
MASTER’S THESIS

2003:323 CIV

PETER JONSSON
VIKTOR LEIJON

Propagation of
Location Information in

Constrained Type Inference

MASTER OF SCIENCE PROGRAMME

Department of Computer Science and Electrical Engineering
Division of Computer Science and Networking

2003:323 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 03/323 - - SE

Propagation of location information in

constrained type inference

Peter A. Jonsson Viktor Leijon

December 16, 2003

Abstract

The Timber type system is an extension of the classical Hindley-Milner type
system, incorporating both qualified types and first class polymorphism. Since
we also have subtyping, type errors in this system manifest themselves as unsat-
isfiable constraints rather than as non-unifiable types as in the Hindley-Milner
system.

In this thesis, we present a theoretical model for propagating the source of
a constraint so that it can be presented to the user in case of an error. We
also present examples from an implementation of our system for the Timber
compiler. We propagate the location information by adding annotations to the
syntax tree and then preserve that information as we build the predicates and
types needed for type checking.

We conclude that the approach to annotation taken here is one possible so-
lution for the propagation of location information in constrained type inference.

Contents

1 Introduction 4
1.1 Introduction . 4
1.2 Type theory . 5

1.2.1 History . 5
1.2.2 Hindley-Milner . 5
1.2.3 Qualified types . 6
1.2.4 First-class polymorphism 9
1.2.5 Timber type system . 9

1.3 The Timber Compiler . 11
1.4 Previous work on type error reporting 11

2 Analysis 13
2.1 Problem overview . 13
2.2 Theory . 14

2.2.1 Annotation of the abstract syntax tree 14
2.2.2 Annotation of predicates 14
2.2.3 Experimental annotation of types 14
2.2.4 Type inference algorithm 15
2.2.5 Context reduction algorithm 15
2.2.6 Error reporting . 16

2.3 An example of deduction . 16
2.3.1 Premises . 16
2.3.2 Type inference . 16
2.3.3 Context reduction . 17

3 Implementation and examples 19
3.1 Implementation . 19

3.1.1 Annotation of the syntax tree 19
3.1.2 Annotation of the predicates 20
3.1.3 Experimental annotation of types 22
3.1.4 Error reports . 23

3.2 Examples . 23

4 Conclusions 27
4.1 Conclusions . 27
4.2 Future work . 27

1

A Rules for Timber 29
A.1 Typing rules . 29
A.2 Predicate rules . 30

Bibliography 31

2

List of Figures

1.1 The basic type inference rules for the Hindley-Milner system . . 6
1.2 A Haskell function removing elements from a list 7
1.3 Extended typing rules for qualified types 8
1.4 An upcast in C++ . 9
1.5 Extensions to Hindley-Milner for first class polymorphism. 10
1.6 An example of a broken case expression 12

2.1 An erroneous Haskell program with error message 13
2.2 Modified type inference rules . 15
2.3 The annotated small step reduction rules 17

3.1 TestA - A very simple Timber program 20
3.2 The Haskell definition of the location information 21
3.3 The Haskell definition of the predicate information 22
3.4 The Haskell definition of the type information 22

3

Chapter 1

Introduction

1.1 Introduction

In a strongly typed language we are guaranteed that any type errors are found at
compile time. We are assured that once the compiler/interpreter has accepted
our program, it will not produce any type errors. In contrast, languages like C
or Java make no such assurances. In these languages, the programmer can often
accidentally produce type errors that will result either in unpredictable results
or an exception.

In a strongly typed language with type inference, we are not only guaranteed
that there will be no type errors, but we are also relieved of the responsibility
for declaring the types for variables and functions ourselves. In a system with
type inference, the compiler will deduce the type of variables through their use.
The inference systems that we will consider in this thesis will be capable of
producing the most general type possible for a program.

These mechanisms with type inference and lack of run-time type errors re-
move part of the burden from the programmer, but there are still compile-time
type errors to deal with. A programmer must still be able to analyze and un-
derstand the error messages from the compiler. It is an unfortunate side effect
that the more powerful the type system becomes and the more complex types
it is capable of inferring, the more complicated the type errors become.

One such strongly typed language with type inference is Timber. Timber
[BCJ+02] is a language created by Johan Nordlander among others, our advisor,
and it is in the context of the Timber type system and the Timber compiler this
thesis was created.

The topic of this thesis is “Propagation of location information in constrained
type inference”, but it might as well have been “Making sure the error location
is known”. We show, first formally and then in practice, how the elements of the
type system can be annotated so that at the time of an error, the source of the
error can be shown to the programmer. We propose a system of annotations for
the type system, as well as give examples of how type errors look in a prototype
system incorporating these annotations.

4

1.2 Type theory

1.2.1 History

In 1936 Alonzo Church invented a formal system named lambda calculus (λ
calculus) [Bar88] and defined a computable function via this system. Indepen-
dently in the same year Alan Turing invented a class of machines (later called
Turing machines) and defined a computable function via this class. Turing also
proved that both models are equally strong and define the same set of com-
putable functions.

Both Church and Turing wanted to solve the Entscheidungsproblem [Wei03]
(German for “decision problem”). Does there exist an algorithm for deciding
whether or not a specific mathematical assertion has a proof? They both showed
the answer to be negative.

Today’s computers are conceptually Turing machines with random access
registers. Imperative languages are based on the way a Turing machine operates
by executing a sequence of statements.

Functional programming languages on the other hand are based on lambda
calculus. Lambda calculus is a form of mathematical logic dealing primarily
with functions and the application of functions to their arguments.

1.2.2 Hindley-Milner

Polymorphic types were already known as type schemes in combinatory logic
[CFC58]. Hindley working with Curry extending the previous work introduced
the idea of a principal type scheme [Hin69] which is the most general polymor-
phic type of an expression. They also showed that if a combinatorial term has a
type, then it has a principal type. This was done by using a result of Robinson
about the existence of most general unifiers in his unification algorithm [Rob65].

Independently from Hindley, Milner [Mil78] discovered the same ideas for
the metalanguage ML [MTHM97] in the Edinburgh LCF system. Milner im-
plemented the first polymorphic type checker and proved that the system was
sound.

The existence of principal types means that a type inference algorithm will
always compute a unique ’best’ type for a program. An inference algorithm,
utilizing unification, called W was introduced by Milner [Mil78, DM82] for use
with ML. A practical implementation, in Miranda, of a type checker with type
inference is described in [Han87]. Cardelli [Car87] gives a good overview of type
checking.

The language Exp

Let x range over identifiers, x ∈ Id.
The language Exp of expressions e is then generated by the grammar in 1.1,

extending implicitly typed lambda calculus by introducing the let construction.
The language Exp is the language for the expressions which are given types by
the type inference algorithm.

M,N ::= x | M N | λx.M | let x = M in N. (1.1)

5

(Var) A(x)=σ
P | A ` x : σ

(App) P | A ` M : τ ′→ τ P | A ` N : τ ′

P | A ` MN : τ

(Lam) P | A,x : τ ` M : τ ′

P | A ` λx:τ.M : τ→τ ′

(Let) P | A ` M : σ Q | Ax,x:σ ` N : τ
P ∪ Q | A ` (let = M in N) : τ

(Inst) P | A ` M : ∀t.σ
P | A ` M : [τ/t]σ

(Gen) P | A ` M : σ α /∈ fv(P,A)
P | A ` M : ∀α.σ

Figure 1.1: The basic type inference rules for the Hindley-Milner system

Types and type schemes

The distinguishing feature of the Hindley-Milner system is the separation of
types τ and type schemes σ. A type scheme is a type with some universally
quantified variables.

There are types in the language Exp but they are only used as judgments
about terms, never occurring inside terms. Assuming a set of type variables
α and primitive type constants T τ1 . . . τn, the syntax of types τ and of type
schemes σ is given by

τ ::= α | T τ1 . . . τn | τ → τ (1.2)
σ ::= τ | ∀α.σ (1.3)

The typing rules for this type system are given in figure 1.1, and they give
a system that can be used to find the type for a given expression in Exp.

1.2.3 Qualified types

In the Hindley-Milner system, we allow only universally quantified types. The
statement ∀α is interpreted as ’for all types α in the language’. Qualified types,
developed by Mark P. Jones [Jon92] with inspiration from work on type classes,
for instance by [WB89, Kae92], allow an extension of this system so that you
can qualify a type α with a predicate π. This allows types such as ∀α.π(α),
meaning ’for all types α in the language, such that the predicate π holds for α
(π(α) holds)’.

This is done by an extension of the typed lambda calculus to allow for types
with predicates as well as an extension to the type inference algorithm and
extensions to the concrete language to allow you to express the qualified types.
There is also a need to introduce something called ’evidence’ so that every use
of a qualified type is accompanied by some evidence that the use is proper.

Qualified types allow for many kinds of predicates. Two interesting types
of predicates are type classes and subtyping which we will consider in greater
detail.

6

remove :: Eq a => [a] → a → [a]
remove [] = []
remove (x : xs)el = if (x == el) then

remove xs el
else

x : remove xs el

Figure 1.2: A Haskell function removing elements from a list

Type classes

The introduction of type classes to deal with ad-hoc polymorphism is due to
Wadler and Blott [WB89] and originates in the work of the Haskell [Pey03]
committee. Formally, the predicates for type classes take the form C τ , where
C is the type class that τ belongs to.

Type classes are part of the Haskell language and allows for overloading
functions and operators for different types, a typical example being the Eq class
which allows equality checks, in effect overloading the == operator.

Type classes in Haskell are on the form Eq a, asserting that the type a is an
instance of the type class Eq. This makes it possible to write function declara-
tions such as the function remove, figure 1.2, which removes all occurrences of
an element from a list, and which will work for all types for which equality is
defined.

Subtyping

Subtyping corresponds to the usual subtyping relation in object orientation.
The predicate1 means that τ ≤ τ ′, τ is a subtype of τ ′ and thus that the type τ
is the more general one. That τ is more general means that whenever we need
something of type τ ′ we can instead use something of type τ .

This also accommodates for concepts such as Int ≤ Float. This relationship
is motivated by the fact that whenever we want something of type Float we
can instead use something of type Int. This assumes that there is a way to
(automatically) perform the conversion from Int to Float. This conversion
function is the evidence that the predicate holds.

The evidence for subtyping is referred to as the coercion function.

Entailment

The qualified type system relies on the entailment relationship to determine
’entailment’ between sets of predicates, the statement A B means that if
the set of predicates A holds, then the set of predicates B will also hold. This
relationship will vary depending on the specific type system.

1Jones uses the notation τ ⊆ τ ′, we adopt the notation τ ≤ τ ′ used in Timber throughout.

7

(Qual) P, π | A ` M : ρ
P | A ` M : π ⇒ ρ

(PElim) P | A ` M : π⇒ρ Pπ
P | A ` M :ρ

Figure 1.3: Extended typing rules for qualified types

Extensions of typed lambda calculus

The syntax for type schemes in equation 1.3 must be extended so that we can
express qualified types:

σ ::= τ | ∀α.σ | π ⇒ σ, (1.4)

where the ⇒ notation is used to indicate which set predicates π the type scheme
σ must fulfill. This allows us to express qualified types without further modify-
ing the syntax of our lambda calculus.

We also need to extend the typing rules in figure 1.1 with the new rules,
the rules needed for typing a system with qualified types are presented in figure
1.3. These rules allow us to deduce qualified types for our expressions, they are
presented as closely as possible to the form they take in the Timber system.

Evidence

Evidence or witnesses are evidence that a certain predicate holds. It can be
an instance of the overloaded function or a coercion function in the case of
subtyping. Evidence is not strictly needed to infer the type of a statement, but
is instead needed to evaluate the statement providing the information needed
to deal with the overloading. The appropriate evidence functions will be used
whenever overloading occurs, so that the comparison 1 == 3 in Haskell will use
the function (==) that is supplied for integers.

To assert that the type τ belongs to the type class π we need as witnesses all
the overloaded functions/operators that belong to the type class π. In Haskell
the witnesses for Eq a is a function that is able to check equality for values of
type a as well as a function that is able to check inequality for the type a, that
is two functions: (==) :: a->a->Bool and (/=) :: a->a->Bool.

The coercion function for the relationship τ ≤ τ ′ is a function of type τ → τ ′

that converts an instance of type τ to an instance of type τ ′. This corresponds
to an ’upcast’ in C++ terminology, an example of this is in figure 1.4.

Type inference system

Jones [Jon92] shows that there is an ordering for type assignments and sets of
predicates, and therefore a most general type assignment (the principal type)
such that no other type assignment is more general than the most general one.
In [Jon99] he describes a new, simpler, implementation of a type checker that
can handle qualified types.

This results in a sound and complete extension to the algorithm W from
Milner [Mil78] that is capable of calculating principal types in systems with
type classes [WB89].

8

class Shape { ... };
class Square : public Shape { ... };

Shape * upcaster(Square *sq) {
Shape *shape = (Shape *) sq;
return shape;

}

Figure 1.4: An upcast in C++

1.2.4 First-class polymorphism

A value or a range of values represented by a datatype is a ’first-class’ citizen
if the language does not in any way discriminate against the value, letting it
appear in any syntactic construct in which other values may occur.

The Hindley-Milner type system is limited though, polymorphic values are
not first-class. Formally this is captured by making the distinction between
monomorphic types and polymorphic type schemes.

Extensions to the Hindley-Milner system which allows first-class polymor-
phism exist in [Jon97, OL96]. The task of defining typing rules that allow type
schemes as arguments to functions is not impossible, however, the user is then
required to define which type scheme to be used in the lambda term. Odersky
and Läufer extends the syntax of type schemes with σ → σ′:

σ ::= τ | ∀α.σ | σ → σ′, (1.5)

and the term language with annotated terms:

e ::= λx :: σ.M annotated terms (1.6)
| . . .

This makes it possible to require things from callers. Formally this is done by
moving the quantifier from the outermost level to an inner level, f (g: ∀c[c]
→ Int) = g [‘‘hello’’] + g [1, 2].

The types and typing rules for FCP is a conservative extension to the
Hindley-Milner system shown in figure 1.5. All programs that were previously
typable in the Hindley-Milner system continue to be so.

1.2.5 Timber type system

The Timber type system is an extension of the Hindley-Milner system that
incorporates both the Qualified Types discussed in section 1.2.3 and First Class
Polymorphism as discussed in section 1.2.4. We do not intend to explain the
exact mechanisms of the type system, but a detailed explanation can be found
in a forthcoming paper [Nor04].

Since Timber has both of these extensions we need the type scheme syntax
to be the union of the syntaxes in equations 1.4 and 1.5:

9

Predicate rules:

P ` ∀α.(σ ≤ σ′) α /∈ fv(σ)
P ` σ ≤ ∀α.σ′

AllSup
P ` [τ/α]σ ≤ σ′

P ` ∀α.σ ≤ σ′
AllSub

P ` id : τ ≤ τ
Refl P ` σ′1 ≤ σ1 P ` σ2 ≤ σ′2

P ` σ1 → σ2 ≤ σ′1 → σ′2
Fun

Typing rules:

P |A ` M : σ′ → σ P |A ` N : σ′

P |A ` M N : σ
App

P |A, x :σ ` M : σ′

P |A ` λx ::σ.M : σ → σ′
Lam

P |A ` M : σ P ` σ ≤ σ′

P |A ` M : σ′
Sub

Figure 1.5: Extensions to Hindley-Milner for first class polymorphism.

σ ::= τ | ∀α.σ | π ⇒ σ | σ → σ′. (1.7)

The syntaxes for the predicates and predicate schemes are:

c ::= T τ1 . . . τn | τ1 ≤ τ2, (1.8)
π ::= c | π1 ⇒ π2 | ∀α.π | σ1 ≤ σ2. (1.9)

Note that the Timber system allows subtyping predicates for typeschemes.
The type rules for the Timber type system will be the union of the rules

presented in the previous sections (figures 1.3 and 1.5), this expresses the fact
that everything that can be expressed in either of those two extensions can be
expressed in the Timber type system. The full typing rules and the predicate
rules are summarized in Appendix A. The predicate rules for Timber show
how predicates relate to each other and contain all of the rules from First Class
Polymorphism together with Timber specific ones.

This type system is powerful enough to type check the Timber language.
The work in this thesis is based on the Timber type system and the Timber
language.

It is not necessary to understand the workings of the type system to un-
derstand the contents of this thesis. It is enough to keep in mind that Timber
has a type system that is an aggregate of the extensions discussed above. The
relevant details of the type inference algorithm will be discussed in connection
with the concrete implementation.

10

1.3 The Timber Compiler

The Timber type system and the Timber language are implemented in the
Timber compiler. The compiler is written in Haskell. All of our modifications
to the compiler has been made in a pre-release version of the compiler.

The compiler works in multiple stages. The relevant stages in the context
of this thesis are:

parser parses the input and and outputs a syntax tree.

desugar creates a less complex form of the syntax tree. For instance, all object
syntax is removed in this step together with nested pattern matchings.

syntax2core transforms the syntax tree from the Syntax to the Core form,
reducing it to a few basic constructs. It also supplies type annotations for
all identifiers and replaces wild-cards() with new type variables. Wild-cards
represent type variables not specified by the programmer.

kindcheck does kind checking, making sure that all elements have compatible
kinds. The interested reader is referred to [Jon93] for an in-depth treatment of
kinds.

typecheck is the actual type inference/type checking. It is divided into the
type checker and the context reducer.

The Timber language has its origins in Haskell, so all examples of Timber
programs should be accessible to someone who knows a bit of Haskell. We will
not be using any Timber specific constructs, except for how we display types.
The Timber type

a1 -> a1 -> Bool \\ Ord a1, a1 :: *

has the same meaning as the Haskell type

Ord a => a -> a -> Bool.

1.4 Previous work on type error reporting

Most of the existing work has been on the languages ML and Haskell and has
been restricted to the Hindley-Milner system, sometimes extended with type
classes.

One method used for reporting type errors has been to identify the usage of
a term and suggest that the minority use of the term is the erroneous one. In
figure 1.6 (adapted from [HJSAA02]) we show an instance of this type of error.
In this case the error is caused because the first case has type Bool and the
other cases have the type String and all branches of a case expression has to
have the same type. Many current compilers will report the type of the second
case (String) as being in error, but the reasoning has been that the majority
is probably right.

11

f x =case x of
0 → False
1 → ”One”
2 → ”Two”
3 → ”Three”
4 → ”Four”

Figure 1.6: An example of a broken case expression

Beaven and Stansifer [BS93] suggest a model for allowing the user to explore
the ’how’ and ’why’ of type assignment, and why a type error has occurred in
a program. This gives the user an interface to explore the ’explanation space’
of a type assignment.

The Helium compiler [HLI03] has been developed especially for learning
Haskell and has a strong emphasis on giving good error messages for type errors.
This compiler is however limited in scope to traditional Haskell and the current
implementation implements a subset of Haskell which is most notably missing
type classes.

Work has been done on finding the minimal subset of constraints that cause
an error [BSW03, CH95] to limit the size of the error report presented to the
user. Haack and Wells [HW04] discuss slicing the code into minimal subsets
of code, and provide a prototype system for ML that implements their slicing
rules.

Helium has lists of common errors and a hint to each one of them of how to
solve the problems. The common errors are collected with a logging compiler
in a beginners course in functional programming at Utrecht University.

12

Chapter 2

Analysis

2.1 Problem overview

In the classical Hindley-Milner system, the failure of type inference, a type error,
occurs only at unification and results in the conclusion that two types are not
unifiable. This means that all type errors can be expressed as a failure of an
equality to hold. This also holds for many extensions to the Hindley-Milner
system and is a basic premise for the approaches to error reporting discussed in
section 1.4. An example of a type error in Hugs [JR+02] can be found in figure
2.1, where two types are not unifiable, and thus cannot be equal.

In the Timber type system the equalities are replaced by inequalities, and
type errors are found in the context reduction phase as an inconsistency among
type constraints. One example of such unsatisfiable type constraints are the
constraints: Int < a, a < [Int]. The presence of subtyping is what sets our
task fundamentally apart from that of previous work on error reporting.

The basic problem is to display this conflict to the user in a succinct way.
It has been observed that the size of the set of constraints grow proportionally
to the number of statements in the code, potentially leading to unwieldy error
reports.

error2.hs:

f [] =True
f a =a

Type checking
ERROR "error2.hs":2 - Type error in function binding
*** Term : f
*** Type : Bool -> Bool
*** Does not match : [a] -> Bool

Figure 2.1: An erroneous Haskell program with error message

13

We divide the problem into two parts: First we decide what information is
needed for error presentation, and modify the compiler to annotate the internal
syntax tree with that information and preserve it through the internal trans-
formations in the compiler. The second part is providing an error reporting
routine that will use the annotations to present a type error to the user in an
understandable way.

2.2 Theory

2.2.1 Annotation of the abstract syntax tree

Each leaf in the abstract syntax tree (AST) is annotated with its origin in the
source code. Each annotation contains information about which portion of the
source code it annotates and it also contains a reason for the annotation.

This annotation is assumed to exist on all leaves in the AST when the
type inference algorithm is applied. All user supplied type signatures are also
annotated.

2.2.2 Annotation of predicates

All predicates are annotated with an explanation of their origin. Possible ori-
gins of predicates are type checking of applications, declarations, the initial
environment or type checking of user supplied signatures.

2.2.3 Experimental annotation of types

As an attempt to solve certain problems with the error reporting, namely the
fact that the substitutions change the types in the predicates, we introduce an
experimental annotation of types in the type tree. The source of the problem is
that two occurrences of the same variable are bound by reusing the same type
variable, not by introducing two type variables and a constraint relating these
variables. This, in combination with the substitutions which are applied to the
predicates during context reduction, leads to predicates where the annotation
of the predicate points to the correct location in the program but the contents
of the predicate do not directly relate to that location predicate, but instead is
the result of substitutions applied to the predicate.

So while every part of the expression by itself might be solvable the whole
set of predicates is unsolvable. In an attempt to provide error reporting in this
case, we annotate every type and type scheme with its origin which can be either
a specific location in the code (for explicit type annotations), an expression (for
type variables connected to expressions in the code) or a substitution that made
two previous types equal. For a good example of when this is needed see Test5
in 3.2.

It should be noted that this annotation is experimental, and that we are
not certain that this is the best way to get this information. Other alternatives
could be explored. Also, our current implementation does not annotate the
MuW or GenW rules.

14

A(x) = ∀α.π ⇒ ρ α, v new

v :π |A `W x : ρB0 x v
VarW

P |A `W M : (σ → ρ)B0 M ′ P ′ |A `G N : σ′B1
 N ′ B2 = MN, v new

P, P ′, v :σ′B1≤σB0 |A `W M N : ρB2 M ′ (v N ′)
App1W

P |A `W M : αB0 M ′ P ′ |A `W N : ρB1 N ′ B2 = MN, v, β new

P, P ′, v :αB0≤(ρ→β)B1 |A `W M N : βB2 v M ′ N ′ App2W

P |A `G M : σ M ′ P ′ |A, x :σ `W N : ρB0 N ′

P, P ′ |A `W letx = M inN : ρB0 letx = M ′ inN ′ LetW

P |A, x :σB0 `W M : ρB1 M ′ σ = [β/]σ̂ B1 = x, β new

P |A `W λx :: σ̂.M : σB0 → ρB1 λx ::σ.M ′ LamW

P |A, x :σ `G M : σ′ M ′ σ = [β/]σ̂ = ∀α.π ⇒ ρ α, β, v, v new

P, v :π, v :σ′≤σ |A `W µx :: σ̂.M : ρ (µx ::σ.v M ′) v
MuW

v :π, ε |A `W M : ρ M ′ θ | v′ :π′ �R e : π, ε

θ |A `G M : gen(θA, θ(π′⇒ρ)) λv′.(λv.M ′) e
GenW

Figure 2.2: Modified type inference rules

2.2.4 Type inference algorithm

The Timber type inference algorithm consists of two parts: the type inference
algorithm itself and a context reducer. The type inference algorithm outputs a
set of predicates that the context reducer reduces.

The type inference algorithm itself will never fail, instead it will produce
predicates that cannot be reduced, leaving the type error detection to the con-
text reduction algorithm.

The type inference algorithm creates new subtyping predicates on the form
σ′ ≤ σ in the rules APP1W ,APP2W and MUW . These predicates are collected
and annotated with the expression they belong to.

The type checker also outputs new type expressions with the suggested ex-
perimental annotations. These new types will be annotated with a subscripted
B. The annotated type inference rules are presented in figure 2.2. All of these
annotations are of the type relating to an expression in the code. The squig-
gly arrow in the type inference rules represent transformations were witness
variables are introduced.

Full details of the type inference algorithm can be found in [Nor04].

2.2.5 Context reduction algorithm

The context reduction algorithm proceeds by successive “small-step reductions”
that reduce the set of predicates, reducing complex predicates to simpler ones
and removing predicates that can be satisfied. Since two predicates are never

15

reduced to an aggregate predicate the annotation can be preserved through the
reduction.

We propose that annotations of predicates be denoted by a subscripted letter
on the implication arrow(⇒A) meaning that the predicates to the right of the
arrow has the annotation A.

All rules in the small-step reduction are modified to incorporate the transfer
of annotations. All predicates in the initial set of predicates have been annotated
by the type inference algorithm. The modified rules are shown in figure 2.3. The
original rules are in [Nor04].

With the annotation of types we also modify the substitution function so
that when we substitute a type scheme σB for a type variable αB′ the resulting
type gets the new annotation σB,B′ , indicating both the reason for the original
type variable and the reason for the new type expression.

2.2.6 Error reporting

All type errors manifest themselves as irreducible predicates in the context re-
duction. Since all the initial predicates produced by the type inference algorithm
are annotated and the small-step reductions preserve the annotations we know
that all predicates will contain an annotation of their origin. This gives a theo-
retical basis for including the location information in an error report.

Note that we focus on what information the user will need to fix the type
error, the actual presentation of the error message to the user is a HCI problem,
and should be studied separately.

2.3 An example of deduction

2.3.1 Premises

We want to type check the simple addition: ((+)1)1.0. The elements of the
expression has known types and locations: the constant 1 has the type Int and
the location l1, 1.0 has the type Float and location l2 and the variable (+) has
the type Num α ⇒ α → α → α and location l3.

We start with the following set of predicates that are known to hold: {Int ≤
Int, Float ≤ Float, Num Int, Num Float}.

2.3.2 Type inference

Following the type inference rules we first use the rule VARW to get fresh type
variables for our instance of (+). We choose the fresh type variable as v1, giving
it the type v1 → v1 → v1. We also add the predicate Num v1, annotated with
A1 = l1, to the set of predicates.

We then use the first application rule APP1W on the inner parenthesis, using
(+) for M and 1 for N. This adds the new subtyping predicate Int ≤ v1 with
the location annotation A2 = “an application from l1 to l2”. The type of the
expression will then be v1 → v1.

Finally we again use the application rule APP1W using the result from the
first application as M and 1.0 as N. This introduces the subtyping predicate
Float ≤ v1 annotated with A3 = “an application from (application from l1 to
l2) to l3”, and gives the final type of the expression as v1.

16

1 e : ∀θ.P ⇒A (∀α.π)
1

 e : ∀[T β/α]θ.P ⇒A π

β = fv(θP, θ(∀α.π))
α, T new

2 λv.e : ∀θ.P ⇒A (π′ ⇒ π)
1

 e : ∀θ.(P, v :π′) ⇒A π

v new

3 e : ∀θ.P ⇒A (σ ≤ ∀α.σ′)
1

 e : ∀θ.P ⇒A ∀α.(σ ≤ σ′)

α new

4 λv.λv′.e v′ v :∀θ.P ⇒A (σ≤π⇒σ′)
1

 e : ∀θ.P ⇒A π ⇒ (σ ≤ σ′)

v, v′ new

5 e : ∀θ.P ⇒A (∀α.σ ≤ ρ)
1

 e : ∀θ.P ⇒A (σ ≤ ρ)

α new

6 λv. e′ (v e) :∀θ.P ⇒A (π ⇒ σ ≤ ρ)
1

 e : ∀θ.P ⇒A π,

e′ : ∀θ.P ⇒A (σ ≤ ρ)
v new

7 e′′ : ∀θ.P ⇒A (σ1→σ2 ≤ σ′1→σ′2)
1

 e : ∀θ.P ⇒A (σ′1 ≤ σ1),

e′ : ∀θ.P ⇒A (σ2 ≤ σ′2)
e′′ = λv.λv′.e′ (v (e v′))
v, v′ new

8 e : ∀θ.P ⇒A (α ≤ σ1→σ2)
θ1

 e : θ′(∀θ.P ⇒A (α ≤ σ1→σ2))

β1, β2 new

(β1→β2)
θ1∼ θα

9 e : ∀θ.P ⇒A (σ1→σ2 ≤ α)
θ1

 e : θ′(∀θ.P ⇒A (σ1→σ2 ≤ α))

β1, β2 new

(β1→β2)
θ1∼ θα

10 vi ei : ∀θ.P ⇒A c
θi\αi

 ei : θi(∀θ.P ⇒A πi)
(vi : ∀αi.πi ⇒ ci) ∈ P ∪ P0

αi new

θc
θi∼ θci

11 λv.v : ∀θ.P ⇒A τ ≤ τ ′
θ1

 ∅

θτ
θ1∼ θτ ′

12 τ = τ ′
θ

 ∅

τ
θ∼ τ ′

Figure 2.3: The annotated small step reduction rules

After this the type inference finishes successfully, leaving the final set of
predicates {Num v1, Int ≤ v1, F loat ≤ v1} for the context reduction, with the
annotations {A1, A2, A3} as above.

2.3.3 Context reduction

The context reduction algorithm will start with one of the subtyping predicates,
for instance Float ≤ v1. Since the only type in our system that is greater than

17

Float is Float itself, v1 will have to be Float and we will substitute Float for
v1 using rule 11 from the small-step reduction rules (figure 2.3). This produces
the predicate set {Num Float, Int ≤ Float, Float ≤ Float}, with the same set
of annotations as before,

After removing the satisfied predicates Num Float and Float ≤ Float the
single predicate Int ≤ Float remains. Since Int is not a subtype of Float in our
system, this predicate is not satisfiable. The annotation for the failing predicate
will be A2.

18

Chapter 3

Implementation and
examples

3.1 Implementation

3.1.1 Annotation of the syntax tree

The parser is modified to annotate each leaf on the syntax tree with a LocInfo
structure indicating the symbol’s position and function in the source code. The
definition of the annotations can be found in figure 3.2. The LocWhy structure
looks as follows:

LocUnknown Anything that the reason is unknown for. In a complete imple-
mentation this should not be needed since everything should be known.

LocLiteral A literal in the source code. Examples are 2 and “hello world”.

LocEnvironment Things from the initial environment. Our implementation
had the type of several functions in the initial environment, head and
length among them.

LocVar Variables in the source code.

LocCon Type constructors in the source code.

LocAp For applications. This is used by the error reporting routines rather
than the lexer and parser. We believe that this could be eliminated.

The leaves in the syntax tree represent the elements in the source code. The
simple example program TestA, figure 3.1, results in the AST

01 Module "TestA" [
02 DEqn (LFun "k" [])
03 (RExp
04 (EAp
05 (EAp
06 (EVar (Id’ "+"
07 (LocInfo (3,8) (3,8) LocLiteral)))

19

08 (ELit (Lit’ (Int 1)
09 (LocInfo (3,4) (3,4) LocLiteral))))
10 (ELit (Lit’ (Rat (1 % 1))
11 (LocInfo (3,8) (3,8) LocLiteral)))))
12]

where each leaf is annotated with the associated source code location. After
the parser builds the AST the module Desugar transforms it into a simpler
form, removing syntactic sugar. The tree is then transformed from Syntax to
Core form during the Syntax2Core transformation. In this step our effort is
preserving the location information.

module TestA where
k = 1 + 1.0

Figure 3.1: TestA - A very simple Timber program

The internal nodes of the AST has as previously stated no location informa-
tion stored in them. In order to find the location of those nodes the subtrees
can be traversed.

An example is the function application on line 5 in example 1. The left
subtree is just one leaf, a variable with location information. The right subtree
is also a leaf, a literal with location information. By combining these LocPos’
a region starting at line 3 column 4 and ending at column 8 can be formed.
The result is rather good for binary operators since the leafs starting points and
endpoints cover the operator. For ordinary functions the region will be from
where the function name ends to the end of the arguments. This is a flaw since
the region is approximated by the position of the arguments. Other types of
internal nodes suffer from the same problem, let expressions being the worst.

A possible way around having to carry around full annotation would be to
run the parser again if an error has occurred and parse to a different kind of
syntax tree with an extended annotation.

3.1.2 Annotation of the predicates

When the type checker generates predicates they are annotated with their origin
in the code using the PredWhy data type (figure 3.3). For our example TestA
(figure 3.1) the type inferrer produces these predicates

Float < _2,
Int < _2,
Num _2

where 2 represents a type variable that stands for the type of k.

20

data LocWhy = LocUnknown
| LocLiteral
| LocEnvironment
| LocVar
| LocCon
| LocAp

deriving (Eq ,Show)

type LocPos = (Int , Int) — (row,col)

data LocInfo = LocInfo LocPos LocPos LocWhy
deriving (Eq ,Show)

Figure 3.2: The Haskell definition of the location information

Example 1. The annotation for the first of these predicates:

PredAp (EAp
(EAp

(EVar (Id’ "+"
(LocInfo (3,8) (3,8) LocLiteral)))

(ELit (Lit’ (Int 1)
(LocInfo (3,4) (3,4) LocLiteral))))

(ELit (Lit’ (Rat (1 % 1))
(LocInfo (3,8) (3,8) LocLiteral)))))

This means that the predicate exists because of an application of the appli-
cation of the integer 1 to the variable + on the rational number 1.0, + is defined
in the environment as a function of type:

(+) :: a -> a -> a \\ Num a, a ::*.

The generated set of predicates is then given to the context reducing al-
gorithm to reduce. It then works on the predicates one by one, simplifying
and breaking them up, with the ultimate goal of removing them altogether. In
the process of removing predicates, it also creates substitutions that act on the
remaining predicates.

If the reducer finds a predicate that cannot be satisfied, an error condition
is triggered and our error reporting routine is called.

Our example produces the unsatisfiable predicate Int < Float. Note that
the predicate could be satisfiable, if we adopted the notion that Int is a subtype
of Float, but it is not in this implementation.

The PredWhy structure looks as follows:

PredAp This is used if the predicate is derived from an application. A reference
to the expression is kept to be used in the error reporting routines.

21

data PredWhy = PredAp Exp
| PredDecl TScheme TScheme
| PredEnv
| PredSig

deriving(Eq ,Show)

Figure 3.3: The Haskell definition of the predicate information

data TypeWhy = TypeLoc LocInfo — Type annotation
| TypeExp Exp — Type deduced from expression
| TypeSubst TypeWhy TypeWhy — ’Unification’ of two types

deriving(Eq , Show)

Figure 3.4: The Haskell definition of the type information

PredDecl If the user has supplied a type for a function, this is the annotation
for it. The two type schemes are referenced for the error reports.

PredEnv Anything coming from the environment during derivation gets this
annotation. No extra parameters.

PredSig The predicates given by the user in the function signature has this
annotation.

3.1.3 Experimental annotation of types

Since the reduction of predicates can produce substitutions that are applied
to other predicates, a predicate can look substantially different at the time of
an error compared to the time it was created. This problem becomes apparent
when the error is really a conflict between two different uses of the same variable.
This can result in predicates that are formally correct but where the user will
have a hard time understand where the types come from.

As an experimental feature of our implementation we have added annotations
of types (figure 3.4). The explanation TypeSubst explains that the type is there
because of a substitution, and it contains the reason for both the original type
variable and the substituted type.

This annotation will allow us to provide a more detailed error report to the
user. It will allow us both to explain why the predicates exist, for instance
because of an application, and why the types in the predicates have a certain
value.

22

3.1.4 Error reports

When an error occurs in the context reducer it calls reportError from our
ErrorReport module. This function is responsible for displaying and explaining
the error.

Our example TestA (figure 3.1) results in this error message:

1: ERROR: Int <1> is not a subtype of Float<2>.
2: Subtype constraint inferred from application of:
3: Int
4: to:
5: a1 -> a1 -> a1 \\ Num a1, a1 :: *
6: application at line 2, col 4 - 8.
7: <1> because of literal at line 2, col 4
8: <2> because of literal at line 2, col 8

Line 1 displays the predicate that could not be reduced. This corresponds
to the unsatisfiable predicate Int < Float.

Line 2 tries to explain why the predicate exists. It exists because of an
application, with lines 3-5 saying that it is an application of something of type
Int to a function of the type a1->a1->a1 \\Num a1. Line 6 shows the location
of the application.

Lines 7 and 8 serve as footnotes for the Int and Float respectively, explain-
ing from where these concrete types come, pointing to actual locations in the
code

In addition to using the annotations on the predicates for presenting the
error report, our experimental implementation uses the additional TypeWhy in-
formation to provide a more detailed error message in some situations, most
notably in the presence of substitutions.

3.2 Examples

This section presents a long list of programs with type errors and the associated
type error report.

module Test1 where

k = (>) 0.0 3

The function (>) has type a → a → Bool \\ Ord a and a Float and an
Int are passed as arguments. This is a type error since Int is not a subtype of
Float. The error message reported by the compiler as seen below matches this
information.

ERROR: Int <1> is not a subtype of Float<2>.

Subtype constraint inferred from application of:

a1 -> a1 -> Bool \\ Ord a1, a1 :: *

to:

Int

application at line 4, col 5 - 8.

<1> because of literal at line 4, col 8

<2> because of literal at line 4, col 10

23

module Test2 where

fib n = iff (3 > n) 1 (fib (n - 1) + fib (n - 2))
k = fib ’s’

Here a character is passed as argument to the function fib which is of type
Int → Int since all numbers in the function are of type Int. The compiler
reports this as Char is not a subtype of Int as below.

ERROR: Char <1> is not a subtype of Int<2>.

Subtype constraint inferred from application of:

Int -> Int

to:

Char

application at line 5, col 4 - 8.

<1> because of literal at line 5, col 8

<2> because of literal at line 4, col 32

module Test3 where

blanks n = iff (1 > n) ("") (" " ++ blanks (n-1))
k = blanks 3.0

This is the same category of type error as Test2, an application of a function
to a different type. This error is mainly here to demonstrate that it works for
lists as well, as shown below.

ERROR: Float <1> is not a subtype of Int<2>.

Subtype constraint inferred from application of:

Int -> [Char]

to:

Float

application at line 5, col 4 - 11.

<1> because of literal at line 5, col 11

<2> because of literal at line 4, col 46

module Test4 where

k :: Int->Int
k l = 2.0*l

The declaration of k is faulty, the real type of the function is Float → Float
and not Int → Int as declared.

ERROR: Int <1> is not a subtype of Float<2>.

Subtype constraint inferred from declaration.

Declared type:

Int -> Int.

inferred type:

Float -> Float

<1> because of literal in type constructor at line 4, col 5

<2> because of literal at line 5, col 6

24

module Test5 where

f x = (x 7,x+7)

This example uses x twice in different ways. The error occurs in the type
checker of the application of 7 to x after the type of x has been decided to be
an Int because of the application to ”+” together with 7, which forces x to be
the same type as the constant 7.

The error is that Int → a is not a subtype of Int, for any value of a. Our
explanation tries to convey the true source of the error: two incompatible uses
of x.

In this test our experimental annotation of types (sections 2.2.3 and 3.1.3) is
used. The information that a type substitution has taken place is used to emit
the text has to be the same as, indicating that the true source of the type
is somewhere else.

ERROR: Int->something(35) <1> is not a subtype of Int<2>.

Subtype constraint inferred from application at line 4, col 11 - 13.

<1> because of it has to be the same as

Int -> _28 (application at line 4, col 7 - 9)

<2> because of literal at line 4, col 13

module Test6 where

g = 3.0

f x = (3 > x, x > g)

Here x is compared to both an Int and a Float. This is caught and the
following error is reported.

ERROR: Int <1> is not a subtype of Float<2>.

Subtype constraint inferred from application at line 6, col 14 - 18.

<1> because of literal at line 6, col 7

<2> because of literal at line 4, col 4

module Test7 where

len’ xs = (head xs) + (length xs)
o = len’ "GH"

A list of characters is applied to the function len’ which is of type [a] →
a \\ Num a, a :: ∗. Since Char is not in the class Num it is a type error. The
functions head and length are defined in the initial environment, therefore a
message about the constraint being inferred from the environment.

ERROR: Type Char<1> not an instance of class Num.

Instance constraint inferred from Environment.

<1> because of literal at line 5, col 9

module Test8 where

f = head 3

25

A function operating on lists is applied to a single element here. This is
shown below.

ERROR: Int <1> is not a subtype of [something(2)]<2>.

Subtype constraint inferred from application of:

[a1] -> a1 \\ a1 :: *

to:

Int

application at line 4, col 4 - 9.

<1> because of literal at line 4, col 9

<2> because of literal in environment at line 0, col 0

module Test9 where

f = let x = 3 in x > 0.3

In this case the type error is that the let bound variable x first has to be the
same type as 3 and then, through the application of >, has to be the same type
as 0.3. This leads to incompatible constraints for x, presented below.

ERROR: Int <1> is not a subtype of Float<2>.

Subtype constraint inferred from application at line 4, col 17 - 21.

<1> because of literal at line 4, col 12

<2> because of literal at line 4, col 21

26

Chapter 4

Conclusions

4.1 Conclusions

In section 2.2 we have proposed an annotation for the Timber type system which
will preserve the information about the origin of a constraint throughout the
type checking and context reduction. This makes it possible to produce good
error reports.

In section 3.1 we describe a working implementation of the proposed system
for the Timber compiler. We give a brief overview of the design and in section
3.2, we give examples of error reports for a selection of type errors.

We believe that the experimental evidence indicates that our approach pro-
duces a viable alternative for type error reporting in Timber and possibly other
languages which have a type system with qualified types.

The main source of problems for us has been the presence of subtyping
relationships which leads to a system where unification cannot be used and
error detection cannot occur before the context reduction phase. Other efforts
have been focused on less powerful type systems without predicates and do not
encounter this problem.

A better understanding of the theory from the outset would have led to a
better prototype and would have given us the possibility to plan our work in
more detail. Unfortunately, time constraints limited the scope of our work; we
feel that with better organization, we would have had time to look into some
of the issues discussed in the next section, as well as produce a more complete
implementation.

4.2 Future work

The current implementation should be rewritten or cleaned up with the current
knowledge of the problem kept in mind. Before doing that, the experimental
notation of types needs to be analyzed further. Without proper annotation of
types it is impossible to report correct errors for some programs.

The error messages should be studied with human computer interaction in
mind. With the current notation there is enough information to present an
extensive error message to the user. The problem is to extract the relevant

27

information. A possibility to conceal or reveal different parts of the error tree
in a graphical user interface could be helpful to narrow the error down.

The previous work done on finding minimal unsatisfiable subsets and the
possibility to combine it with the current implementation in order to minimize
the amount of superfluous information should be investigated.

A list of common type errors like in Helium could be collected for Timber
as well and assembled with hints about how to correct them.

28

Appendix A

Rules for Timber

A.1 Typing rules

These are the complete rules for typing expressions in the Timber type system.
They can be compared to the rules in figures 1.1 and 1.3. For a more complete
overview of the type system, see [Nor04]. The squiggly arrows () represent
transformations where witness variables are introduced.

A(x) = σ

P |A ` x : σ x
Var

P |A ` M : σ′ → σ M ′ P |A ` N : σ′ N ′

P |A ` M N : σ M ′ N ′ App

P |A ` M : σ M ′ P |A, x :σ ` N : σ′ N ′

P |A ` letx = M inN : σ′ letx = M ′ inN ′ Let

P |A, x :σ ` M : σ′ M ′ σ = [τ/]σ̂
P |A ` λx :: σ̂.M : σ → σ′ λx ::σ.M ′ Lam

P |A, x :σ ` M : σ M ′ σ = [τ/]σ̂
P |A ` µx :: σ̂.M : σ µx ::σ.M ′ Mu

P |A ` M : σ M ′ P ` e : σ ≤ σ′

P |A ` M : σ′ eM ′ Sub

P |A ` M : σ M ′ α /∈ fv(P,A)
P |A ` M : ∀α.σ M ′ Gen

P, v :π |A ` M : σ M ′

P |A ` M : π ⇒ σ λv.M ′ Qual

29

A.2 Predicate rules

These are the complete rules for how predicates relate to each other. Note that
these rules include witness terms as discussed in section 1.2.3.

P ` e : π α /∈ fv(P)
P ` e : ∀α.π

AllIntro
P ` e : ∀α.π

P ` e : [τ/α]π
AllElim

P, v :π′ ` e : π

P ` λv.e : π′ ⇒ π
ImplyIntro

P ` e : π′⇒π P ` e′ : π′

P ` e e′ : π
ImplyElim

P ` e : ∀α.(σ ≤ σ′) α /∈ fv(σ)
P ` e : σ ≤ ∀α.σ′

AllSup
P ` e : [τ/α]σ ≤ σ′

P ` e : ∀α.σ ≤ σ′
AllSub

P `e : π ⇒ (σ ≤ σ′)
P `λv.λv′.e v′ v : σ ≤ π⇒σ′

ImpSup
P ` e : π P `e′ : σ ≤ σ′

P `λv.e′ (v e) : π⇒σ ≤ qσ′
ImpSub

P, v :π ` v : π
Hyp P ` e : σ′1 ≤ σ1 P ` e′ : σ2 ≤ σ′2

P ` λv.λv′.e′ (v (e v′)) : σ1 → σ2 ≤ σ′1 → σ′2
Fun

P ` id : τ ≤ τ
Refl P ` e : τ ≤ τ ′ P ` e′ : τ ′ ≤ τ ′′

P ` λv.e′ (e v) : τ ≤ τ ′′
Trans

30

Bibliography

[Bar88] H. P. Barendregt. Introduction to lambda calculus. In Aspenæs
Workshop on Implementation of Functional Languages, Göteborg.
Programming Methodology Group, University of Göteborg and
Chalmers University of Technology, 1988.

[BCJ+02] A.P. Black, M. Carlsson, M.P. Jones, R. Kieburtz, and J. Nord-
lander. Timber: A programming language for real-time embedded
systems. Technical Report CSE-02-002, Dept. of Computer Science
& Engineering, Oregon Health & Science University, April 2002.

[BS93] Mike Beaven and Ryan Stansifer. Explaining type errors in poly-
morphic languages. ACM Letters on Programming Languages and
Systems (LOPLAS), 2(1-4):17–30, 1993.

[BSW03] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding all minimal unsatisfiable subsets. In Proceedings of the 5th
ACM SIGPLAN international conference on Principles and prac-
tice of declaritive programming, pages 32–43. ACM Press, 2003.

[Car87] Luca Cardelli. Basic polymorphic typechecking. Science of Com-
puter Programming, 8(2):147–172, 1987.

[CFC58] Haskell B. Curry, Robert Feys, and William Craig. Combinatory
logic, volume 1. North-Holland, 1958.

[CH95] V. Choppella and C. Haynes. Diagnosis of ill-typed programs. Tech-
nical Report TR426, Indiana University, 1995.

[DM82] Luis Damas and Robin Milner. Principal type-schemes for func-
tional programs. In Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages ,
pages 207–212. ACM Press, 1982.

[Han87] Peter Hancock. The Implementation of Functional Programming
Languages, chapter A Type-checker, pages 163–182. Prentice-Hall,
1987. Out of print.

[Hin69] R. Hindley. The principal type-scheme of an object in combinatory
logic. Transactions of the American Mathematical Society, 146,
December 1969.

31

[HJSAA02] Bastiaan Heeren, Johan Jeuring, S. Doaitse Swierstra, and Pablo
Azero Alcocer. Improving type-error messages in functional lan-
guages. Technical Report UU-CS-2002-009, Institute of Information
and Computing Science, University Utrecht, Netherlands, February
2002. Technical Report.

[HLI03] Bastiaan Heeren, Daan Leijen, and Arjan van Ijzendoorn. Helium,
for learning Haskell. In ACM Sigplan 2003 Haskell Workshop, pages
62 – 71, New York, 2003. ACM Press.

[HW04] Christian Haack and J. B. Wells. Type error slicing in implicitly
typed higher-order languages. submitted, 2004.

[Jon92] Mark P. Jones. A theory of qualified types. In Bernd Krieg-
Bruckner, editor, ESOP ’92, 4th European Symposium on Program-
ming, Rennes, France, February 1992, Proceedings, volume 582,
pages 287–306. Springer-Verlag, New York, N.Y., 1992.

[Jon93] Mark P. Jones. A system of constructor classes: overloading and
implicit higher-order polymorphism. In FPCA ’93: Conference on
Functional Programming and Computer Architecture, Copenhagen,
Denmark, pages 52–61, New York, N.Y., 1993. ACM Press.

[Jon97] Mark P. Jones. First-class polymorphism with type inference.
In Conference Record of POPL ’97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
pages 483–496, Paris, France, 15–17 1997.

[Jon99] Mark P Jones. Typing Haskell in Haskell. Haskell Workshop, 1999.

[JR+02] Mark P Jones, Alastair Reid, et al. The Hugs 98 User Manual,
2002.

[Kae92] Stefan Kaes. Type inference in the presence of overloading, subtyp-
ing and recursive types. In Proceedings of the 1992 ACM conference
on LISP and functional programming, pages 193–204. ACM Press,
1992.

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System sciences (JCSS), 17:348–375,
1978.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML - Revised. MIT Press, Cambridge,
Mass, 1997.

[Nor04] Johan Nordlander. Qualified types with type signatures. expected,
2004.

[OL96] Martin Odersky and Konstantin Läufer. Putting type annota-
tions to work. In Conference Record of POPL ’96: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, St. Petersberg Beach, Florida, pages 54–67, New
York, N.Y., 1996.

32

[Pey03] Simon Peyton Jones, editor. Haskell 98 Language and Libraries.
Cambridge University Press, 2003.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM (JACM), 12(1):23–41, 1965.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 60–76. ACM
Press, 1989.

[Wei03] Erik W. Weisstein. Mathworld, decision problem, 9 Oct 2003.
http://mathworld.wolfram.com/DecisionProblem.html .

33

