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ApsTRACT. For the real Anterpolation spaces (AQ,I.,),-_cl with a
pParameter function f we Prove a general reiteration result., where we
need not asgume =ome Beparation condition between the corresponding
parameter functions. As one application we obtain a sharp embedding
result between the gpaces €A, Asd@,b).q Obtained by uming the
function parameter r£ctd> = t%+|log £>° This pemut may be regarded
a8 a generalization of =ome well-known embeddings between Lorentz-

Zygmund spaces.

INTRODUCTION. Let @, 1P5,9:95,9;  and gy denote real numbers
satigfying 0 < 8.8,,0, <1, 0 < 99.:9; < @ and 1rqg = (1-9)/:&,4-9/‘11,
where 1/0 = 0. Let CAg,A;) be a compatible pair of qua=si-Banach
spaces. The Lions~Peetre real interpolation spaces Ag,Aydg,, are
well understood and widely usmed in different kinds of applications,
8®e e.g. the books [21.[31,051,[71,[17] Cand compare with our Section
1. In particular, we note that the reiteration formula

Chorhido ayr AorAide, 0 Y8, = CAuAd, g,
wvhere n = {1-936,+89, holdzs ir O, = 8, (mee e.g. (3,p50D or ir
9 =dqdp C(see eg. [5,p186] or our Theorem 1.1). Unfortunately, if
none of these conditions is zatisfied. then the situation is much
more complicated. In thie paper we present. exact demcriptions of the
more general (parameter function) Epaces

€0.1> c(Ao,A,_),”qo, Q°"*’>"1'“1)"-W
in cases which do not include the complicated cases demcribed above.

(The real interpolation Spaces (A, A0 . with a parameter function f
are described in Section 1), Moreover we introduce the Bpaces
AosAdg,b1,q Wwhich generalizes the usual Lorentz-Zysmund Spaces
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LP%ogl>® ¢mee 015 in a natural way. We prove a smharp embedding
theorem bet these sSpaces which in particular gensralizes the
well-known embedding between the L™%ogL)-spaces (mee [1.p.31D.

The paper im organized in the following way: In Section 1 we
give some preliminaries including some necessary theory about real
interpolation. In Section 2 we present. the announced deascriptions of
the spaces <0.1). We remark that the proofs are essy consequances of
a fundamental estimate of Brudnyi-Kruglijak Cgee ¢1.13) and some
fairly new descriptionm of real interpolation spaces between welghted
LP and Lorentz-spaces (ase [01 and [iSD. In Saction 3 we introduce
the spaces (A ,A;dp,p,; and prove the announced embedding thsorem
between theme spacem. Moreover we prove that this embedding iz in a
sense the sharpest posmible.

Conventions: C denotes any posi‘t.:lve congstant <(not the =zsame in
different. appearances). The equivalance symbol Ly = g<t) means that
arct) = gCt) < bfit) for =some constants ab >0 and all t>0. Two

quasi-normad spaces A and B are conmidered as equal, and we write
A = B, whenever their quagi—norms are equivalent..

1. Preliminaries.

We consider the Lebesgue space L3 = cho.m.dt./t). The clage Q., £>0,
consists of the functions w:(0.®) —» 0. satisfying

iwit . = 1, t™"wct) is decreaming and t wctd iam incressing.
Ld

htm.z.mhammummnpmmdhtu=o(x)boa
weight Tfunction on 0. ie. let w be a meagsurable and posmitive
function on . Let. E = ECuw) be an ideal quasi-normed subspace of the
Space S{u) of all u-measurable functions. which are finite almost
everywhere. The weighted ideal quasi-normed apace EC = Edw.
consists of all a € S Batisfying

lallgy, = Hawly ¢ o

Lat a. denote the nonincreasing rearrangement of a. The weighted
Lorentz apace qu(u.p.) congiata of all a € SO for which Cau).
belonga to the space LI(p) endowed with quasi-—norm

-
'I’-";.Nm,m = [[Cawd EIL:(W,

gee e.g. [9]. (The function aw ism rearranged with respect to the
measure @) If o=, then L®%w.w = L™%w = LY In particular, ir
pct) = t.VP(I.-tlIog t.])b, then L coincides with the usual



Lorentz—Zygmund spaces LP%ogl>®  investigated by Bennett and

Rudnick in [11.
Let A = CA,,A,> denote a quasi-Banach pair. The K-functiocnal

Kct,ad iz defined for every a « AgtA, and >0 a=

Kct,a> = Kit,a,A) = _,1:5".1("%"‘,“*-“-1"1.‘)-
Let E be an ideal quasi—normed subspace of S{u, where u = dt. t and
1 = C0,m). The real interpolation =mpace Ay im defined the met or
all a € A +A, satisfying

lall, = IKCt,a8,D0g < .
ig

In particular if E = LSc%), where f iz a parameter function, we
obtain the real interpolation gpaces A,q with a parameter function
f. The neceasary hypothesis on t.mi parameter function f can be given
in several essentially equivalent ways. In this paper we ume the
Matuszewska—Orlicz indices «; and Pfr defined for every feB, where B
denotes the class of all continuous functions £:€0,0) — <0,md> such
that, for every t>0,

TCLd = Bup (LCaLIATEI) ¢ o.
@0

The definition of «; and B; are as follows

L fouy L for
& = sup fg - = 1lim fg : :
o<l g L0+ °9
L Fets 1 feiy
Br =dnr =3 117 1ym 129
Log t Loeg t

t>4 Lo
It is well-known that =-o < &g < Br < . See [8] for more information
about theme and other indices. In thig Paper we assume that the
parameter functions f belong to the class B,= {feB: 0 < & = By < L.

Examris 11, Let 1t = t%+jlog £tP% ©0<¢ 0 <1, beR. Then
> = Le<1+|log t.|)“"II and oy = By = @ and, thus, r€B,. In this case
we denote the spaces Arq by Agu,g- For the case b=0 we have the

usual parameter spaces Ag,q-

More information concerning real interpolation with a parameter
function between quasi-Banach pairs can be found in [i4] and the
references given there. For the Banach case these spaces are in fact
spacial cases of the =spaces €Aj,A;59% already studied by Peetre in

[111.
Later on we need the following fundamental estimate by Brudnyi-

Krugljak (see [41,[5] and also Nilsson [101):
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Let C(Ad;.4,0) be a guasi~-Banach pair and CE,E,> any pair of
interpolation spaces between <% and L“'CCE_‘J-‘). Then, for any
a € Ad,+4; and t>0,

1> Kta.dy dy > = KCt.CKE2'a, D93 ,E, .E,D.

2. Relteration.

First of all we note that using the crucial estimate <¢1.1) with

Ej = £%cu), where w; = <1/129)%, 1€Z, J=0,1, we obtain that

- o I = q 1, . qq,. 4
2.1 B aAryq,) = Ky, where E = [L'oct)'L'kf_;)]c.q

In the general case it ig dirficult to give simple descriptions of
the =spaces E (compare e.g. with our Lemma 2.2) but in some gpecial
caseas such sgimple descriptions are known. For example, in the
diasgonal camges 9 4 = q 0 < q £ ® and 0 < q,,q, ¢ o, q = gg.
£ty = 1:,9 we have

@22> E = LIy with g, = £ IC /T,

See [9,Thecrem 2] aor [i4,Lemma 3.1] and [8.p.115]. Moreover, If the
functions f; and f, are separated from each other by some suitable
index condition (corresponding to the condition @, = 8, iIn the
parameter case) we can use the following lemma:

Lemma 2.1, Let W, and w be positive weight functions on .

L Wy T O, and @ = ags flag ). Let O < po.p.g £ w, f € B,.
Ogotdyoldyy & B with @, >0, {=0.1 and @, 20 or auﬁco. If b =b(t) is
@ positive and continuous function on CO.o) such that &Ct) t° is

increasting or decreasing for some constant ¢, then

[IF-31] 2= bl

Pg Pq
L gk Hwgap o L3

Lemma 241 is proved in [9,p.771]. See alsc [15]. The following
theorem generalizes the usual parameter versions of the reiteration
theorem to the function parameter case.

THEoREM 2.1, Let O ¢ q.9,.q; £ o, Fofo.fy € By, Fio = f17fo and
fz = fofCfs”F,). Then

€2.3> (‘d"cﬂo"‘frqf’f'q = Erzq

if one of the following conditions holds:

@) q, = @, = q.

16 Musielak, Function Spaces 241



> fct> = t%, g = g6, 0 ¢ gouqs < w.
Ceo ar, > O or rsfmc o.

Proof. Let <(ad or (b> be satisfied. Then (2.2 holds and, thus,
according to (2.1), (2.3) iz satisfied. Moreover, using Lemma 2.1
with o = 1/f;, 1=1,2 and b(td> = K(t.a.A,,A,) we find that alge the
assumption <{c) together with (21> imply <(2.3) and the proof |is

complete.

Remank. Concerning Theorem 2.1 (a)> and (b) =see also [5,p.186]1 and
[t14,Examples 4.1—4.2]1 or I[9.Example 1]l. Other proofs of Theorem 2.1
{c) can be Tfound in [14.p.211] and <at least for the case q < ®) in
[6.Theorem 2.11.

In order to be able to treat the general off-diagonal case
q, = q * q we need the following lemma:
Lemma 2.2, Let f € B, 0 < p,gq =wm, r = 1/p-1/q and e, =
minCee -3/ |y, ¥ = 0. If ©, and w, are weight functions on 5.
Ly, = W and w = Wy flw,,), then, for any & € (O0.e),

L (dwl(-!ugj > if q > p.
Cugyd p((.th)r -
L Ly L q

P td
wLGJQ,L Caxlyp ey ') if g < p.

A proof of Lemma 2.2 can be found in [9,p.769]. See also [15].

THEOREM 2.2. Let Fiforfy € Bo, fio = F17'for fz2 = F1fCFiad 0 < pgq
£ ®, y =4/g-1/p, ¥ # O and e, = minCey.d-B2/ |y |. Then, for any &,
0 < E < &g ‘

~ _ VQQ‘H&'W_, if q > p.
Iy dr 5000 =

i B
w%ln:Arz.w‘p tf ¢ L

where fz, = fzlwsfi 27

Proof. We use (2.1 together with Lemma 22 where O = (0,m),
duy = dtst, o = 1/, 1 = 0,1, and the proof follow=.

Remame. If A, = LB and A, = LY, then

@ KCt,a,A A0 = ra'(u)du. 0<t <m,
<



sse [111 or [3,p.109). We conclude that in thia came the apaces
CA,,A13, can be identified with generalized Lorentz spaces of the
type L®% Therefore. by combining Theorem 2.1¢c) with Theorem 22 we
obtain a new proof of Theorem 3.1 in [13l.

We close thiz section by gtating a description of the spaces
€0.15 almo for the moat complicated off~diagonal case q, =q,, qg = q.

TurorEM 2.3. Let f.f,.fs € B,, O < IFor@y = 0. Qg # q, G = Gy,
17(qq 7 =-4) a4 Pl Pl ] 4./04./ ve 1
R s B e B IR T YR el e

and pCty = 2%, g4t Uy Then
A o A0 = Axs

where E = L¥Yf,, fodt td.

Proof. The proof is gimilar to those of Theoremsa 241 and 22. In
this case we use Theorem 4 in [9] Cwith « = 1/f;, 1 = 0,1, and
du = dtst) ingtead of (2.1>- Lemma 2.1 and Lemma 2.2. respectively.

3. A sharp embedding between the spaces Ao brq

First of all we point out the following obviocus embeddings:

3.1 xfe.b).q,a = If&.b).q._.‘ iIf q; £ q

and
K;B.ho:,q- < x.&,b‘),qr if b, £ b,.

The next theorem may be regarded as a complement of ¢3.1>-(3.2>
which gives us precige information about the importance of the
quantity i/q-b in the definition of the Spaces Awg,u,q-

TuzorEm 3.1. Let O < q, < 9 = o and -o < byb, < @ If 1/g,~b, >
1/q,~b,, then

33> Aevga, € Aoy,

Proof. We choose a and 6, such that 1-¢ < a < i and @-i+a < 8,a

< mince, a>. Let reed = 09, r e = £97%% 4 10g ¢ 2% and
b,

£i¢t> = 9749 %q4 10g £13°°  Then £,00L) = £,X03/0¢L) = t*  and

2L = £ = t%Ur|log 3%,  Therefore.  according  te

Theorem 21¢c) and Theorem 22, we find that the aggumption q, > q,
implies that, for any fixed €, 0 < & < &g,
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a4 Aeb e, = N A, R

wasaQ,

where 3. = p"Ht%+|10g t ot r = 1/9,-1/q,. We assume
a e x‘a'bn"‘io and choose & such that 0 ¢ ¢ ¢ e, and y € Q, such
wlt) = i+ |log t;)—‘"‘.rl'hen, by (3.43, we find that a = A,ejb,'qi for

b = b,—C1+e>Ci q,~1-q,5 > bo+/q,-1-q,.
Thus ¢3.3) holds for every b, satisfying

boHrq~1rq, < b, b +Ci+e 3¢l q,~1/q,).

Hence. 1in view or €3.2) we conclude that (33> holds for
by > by+1/q,-1/q, and the Proof ig complete,.

Next. we prove a Statement showing that Theorem 3.1 iz a way

possible.

ProrosItion 3.2 Let O ¢ ¥ ¢ G = ® and -w < boy € . If 1.
= 2/9,-b,, then (3 3) does not hold in general.

Proof. Let A, = L5, 0 ¢ r ¢ w. and Ay = L¥¢Q). Then

r
i r

Lt
KCt.a.A A = U ca'cu»’du] .
o

that
that

every

best

2o=b,

See [3,p.109]. Therefore, according to a sultable variant of Hardy'’s

inequality (see e.g. Lemma 32 in [14] applied with wdt) = 37

£<t> = 1%+ log £1>% we obtain that.

r

- & q-r irq
llali- <c ” ™ jlog > ")“UJ <a'<u>)’du} 93]
A@,b),q o o t

e o] @ i q-r irq
<c U W T log > ")q[rca'cu»’du] 9%]
o [+]

- = irq
< c “ 0t log £ >3t r? %]
o
Since thig inequality trivially holds in the oppogite direction

another constant) we have that

s> Aobng = LPMogld™, p = roci-es.

Let q, > 0 and consider the function

&
by-— -a
t.""’[iﬂog LiJ a1 [1+1ag log ] , 0 <t %1,

all

<ty =
o} r >,
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where a is a real number to be chosen later on. According to ¢3.53
and the assumption b, = boH/q-17q, we find that

€3.62 lall- = llall o

A@,b,)%,q, l..p'q"ﬂngu- 1

1
- f -
e tli+log 1-/td>C1+log log 165291

€3.7> lail- = Jlalil

2 -b
A8, ., LP%onoges

o

1
- J‘ at.
o tli+lag 1 t3Ci+lag log 1.-t)%9e
We chooge a sgatisfying 1/q, < a £ 1/q, and ume (3.6>—<3.7) to obtain
that
a8 & & Agp,q, but a = T..a‘bi,_qi.

We only need to modify the arguments uged above to see that 3.8
holds for the case q, = @ too. The prootf is complete.

CoroLrLary 3.3. Let O ¢ p € @, O < G € @, 2o and -» < b, b, < .

a) If 1/q5+b, > 1/q,+b,, then
@9 LP010g1 5% 5 LPYc1ogr %

[-3] If trgy+b, = 1/q,+b,, then the inclusion (3.9) does not hold in

general.

Proof. We chooge r, 0 < r < ®, and O 0 ¢ ©® ¢ 1, such that
P = r/1-9>. Let A, = LRI, 0 ¢ r < @w. and A, = LY¢N>. Then, in view
of (353, we frind that <¢3.3) imples <3.9>. The statement in b> was
proved in Proposition 3.2.

REmank. Another proof of (3.9 can be found in 1,p.31]. See also
[13].

Remarx. A8 seen in this paper it im difficult to describe the apaces

€3.10> (x"a%'xﬁ'wﬂi)ﬂ»ﬂ' 95 & qy,

in off-diagonal cages q = qy. These difficulties appear usually as
well in special cases e.g. when we are concerned with =cales of
Besov, Lorentz., weighted LP op operator ideal spaces, etc. (zee eg.
[91,[13],[151,[161 and the references given iIn these papers). One
possibility to avoid thiz type of troubles can be to replace the
gcale (3.10) by the scale
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311>

oy i 4
> J T -,
(Aﬂa.qo Aec,q1 (S,b),qgi b a qD

On the other hand, according to Theorem 3.1 (and Proposition 3.2), we
gee that the scales in (3.10) and ¢3.11> are very closed related and
on the other hand we note that our Theorem 2.1(b> gives a fairly

uncomplicated description of the reiteration spaces (3.11).
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The general reiteration result for the X-method of interpolation
has the form Ko (Kg,, Ko,) = Ky, where ®, @y, @, and ¥ are some
Banach function lattices and ¥ is constructed from @y, ®; and
@. The authors calculate ¥ under the condition that ®, P, and
®; have the form L, with a weight and under some additional
constraints. They also establish sharp embeddings K¢, — Ko, in
the case when @y and ®; are L, spaces, with a weight of the
form 8(1+ |log#|)®. The latter results generalize the well-known
embeddings for Lorentz-Zygmund spaces.
{For the entire collection see MR 92m:46004.}
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For the real interpolation spaces (Ag, A1)y, with a parameter function f we prove a general
reiteration result, where we need not assume some separation coundition between the corre-
sponding parameter functions. As one application we obtain a sharp embedding result between
the spaces (Ao, A1)(s,3),q Obtained by using the function parameter f(t) == ¢*(1+ |log¢|)®. This
result may be regarded as a generalization of some well-known embeddings between Lorentz-
Zygmund spaces. H Summary.



