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ABSTRACT 
Assuming that Paris law is applicable for individual debond crack propagation along the 

fiber/matrix interface, the related strain energy release rate in a unidirectional composite is 

analysed using FEM and also using simple analytical considerations based on self-similar 

debond crack propagation. Model with axial symmetry consisting of three concentric 

cylinders is used: partially debonded broken fiber in the middle is surrounded by matrix 

cylinder which is embedded in a large block of effective composite with properties calculated 

using rule of mixtures and Halpin-Tsai expressions. It is shown for pure mechanical loading 

that the fiber elastic properties have a huge effect on the released energy, whereas fiber 

content in the composite in the considered realistic range has effect only for short debonds. 

The interaction between debonds approaching from both fiber fragment ends is investigated 

and related to material properties and geometrical parameters. It is shown that the self-similar 

debond propagation model gives slightly overestimated values of the strain energy release rate 

which may be related to interaction effects not included in the analytical model. 

 

 

1. INTRODUCTION 
Since the fiber strain to failure in polymer matrix fiber reinforced unidirectional (UD) 

composites is lower than the matrix strain to failure the first failure event in tensile loading in 

these composites is statistical fiber failures. Due to stress transfer over the interface the stress 

in the fiber is recovered and with increasing load multiple fiber breaks in are possible.  

Very often the fiber failure, which is assumed to be a penny-shaped crack transverse to the 

fiber axis, is an unstable phenomenon and the energy released during this event is larger than 

required. The excess of energy may go to initiation of the fiber/matrix debond at the tip of the 

fiber crack. In other words the debonding is a creation of free fiber surface growing along the 

fiber in the axial direction. The debond initiation (transition from “no debond” state to 

“debond” state) is very complex process and due to lack of relevant information it is not 

suitable for fracture mechanics treatment. 

The debonding can be considered as an interface crack growth along the fiber and fracture 

mechanics may be used for the crack evolution analysis. The stress state at the fiber crack and 

in the debond tip region is very complex.  For long debonds plateau region exists away from 

the fiber crack and from the debond crack tip. Due to further debond crack growth the plateau 

region becomes larger. Long debond cracks propagate in a self-similar manner meaning that 

when the crack grows the local stress profile at the debond crack front shifts along the fiber 

axis without changes in the shape and in the value. Very long debonds (comparable with the 

half-length of the fiber fragment) start to interact and the self-similarity is lost.  

The energy release rate during debond propagation has been previously calculated for debond 

along a single fiber fragment embedded in an infinite matrix in so called single fiber 

fragmentation (SFF) test. The used methods cover a wide spectrum from approximate 
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analytical to numerical based on finite elements (FE) or boundary elements (BE) [1-7]. The 

variational model based on minimization of the complementary energy [1] is probably one of 

the best analytical solutions but the accuracy is achieved in rather complex calculation 

routine. The most careful numerical analysis of the local stress state at the debond crack tip in 

terms of stress intensity factors and degree of singularity has been performed in [6] using BE 

method. Unfortunately this method at present is limited to isotropic constituents and, hence, 

not applicable for carbon fibers. Generally speaking, most of the described approaches may be 

adapted for dealing with partially debonded broken fiber surrounded by matrix in a 

composite. However a systematic parametric analysis of the energy release rate as affected by 

constituent properties, geometrical parameters is not available. 

The objective of this paper is to perform the abovementioned analysis using FE and to 

identify the most significant parameters influencing the strain energy release rate. A three 

concentric cylinder assembly model is considered. A broken fiber in the middle is surrounded 

by a matrix cylinder and the interface is partially debonded, see Fig.1. This fiber /resin block 

is embedded in outer “effective composite” cylinder. 

 

 
Figure 1: Schematic showing the three cylinder geometry with the partially debonded fiber in 

the middle. The stress distribution in the front of the debond crack and the displacement 

profile behind the crack are indicated.   

 
2. MODE II ENERGY RELEASE RATE IIG  

In the particular case of the debond crack the radial stresses on the fiber surface are 

compressive. It is due to larger Poisson’s ratio of the matrix and also due to higher thermal 

expansion coefficient (if thermal stresses are accounted for). This means that the crack 

propagation in the analysed problem is in Mode II. Effects related to friction at the interface 

are neglected. 

In fatigue Paris law may be applied which requires the change of the strain energy release rate 

to be calculated. 
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The unit cell of the composite with a partially debonded fiber is shown in Fig.1. The radius of 

the transversally isotropic fiber is fr . The outer radius of the matrix cylinder mr  is related to 

the fiber content in the composite by ( )2

mff rrV = . To represent the infinite effective 

composite surrounding the fiber/matrix unit, the outer radius of the cylinder assembly R is 

large. 
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2.1 The crack closure technique 
The energy release rate is calculated using the virtual crack closure technique [8] stating that 

the energy released due to the crack surface growth by dA is equal to the work required to 

close this newly created surface from size dAA +  back to size A . For the debond crack 

 

  df dlrdA π2=    (2) 

 

Points at the debonded surfaces of a crack with size dd dll + are sliding with respect to each 

other the relative displacement being 
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To close the crack by ddl we have to apply an increasing tangential traction at each point 

[ ]ddd dlllz +∈ ,  to move it back by ( )zu dd dll +
. When it is done the value of the traction in 

point z equals to ( )dzzdl
zrσ , where ( )zdl

zrσ   is the shear stress in front of a crack with size dl . 

The work performed equals to 
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In the virtual crack closure technique the assumption is that the sliding displacement field at 

the tip of the crack with size dd dll +  is the same as at the tip of the debond with size dl  
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This assumption is based on the assumed self-similarity of the crack growth between dl  and 

dd dll +  which is a good assumption as long as ddl is “small”. The benefit of this assumption 

is that only one stress state calculation for a given debond length dl  is required. From (4) and 

(5) follows expression for the work performed to close the crack by ddl  
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Changing the origin to dl  by introducing dlzz −=′ , equation (6) turns to 
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The energy release rate (G) is defined as 
df

II
dlr

W
G

π2
=  which using (7) gives 
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In numerical calculations ddl  is usually finite and the calculated energy release rate value 

depends on the integration distance ddl . The calculated value is called “energy release rate 

over distance ddl ”. This quantity denoted ddl

IIG  is analysed in the present paper. 
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2.2 Self-similar debond crack growth region 
If the debond length is several times larger than the fiber radius, the stress state at the fiber 

crack is not interacting with the stress state at the debond crack tip. Additionally assuming 

that the fiber fragment is long enough and the interaction with the debond approaching from 

the other end of the fiber is negligible one may state that the debond is growing in a self 

similar manner. It means that due to debond growth by ddl  the stress perturbation region at 

the debond tip is shifted in the z-direction by ddl  without any changes in the stress profiles 

and values. From other hand the complex stress state region at the fiber crack tip remains 

unchanged. Thinking in terms of the change of the strain energy of the whole system we can 

observe that the energy change analysis is very straightforward: a region with the volume 

ddlR
2π which previously had the strain energy as for long three cylinder assembly with 

perfectly bonded interfaces is now replaced by the same volume where the fiber cylinder is 

separated (debonded) from the rest of cylinders. Denoting the strain energies for these two 

states by indexes 0 and 1 and for simplicity neglecting thermal terms we obtain 
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In (9) 0E  and 1E  is the elastic longitudinal modulus of the considered part of the cylinder 

assembly in the initial state (perfect bonding) and in the final state (debonded fiber). The 

elastic modulus change between two cases may be calculated using FEM but there is also an 

exact analytical solution available [9,10,11]. This solution is used to calculate the elastic 

moduli. Additional assumption made is that in the debonded case the radial stresses due to the 

presence of the debonded fiber inside the assembly may be neglected and the strain energy of 

the debonded fiber in the zero friction case is equal to zero. The strain energy release rate is 

calculated as 
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leading to  
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As an alternative to the concentric cylinder assembly model the rule of mixtures can be used 

to calculate elastic moduli in (11).  

 

 

3. RESULTS AND DISCUSSION 
Calculations were performed for carbon fiber and for glass fibers in polymeric matrix. The 

used elastic properties of the matrix are 

 mE =3 GPa  4.0=mν    (12) 

The isotropic glass fiber has properties 

 70=fE  GPa, 2.0=fν    (13) 

The elastic properties of the transversally isotropic carbon fiber are as follows 

500=fLE GPa,   30=fTE GPa,  20=fLTG GPa, 2.0=fLTν ,  45.03 =fTν  (14) 

The properties of the effective composite were calculated using the rule of mixtures for 

longitudinal modulus and Poisson’s ratio and Halpin-Tsai relationships for transverse 

modulus and shear modulus. 
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 The fiber radius used in calculations was mr f µ4= . The thickness of the matrix cylinder was 

calculated from the fiber volume fraction in the composite using (1) and is varying with fV . 

The thickness of the effective composite cylinder was mr f µ205 = .  

FEM calculations were performed on one half of the fiber fragment using the commercial 

code ANSYS in an axi-symmetric formulation. The PLANE82 plane element, which is a 2-D, 

second order element with relatively high accuracy was used in a non-uniform mesh 

consisting of both triangular and rectangular elements. To obtain higher accuracy a refined 

mesh (of triangular elements) was used in the vicinity of the crack tip and at the end of the 

debond zone.   

Symmetry condition was applied on z = 0, ∈r [ fr , R], where R is the outer radius of the fiber-

matrix-composite system. The axial symmetry is with respect to the z-axis. Displacement in 

nodes on the side r = R, ∈z [0, fL ], are coupled in the r-direction. ( ff rL 90=  is the nominal 

length of the system in the axial direction representing one half of the distance between two 

fiber cracks which is fL2 .) Constant displacement is applied in the z-direction at z = fL , 

∈r [0, R]. The applied axial strain to the assembly was %10 =ε .  

The sliding displacement is shown in Fig. 2. Axial coordinate mz µ20=  corresponds to the 

debond tip. It can be seen that the axial displacement of the fiber is almost the same along the 

whole fiber surface in the studied coordinate interval, whereas, the displacement of the 

surface of the matrix at the tip of the debonded zone is twice as large as the displacement at 

rf/2 from the tip of the debond zone. Accordingly, the strong coordinate dependence of the 

relative motion of the fiber and the matrix (u,fz − u,mz) at the fiber/matrix interface with the 

axial coordinate is due to the displacement of the surface of matrix.  
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Figure 2: Sliding displacements at both debond faces and the relative sliding given by (3). 

Carbon/epoxy composite with fV = 0.55, ff rL 1802 = , fd rl 5= , friction coefficient 0=k . 

 

The energy release rate IIG was calculated according to (8) and its dependence on the length 

of the integration region ddl . It was found that for small values of the ratio fd rdl /  the 

calculated values decrease due to insufficient accuracy of the used mesh in the local singular 

stress state region. For large values the calculated values do not have the meaning of strain 

energy release rate defined for small crack increments. As a compromise the value 

corresponding to 1.0/ =fd rdl  has been used to calculate IIG  throughout this paper.     
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In Fig. 3 the energy release rate IIG  when composite volume fraction fV  = 0.45 is compared 

with fV  = 0.55 for carbon/epoxy and glass/epoxy. It can be seen that for medium to large 

debond lengths IIG  is about the same independently of fV . For short debond lengths, close to 

the fiber radius, the strain energy release rate in both materials is larger and the values of IIG  

for higher fiber content are lower.  
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Figure 3: Strain energy release rate IIG  versus normalized debond length fd rl /  in composites 

with fV  = 0.45 and 0.55 for carbon/epoxy (a) and glass/epoxy (b). 

 

The fiber in this calculation was sufficiently long ( ff rL 90= ) insuring that the debond crack 

does not interacting with the symmetrical crack on the other end of the fragment. 

In Fig. 4 and Fig. 5 the effect of the fiber fragment length on the calculated values of the 

strain energy release rate IIG  is presented. The IIG  dependence on normalized debond length 

fd rl / is shown for different fiber lengths for carbon/epoxy respective glass/epoxy. It can be 

seen in Fig. 5 that in carbon fiber composite the IIG  decreases with increasing debond length. 

This rather linear trend is observed for all fiber lengths and the shorter the fiber is the stronger 

is the dependence. This is because the same debond length constitutes a larger part of a 

shorter fiber than of a longer fiber. For short fiber fragments the intact part of the fiber is 

much smaller and the interaction with the debond approaching from the other fragment end is 

larger. According to Fig. 4 there is no plateau region in the strain energy release rate which 

means that the interaction in carbon fiber case starts with very short debond length even for 

the longest fiber fragment.  

It can be seen in Fig. 5 that the overall trend is the same for debond growth in glass/epoxy. 

The IIG  decreases with increasing debond length for all fiber lengths. The shorter the fiber is 

the larger is the dependence on the debond length. This means that the decrease is smaller for 

glass/epoxy than for carbon/epoxy. In other words, the interaction between debonds from both 

fiber fragment ends is smaller in glass fiber composite case. 

To gain a deeper insight in the nature of the interaction leading to the demonstrated overall 

trend of IIG  decrease with increasing debond length the data from Fig. 4 and Fig. 5 are 

presented as function of fiber length for fixed length of the debond, see Fig. 6 and Fig. 7.  
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Carbon fiber 
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Figure 4: The interaction effect on strain energy release rate IIG  in carbon/epoxy composite 

versus normalized debond length fd rl /  for different fiber lengths, Vf = 0.55.  
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Figure 5: The interaction effect on strain energy release rate IIG  in glass/epoxy composite 

versus normalized debond length fd rl /  for different fiber lengths, Vf = 0.55.  
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Figure 6: Strain energy release rate IIG  for debond growth in carbon/epoxy composite versus 

normalized fiber length ff rL /2 for different debond lengths when fV = 0.55. 

 

It can be seen in Fig. 6 for carbon/epoxy that the IIG  decreases with decreasing fiber length 

for all debond lengths. The larger the debond length is the larger is the dependence on the 



 8 

fiber length. The reasons for that are explained above. The decrease in IIG  going from fiber 

length 180rf to 44rf  is between 10 and 34% depending on the debond length. 

The strain energy release rate in glass/epoxy composite, which can be seen in Fig. 7, follows 

the same trends as in carbon/epoxy. However, the dependence on the fiber length in 

glass/epoxy is not as strong as in carbon/epoxy. The decreases in IIG  going from fiber length 

180rf to 44rf  is between 1 and 5%.  
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Figure 7: Strain energy release rate IIG  for debond growth in glass/epoxy composite versus 

normalized fiber length ff rL /2  for different debond lengths when Vf = 0.55.  

 

The fact that IIG  for debond growth in glass/epoxy composite has a weaker dependence on 

the fiber length compared to carbon/epoxy is related to the differences in the stress 

distribution (plateau value) in both fibers as shown in Fig. 8 and Fig. 9. It can be seen that the 

decrease of the plateau value and the length of this zone with decreasing fiber length is much 

smaller for glass/epoxy (Fig. 9) than for carbon/epoxy (Fig. 8). The difference can be 

explained by the difference in elastic modulus. The higher the ratio Efz /Em, the longer is the 

distance needed to reach the plateau value in the axial fiber stress. For carbon/epoxy the ratio 

is 500/3 and for glass/epoxy the ratio is 70/3. Thus, due to lower modulus the stress recovery 

is faster in glass fiber case which leads to smaller stress perturbation zone which in turn 

results in the weaker dependence for IIG on the fiber length.  
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                          (a)       (b) 

Figure 8: Axial fiber stress distribution when Vf = 55% and ld = 0 in carbon fiber versus 

normalized axial coordinate fLz /  (a) versus axial coordinate (b). 
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Glass fiber
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Figure 9: Axial fiber stress distribution when Vf = 55% and ld = 0 in glass fiber versus 

normalized axial coordinate fLz /  (a) versus axial coordinate (b). 

 

Using the expression (11) for strain energy release rate which is valid in the region of self –

similar debond crack growth we obtain the following  IIG   values 

1. Using concentric cylinder assembly model [11] 

For carbon fiber composite    For glass fiber composite 

45.0=fV  IIG =50 J/m
2   

45.0=fV  IIG =7 J/m
2
 

55.0=fV       IIG =50 J/m
2
   55.0=fV   IIG =7 J/m

2
       (15) 

2. Using Rule of mixtures 

The results with the used accuracy coincide with results from cylinder assembly model. 

 

The obtained values for the self-similar debond cracks do not depend on the fiber content in 

the composite. For long debonds this result was also obtained from FEM. The numerical 

values are slightly higher than obtained by FEM. One explanation for this is that according to 

FEM there always was an interaction between cracks lowering the IIG  values. This 

interaction is not accounted for in the self-similar crack model. Another reason for differences 

may be that in the concentric cylinder model we have neglected the compressive radial 

pressure from the debonded fiber to the matrix/effective composite system. It has to be noted 

that the calculated values of IIG  are proportional to the fiber modulus, see (13) and (14). 

Certainly, the presented results for mechanical loading case have to be superimposed with 

results for thermal stresses.  

 

 

4. CONCLUSIONS 
The strain energy release rate in Mode II related to fiber/matrix interface debond growth 

along the fiber surface in unidirectional composites is analysed using FEM considering 

mechanical stresses only. The parametric analysis performed to reveal the significance of 

constituent properties, fiber volume fraction fiber fragment length and the debond length on 

the IIG  lead to following conclusions. 

• The IIG  is proportional to the fiber modulus and is much larger in carbon fiber 

composite 

• The fiber volume fraction has no effect on the IIG  for long debonds whereas for short 

debonds it is larger for lower volume fraction fV  



 10 

• The interaction between debonds from both fiber fragment ends decreases the IIG  

values this effect being stronger in carbon fiber composites. The difference is caused 

by higher stress recovery rate in glass fiber composites due to lower elastic modulus. 

• The self-similar debond propagation model with strain energy changes calculated 

using concentric cylinder assembly solution give a good approximation of the IIG . 

The numerical values are by 5-10% higher than obtained using FEM.  

The obtained results will be used to simulate debond growth during fatigue loading. 
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