reaction to concurrent connections
where TCP tries to share the bandwidth fairly while uTP throttles back to accomplish
its main goal of ’background transfer’.

In case of packet loss, libutp and libtorrent are even a little faster than TCP. This can
be explained by differences in CWND reduction when loss is detected, where libutp has
a limitation of reducing CWND once every 100 ms, while libtorrent’s limitation is based
on the current RTT estimation. TCP doesn’t seem to have time-based limitations in its
CWND reduction. To be faster than TCP when there is packet loss is not necessarily a
good thing for congestion and fairness reasons.

Also shown is a reproduction of the growing queuing-delay issue in both implementations.
This means the implementations don’t have addressed this, for example by pausing trans-
mission as suggested[42]. New experiments suggest that a small amount of packet loss will
prevent the problem, which was not shown before. Since real networks are not completely
lossless, this issue should not be a problem in practice.

Chapter 7

Conclusions

7.1 Discussion

The protocol study of Chapter 2 shows the basic requirements of reliable UDP protocols,
the design goal and features of the studied UDP protocols. It is clear that they have much
in common with TCP but each protocol also has some unique features. One common
theme is that some of the lessons learned during the development of TCP are no longer
optional, but now built into the UDP protocols, such as large windows and selective
acknowledgments. Many features are closely aligned with the goal of the protocols, but
native support for multiple streams to avoid head-of-line blocking are central for both
SCTP and QUIC, which would be difficult to achieve with TCP.

A simple but perhaps the most important reason to use UDP-based transport protocols
is that applications can select the protocol that best suits their needs. Also important
to remember are some of the drawbacks, for example the implementations are a lot less
tested and often use non-standard APIs.

Chapter 4 shows that while it’s easy to get started with running network emulation in
Mininet, an effort is still required to verify how things actually work. Both to check that
Mininet is used correctly but also to verify and fix aspects of Mininet itself, such as packet
loss and the issue with huge TCP packets. Even with initial verifications, the experience
has been an iterative process where issues could still ”pop-up” at any stage.

For this thesis, two main test systems were built in order to perform the performance and
congestion tests. Additional scripts that performed post processing and to plot graphs

75

76 Conclusions

were also required. Now that the test systems exist, the actual tests can easily be repeated
on updated versions of the implementations. Another possibility is using the test system
to perform the same or similar tests on other UDP-based protocols, such as SCTP, which
would only require suitable test-programs and minor changes.

One practical problem when performing emulated tests is to determine which scenarios to
test and the exact parameters to use. It’s easy to fall in the trap of wanting to explore the
influence of a yet another parameter, leading to an endless number of tests to perform.

7.2 Conclusions

UDP-based protocols can avoid a number of limitations with TCP, such as: head-of-line
blocking, the 4-tuple identification of connections and the dependency of the TCP version
in the operating system.

New features of the studied UDP-based protocols have been described, such as QUIC’s
0-RTT connection setup and how uTP’s congestion control calculates one-way queuing
delay. Other new features are briefly mentioned and not described in much detail in this
thesis.

The work has shown how Mininet can be used to build systems to test UDP-based reliable
implementations for multiple scenarios, from testing performance to congestion handling.

The main contributions of this thesis are the tests of QUIC and uTP implementations of
their network performance and congestions handling.

For QUIC, the summary in Section 5.5 describes performance gains since a previous
test by Connectify due to implementation improvements and verified good performance
compared to TCP in case of packet loss due to FEC and when using multiple streams
due to individual congestion control. Also found were scenarios that might require further
analysis and improvements. The performance in case of delay jitter were much less than
TCP, caused by its congestion control which seems unsuitable for wireless links. The low
fairness in the case of two QUIC connection and two TCP connections suggests that
QUIC obtains good performance at the expense of TCP.

The summary of uTP tests in Section 6.5 have shown similarities between the two imple-
mentations, such as the reaction to competing TCP connections, and differences, such as
slow-start growth and time-based limitations of CWND reduction in case of packet loss.
The uTP implementations came close to TCP’s performance across the tested network

77

scenarios except in case of delay jitter, caused by the essential usage of packet timings
for uTP congestion algorithm. The previously identified problem with increasing queuing
delay could be replicated in both implementations, but experiments indicate that a small
amount of packet loss seems to prevent the problem.

When testing in isolated and emulated environments, the results should always be taken
with a bit of skepticisms since real networks are influenced by many other factors and
simultaneous traffic. To further verify the results of these tests, comparison with tests on
real network are necessary.

7.3 Further work

Here are some limitations of this thesis that requires further work:

• From the results, there should be more analysis of what is caused by protocol
properties in contrast to implementation details.

• Perform similar tests on real networks and compare the results.

• Using web browser based tests to measure how QUIC performs in terms of latency
for page loads.

• The tested version of QUIC is already obsolete at this time. Automated tests using
nightly-builds could be used to follow the development.

• Clarify if libutp uses too slow slow-start or if libtorrent is too aggressive, and if
necessary send a patch to the library maintainer.

References

[1] R. Stewart, Stream Control Transmission Protocol, RFC 4960 (Proposed Standard),
Updated by RFCs 6096, 6335, 7053, Internet Engineering Task Force, Sep. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4960.txt.

[2] M. Tuexen and R. Stewart, UDP Encapsulation of Stream Control Transmission
Protocol (SCTP) Packets for End-Host to End-Host Communication, RFC 6951
(Proposed Standard), Internet Engineering Task Force, May 2013. [Online]. Avail-
able: http://www.ietf.org/rfc/rfc6951.txt.

[3] J. Roskind. Google QUIC design specification, [Online]. Available: https://do
cs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34.

[4] L. Strigeus, G. Hazel, S. Shalunov, et al. (Jun. 22, 2009). uTorrent transport proto-
col (UTP), [Online]. Available: http://bittorrent.org/beps/bep_0029.
html.

[5] B. Lantz and B. Heller. Mininet - an instant virtual network on your laptop (or
other pc), [Online]. Available: http://www.mininet.org.

[6] Chromium. (Apr. 17, 2015). A QUIC update on Google’s experimental transport,
[Online]. Available: http://blog.chromium.org/2015/04/a-quic-
update-on-googles-experimental.html.

[7] G. Stein. (Jul. 29, 2013). This is why your bittorrent downloads move so fast,
interview with Stanislav Shalunov, [Online]. Available: http://www.fastcola
bs.com/3014951/why-your-bittorrent-downloads-move-so-fast.

[8] BitTorrent. Libutp - uTorrent transport protocol library, [Online]. Available: htt
ps://github.com/bittorrent/libutp.

[9] A. Norberg. Libtorrent website, [Online]. Available: http://www.libtorrent.
org.

79

http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc6951.txt
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34
http://bittorrent.org/beps/bep_0029.html
http://bittorrent.org/beps/bep_0029.html
http://www.mininet.org
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
http://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html
http://www.fastcolabs.com/3014951/why-your-bittorrent-downloads-move-so-fast
http://www.fastcolabs.com/3014951/why-your-bittorrent-downloads-move-so-fast
https://github.com/bittorrent/libutp
https://github.com/bittorrent/libutp
http://www.libtorrent.org
http://www.libtorrent.org

80 References

[10] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach, Sixth
edition. Boston: Pearson, 2013, isbn: 978-0132856201.

[11] K. R. Fall and W. R. Stevens, TCP/IP Illustrated, volume 1: The protocols, Second
edition. Addison-Wesley, 2011, isbn: 978-0321336316.

[12] J. Postel, User Datagram Protocol, RFC 768 (INTERNET STANDARD), Internet
Engineering Task Force, Aug. 1980. [Online]. Available: http://www.ietf.
org/rfc/rfc768.txt.

[13] R. Braden, Requirements for Internet Hosts - Communication Layers, RFC 1122
(INTERNET STANDARD), Updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633,
6864, Internet Engineering Task Force, Oct. 1989. [Online]. Available: http://
www.ietf.org/rfc/rfc1122.txt.

[14] B. M. Leiner, V. G. Cerf, D. D. Clark, et al., “A brief history of the Internet”, ACM
SIGCOMM Computer Communication Review, vol. 39, no. 5, pp. 22–31, 2009.
[Online]. Available: http://www.cs.ucsb.edu/~almeroth/classes/
F10.176A/papers/internet-history-09.pdf.

[15] V. Cerf, Y. Dalal, and C. Sunshine, Specification of Internet Transmission Control
Program, RFC 675, Internet Engineering Task Force, Dec. 1974. [Online]. Available:
http://www.ietf.org/rfc/rfc675.txt.

[16] V. Jacobson, “Congestion avoidance and control”, in ACM SIGCOMM computer
communication review, ACM, vol. 18, 1988, pp. 314–329. [Online]. Available: http:
//www.eecs.berkeley.edu/~sylvia/papers/congavoid.pdf.

[17] V. Jacobson, R. Braden, and D. Borman, TCP Extensions for High Performance,
RFC 1323 (Proposed Standard), Obsoleted by RFC 7323, Internet Engineering
Task Force, May 1992. [Online]. Available: http://www.ietf.org/rfc/
rfc1323.txt.

[18] M. Mathis, J. Mahdavi, S. Floyd, et al., TCP Selective Acknowledgment Options,
RFC 2018 (Proposed Standard), Internet Engineering Task Force, Oct. 1996. [On-
line]. Available: http://www.ietf.org/rfc/rfc2018.txt.

[19] M. Belshe, R. Peon, and M. Thomson, Hypertext Transfer Protocol Version 2
(HTTP/2), RFC 7540 (Proposed Standard), Internet Engineering Task Force, May
2015. [Online]. Available: http://www.ietf.org/rfc/rfc7540.txt.

[20] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version
1.2, RFC 5246 (Proposed Standard), Updated by RFCs 5746, 5878, 6176, 7465,
7507, Internet Engineering Task Force, Aug. 2008. [Online]. Available: http://
www.ietf.org/rfc/rfc5246.txt.

[21] T. Ylonen and C. Lonvick, The Secure Shell (SSH) Transport Layer Protocol, RFC
4253 (Proposed Standard), Updated by RFC 6668, Internet Engineering Task Force,
Jan. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4253.txt.

http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.cs.ucsb.edu/~almeroth/classes/F10.176A/papers/internet-history-09.pdf
http://www.cs.ucsb.edu/~almeroth/classes/F10.176A/papers/internet-history-09.pdf
http://www.ietf.org/rfc/rfc675.txt
http://www.eecs.berkeley.edu/~sylvia/papers/congavoid.pdf
http://www.eecs.berkeley.edu/~sylvia/papers/congavoid.pdf
http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc1323.txt
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc7540.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc4253.txt

81

[22] F. Audet and C. Jennings, Network Address Translation (NAT) Behavioral Re-
quirements for Unicast UDP, RFC 4787 (Best Current Practice), Updated by RFC
6888, Internet Engineering Task Force, Jan. 2007. [Online]. Available: http://
www.ietf.org/rfc/rfc4787.txt.

[23] S. Guha, K. Biswas, B. Ford, et al., NAT Behavioral Requirements for TCP, RFC
5382 (Best Current Practice), Internet Engineering Task Force, Oct. 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5382.txt.

[24] R. Stewart, M. Ramalho, Q. Xie, et al., Stream Control Transmission Protocol
(SCTP) Partial Reliability Extension, RFC 3758 (Proposed Standard), Internet
Engineering Task Force, May 2004. [Online]. Available: http://www.ietf.
org/rfc/rfc3758.txt.

[25] S. Shalunov, G. Hazel, J. Iyengar, et al. (Dec. 1, 2012). Low extra delay background
transport (LEDBAT), [Online]. Available: http://tools.ietf.org/html/
rfc6817.

[26] A. Ford, C. Raiciu, M. Handley, et al., TCP Extensions for Multipath Operation with
Multiple Addresses, RFC 6824 (Experimental), Internet Engineering Task Force,
Jan. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc6824.txt.

[27] D. J. Bernstein. (1996). Syn cookies, [Online]. Available: http://cr.yp.to/
syncookies.html.

[28] R. Jain, D.-M. Chiu, and W. Hawe, A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer systems, DEC-TR-301, 1984.

[29] S. Floyd, M. Handley, J. Padhye, et al., TCP Friendly Rate Control (TFRC):
Protocol Specification, RFC 5348 (Proposed Standard), Internet Engineering Task
Force, Sep. 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5348.
txt.

[30] R. Stewart, Q. Xie, K. Morneault, et al., Stream Control Transmission Protocol,
RFC 2960 (Proposed Standard), Obsoleted by RFC 4960, updated by RFC 3309,
Internet Engineering Task Force, Oct. 2000. [Online]. Available: http://www.
ietf.org/rfc/rfc2960.txt.

[31] P. Karn and W. Simpson, Photuris: Session-Key Management Protocol, RFC 2522
(Experimental), Internet Engineering Task Force, Mar. 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2522.txt.

[32] R. Stewart, Q. Xie, M. Tuexen, et al., Stream Control Transmission Protocol (SCTP)
Dynamic Address Reconfiguration, RFC 5061 (Proposed Standard), Internet Engi-
neering Task Force, Sep. 2007. [Online]. Available: http://www.ietf.org/
rfc/rfc5061.txt.

http://www.ietf.org/rfc/rfc4787.txt
http://www.ietf.org/rfc/rfc4787.txt
http://www.ietf.org/rfc/rfc5382.txt
http://www.ietf.org/rfc/rfc3758.txt
http://www.ietf.org/rfc/rfc3758.txt
http://tools.ietf.org/html/rfc6817
http://tools.ietf.org/html/rfc6817
http://www.ietf.org/rfc/rfc6824.txt
http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
http://www.ietf.org/rfc/rfc5348.txt
http://www.ietf.org/rfc/rfc5348.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2960.txt
http://www.ietf.org/rfc/rfc2522.txt
http://www.ietf.org/rfc/rfc5061.txt
http://www.ietf.org/rfc/rfc5061.txt

82 References

[33] A. Langley and W.-T. Chang. QUIC crypto, [Online]. Available: https://docs.
google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTa
DUDwvZ5L6g.

[34] Google Chromium. QUIC wire layout specification, [Online]. Available: https://
docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHet
AXV8I0fQe-B_U.

[35] Y. Cheng, J. Chu, S. Radhakrishnan, et al., TCP Fast Open, RFC 7413 (Exper-
imental), Internet Engineering Task Force, Dec. 2014. [Online]. Available: http:
//www.ietf.org/rfc/rfc7413.txt.

[36] A. Langley. (Jun. 18, 2010). Transport layer security (TLS) snap start, [Online].
Available: http://tools.ietf.org/html/draft-agl-tls-snapstart-
00.

[37] Connectify. (Nov. 7, 2013). Taking google’s QUIC for a test drive, Connectify,
[Online]. Available: http://www.connectify.me/blog/taking-google-
quic-for-a-test-drive/.

[38] S. Shalunov, G. Hazel, J. Iyengar, et al., Low Extra Delay Background Transport
(LEDBAT), RFC 6817 (Experimental), Internet Engineering Task Force, Dec. 2012.
[Online]. Available: http://www.ietf.org/rfc/rfc6817.txt.

[39] TorrentFreak. (Aug. 14, 2009). Torrentfreak bittorrent client usage sep-2009, [On-
line]. Available: http://torrentfreak.com/utorrent-still-on-top-
bitcomets-market-share-plummets-090814/.

[40] G. Carofiglio, L. Muscariello, D. Rossi, et al., “A hands-on assessment of transport
protocols with lower than best effort priority”, in Local Computer Networks (LCN),
2010 IEEE 35th Conference on, IEEE, 2010, pp. 8–15. [Online]. Available: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5735831.

[41] S. Q. V. Trang, N. Kuhn, E. Lochin, et al., “On the existence of optimal LEDBAT
parameters”, in Communications (ICC), 2014 IEEE International Conference on,
IEEE, 2014, pp. 1216–1221. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=6883487.

[42] D. Ros and M. Welzl, “Assessing LEDBAT’s delay impact”, IEEE Communica-
tions Letters, vol. 17, no. 5, pp. 1044–1047, May 2013, issn: 1089-7798. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6496997.

[43] B. Heller, “Reproducible network research with high-fidelity emulation”, PhD the-
sis, Stanford University, 2013. [Online]. Available: https://stacks.stanfor
d.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf.

https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U
http://www.ietf.org/rfc/rfc7413.txt
http://www.ietf.org/rfc/rfc7413.txt
http://tools.ietf.org/html/draft-agl-tls-snapstart-00
http://tools.ietf.org/html/draft-agl-tls-snapstart-00
http://www.connectify.me/blog/taking-google-quic-for-a-test-drive/
http://www.connectify.me/blog/taking-google-quic-for-a-test-drive/
http://www.ietf.org/rfc/rfc6817.txt
http://torrentfreak.com/utorrent-still-on-top-bitcomets-market-share-plummets-090814/
http://torrentfreak.com/utorrent-still-on-top-bitcomets-market-share-plummets-090814/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5735831
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5735831
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6883487
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6883487
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6496997
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6496997
https://stacks.stanford.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf
https://stacks.stanford.edu/file/druid:zk853sv3422/heller_thesis-augmented.pdf

83

[44] A. Jurgelionis, J. Laulajainen, M. Hirvonen, et al., “An empirical study of netem
network emulation functionalities”, in Computer Communications and Networks
(ICCCN), 2011 Proceedings of 20th International Conference on, IEEE, 2011, pp. 1–
6.

[45] Y. Gong, D. Rossi, C. Testa, et al., “Fighting the bufferbloat: on the coexistence of
AQM and low priority congestion control”, Computer Networks, vol. 65, pp. 255–
267, Jun. 2014, issn: 13891286. [Online]. Available: http://www.sciencedir
ect.com/science/article/pii/S1389128614000188.

[46] B. Ford, “Structured streams: a new transport abstraction”, ACM SIGCOMM
Computer Communication Review, vol. 37, pp. 361–372, 2007. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1282421.

[47] Y. Gu. UDP-based data transfer protocol, [Online]. Available: http://udt.
sourceforge.net.

[48] E. Protalinski, Google Chrome now has over 1 billion users, May 28, 2015. [Online].
Available: https://venturebeat.com/2015/05/28/google-chrome-
now-has-over-1-billion-users/.

[49] M. Allman, V. Paxson, and E. Blanton, TCP Congestion Control, RFC 5681 (Draft
Standard), Internet Engineering Task Force, Sep. 2009. [Online]. Available: http:
//www.ietf.org/rfc/rfc5681.txt.

http://www.sciencedirect.com/science/article/pii/S1389128614000188
http://www.sciencedirect.com/science/article/pii/S1389128614000188
http://dl.acm.org/citation.cfm?id=1282421
http://udt.sourceforge.net
http://udt.sourceforge.net
https://venturebeat.com/2015/05/28/google-chrome-now-has-over-1-billion-users/
https://venturebeat.com/2015/05/28/google-chrome-now-has-over-1-billion-users/
http://www.ietf.org/rfc/rfc5681.txt
http://www.ietf.org/rfc/rfc5681.txt

Appendix A

Test system details

Host system

• CPU: Intel i7-3520M 2.90 GHz (4 cores)

• RAM: 16GB RAM
• HDD: 180GB Intel SSD

Software versions:

• Ubuntu 14.04.1 LTS, 64-bit

• Linux kernel 3.13.0-43-generic Ubuntu SMP, CFS scheduler default, IPv6 disabled.

• Mininet 2.1.0 (Ubuntu packaged) with loss-fractional.patch.

• Matplotlib 1.4.2

• Nginx - 1.4.6

• curl - 7.35.0
• iperf - 2.0.5

• LATEX- TeX Live 1.40.14

• RFC bibtex - 2015-06-17 from http://tm.uka.de/~bless/bibrfcindex.html

Tested UDP-protocol versions:

• QUIC - Chromium git checkout 2014-10-28, release compiled.

• libutp - git checkout 2014-05-20, release compiled.

• libtorrent - version 1.0.2, release compiled.

I

http://tm.uka.de/~bless/bibrfcindex.html

Appendix B

List of abbreviations

• ACK - Acknowledgement of arrived packets.

• ARP - Address Resolution Protocol, for resolving IP addresses on Ethernet.

• AIMD - Additive Increase Multiplicative Decrease

• ARQ - Automatic Repeat reQuest. Resends lost packets, often when used in wireless
links.

• BDP - Bandwidth Delay Product. Used to calculate optimal window or buffer sizes,
queue lengths or transmission delay.

• CWND - Congestion Window - The allowed number of unacknowledged bytes or
packets. Controls the transfer speed.

• DoS - Denial of Service.

• DUP - Duplicate.

• DUP ACK - Duplicate acknowledgment.

• FEC - Forward Error Correction. Redundancy in transmissions to correct for certain
errors.

• HTTP - Hypertext Transfer Protocol, used for web requests and responses.

• HTTPS - HTTP used over TLS.

• HOL - Head of line blocking - Problem when multiplexing streams over TCP.

III

IV Appendix B

• IP - Internet Protocol v4 and v6 - Network layer.

• OS - Operating System

• MSS - Maximum Segment Size. The maximum data size TCP will use. Often 1460.

• MTU - Maximum Transferable Unit. IP packets when sent over Ethernet often have
the maximum size of 1500 bytes.

• NETEM - NETwork EMulator, component in Linux Traffic Control (tc). Used to
emulate packet delay, delay jitter, packet loss and queue length.

• PCAP - Packet capture file. Typically recorded using tcpdump and analyzed with
Wireshark or tshark.

• RTT - Round trip time - The time it takes for a packet back and forth been two
hosts.

• SACK - Selective ACKnowledgement - Acknowledgement of multiple ranges of non-
contiguous data.

• SCTP - Stream Control Transfer Protocol.

• SYN - SYNchronize flag used in TCP when establishing new connections.

• TC - Linux Traffic Control - subsystem of the kernel to

• TCP - Transmission Control Protocol. Connection oriented, reliable transport pro-
tocol.

• TLS - Transport Layer Security. Encrypted transport protocol used over TCP.

• uTP - uTorrent Torrent Protocol or Micro Torrent Protocol. UDP-based, reliable
transport protocol for BitTorrent file sharing.

• UDP - User Datagram Protocol - Connection-less, unreliable transport protocol.

• VM - Virtual Machine.

