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Abstract

Size measurement of pellets in industry is usually per-
formed by manual sampling and sieving techniques. Auto-
matic on-line analysis of pellet size based on image analysis
techniques would allow non-invasive, frequent and consis-
tent measurement. We make a distinction between entirely
visible and partially visible pellets. This is a significant dis-
tinction as the size of partially visible pellets cannot be cor-
rectly estimated with existing size measures and would bias
any size estimate. Literature review indicates that other im-
age analysis techniques fail to make this distinction. Statis-
tical classification methods are used to discriminate pellets
on the surface of a pile between entirely visible and partially
visible pellets. Size estimates of the surface of a pellet pile
show that the overlapped particle error is overcome by only
estimating the surface size distribution with entirely visible
pellets.

1 Introduction

Iron ore pellet’s sizes are critical to the efficiency of the
blast furnace process in production of steel. Overly coarse
pellets effect the blast furnace process negatively, however
this effect can be minimized by operating the furnace with
different parameters [15]. An on-line system for measure-
ment of the pellet size distribution would improve produc-
tivity through fast feedback and efficient control of the blast
furnace.

In pellet manufacturing, manual sampling followed by
sieving with a square mesh is used for quality control. The
manual sampling is performed infrequently and is time-
consuming. Fast feedback of the pellet size distribution is
desirable.

Thurley [20] present progress on a now completed online
imaging and analysis system for non-contact measurement
of the size of iron ore green pellets on conveyor belts. A
3D surface data capturing system based on active triangu-
lation is used to collect data. Segmentation of the data is
achieved with algorithms based on mathematical morphol-
ogy for sparse, irregular 3D surface data. It is also shown
that sizing of identified pellets gives promising results using
the best-fit rectangle [23] measure.

Image analysis techniques promise a quick, inexpensive
and non-contact solution to determining the size distribution
of a pellet pile. Such techniques capture information of the
surface of the pellet pile which is then used to infer the pile
size distribution.

However, there are a number of sources of error relevant
to surface analysis techniques as follows;

• Segregation and grouping error, more generally known
as the brazil nut effect [17], describes the tendency of
the pile to separate into groups of similarly sized par-
ticles. It is caused by vibration or motion (for exam-
ple as rocks are transported by truck or conveyor) with
large particles being moved to the surface.

• Capturing error [5, 21], describes the varying proba-
bility based on size, that a particle will appear on the
surface of the pile.

• Partial profile error, describes the fact that only a par-
tial profile of surface particles can be seen making it
difficult to estimate size. However, best-fit rectangle
[23] has been successfully used as a feature for de-
termining the sieve size of rocks [19] and pellets [20]
based on the visible partial profile.

• Overlapped particle error, describes the fact that many
particles are only partially visible and a large bias to
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the smaller size classes results if they are treated as
small entirely visible particles and sized using only
their visible profile.

We eliminate both segregation and capturing error from
the presented study by comparing the results against the pel-
lets on the surface and not the overall pile size distribution.

Work has been published on size estimation of iron ore
pellets that assumes pellets are spherical [2, 3]. However,
we have previously shown that spherical fitting is a poor
measure of pellet size [1]. More work have been presented
on size and shape analysis of rock fragments, and we extend
our literature review to include presented work in that field.
Comparison of manual sampling and estimates of rock frag-
ment’s size using 2D imaging analysis has been published
[24, 8]. It is reported by Wang and Stephansson [24] that
”a systematic error compared to sieving analysis” is found.
With the exception of Thurley [19, 22], 3D surface mea-
surement of rocks has only been applied to segmentation
where rocks had little or no overlap [12], or to shape mea-
surements of individual rock fragments [13]. Both Kim et
al. [12] and Lee et al [13] propose a mechanical solution
to ensure that aggregate particles are not overlapped. How-
ever, a mechanical solution is not practical to consider in
an operating mine, as it would demand redesign of existing
conveyor belt systems.

The presented research extends the work of Thurley [19]
and describes an algorithm to overcome overlapped particle
error by classifying the pellets on the surface of the pile
between entirely visible and partially visible pellets. Once
identified, partially visible pellets can be excluded from any
surface size estimate.

2 Sample of pellet pile

Mechanical sieving is the accepted industry technique
for sizing pellets. A sample of baked iron ore pellets was
sieved into 6 size gradings. Each sieve size was painted and
color coded to allow manual identification of pellet sizes in
mixed pellet piles. The sample was divided into two sep-
arate sets. The first set will be used to develop algorithms
for visibility and size classification. The second set will be
held out during development of the visibility and size clas-
sifiers. Thus, the second set will only be used to validate the
classifiers performance.

The two sets were loaded onto a laboratory conveyor belt
and the stream of pellets was scanned with a 3D imaging
system based on laser triangulation. An additional color
camera is used to collect color information to overlay on
the 3D surface data. A portion of the collected data for the
two sets of pellets is shown in figure 1 and 2.

We define the two visibility classes; entirely visible and
partially visible. A pellets visibility depend on how much
of a pellet is visible from above.

Figure 1. Close up of the first set of pellets
captured by 3D imaging system viewed from
above. The data is comprised of sparse irreg-
ularly spaced 3D coordinate points with over-
layed color information.

Figure 2. Close up of the second set of pel-
lets.
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Paint color ∗ Size † All � Entirely visible �
Orange 6.3 15.68 11.64
Pink 9 16.27 18.84
Grey 10 40.74 41.44
Red 11.2 21.14 20.21
Yellow 12.5 4.04 5.48
Green 14 2.14 2.40

∗ Sieve class color.
† The lower bound of each sieve size increment (mm)
� Size distribution of all pellets on the surface (%)
� Size distribution of only entirely visible pellets on the

surface (%)

Table 1. Known size distribution of pellets on
the surface for first set. Size distributions of
all pellets and only visible pellets are shown.

Paint color ∗ Size † All � Entirely visible �
Orange 6.3 15.03 11.63
Pink 9 16.67 15.95
Grey 10 41.29 45.18
Red 11.2 17.93 19.27
Yellow 12.5 6.57 6.31
Green 14 2.53 1.66

∗ Sieve class color.
† The lower bound of each sieve size increment (mm)
� Size distribution of all pellets on the surface (%)
� Size distribution of only entirely visible pellets on the

surface (%)

Table 2. Known size distribution of pellets on
the surface for second set. Size distributions
of all pellets and visible pellets are shown.

The two sets were manually interrogated to specify each
pellet’s size and visibility class. The first set has a total
number of 842 pellets on the surface of the pile. 292 pellets
are labelled as entirely visible and the remaining 550 pellets
are partially visible. The sieve size distribution of the pellet
pile surface and of entirely visible pellets on the surface for
the first set is shown in table 1. The second set has a total
number of 792 pellets on the surface of the pile. 301 pellets
are labelled as entirely visible and the remaining 491 pel-
lets are partially visible. The sieve size distribution of the
complete surface and of the entirely visible pellets on the
surface for the second set is shown in table 2.

3 Estimating Pellet Size

As best-fit rectangle [23] has been shown to be a feature
with a capacity for discriminating pellets into different sieve
sizes [20] we calculate the best-fit rectangle for each pellet
in our sample. We visualize the distribution of best-fit rect-
angle values for entirely visible and partially visible pellets
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Best−Fit−Rectangle Area for Entirely Visible Pellets

Area, Best−Fit−Rectangle (mm²)

Figure 3. Distributions of calculated best-fit
rectangle for entirely visible pellets. The dis-
tribution of the best-fit rectangle values do
not overlap

on the surface of a pile using the graphical convention of
box-plots in figure 3 and 4.

The central portion of a box-plot [10, 25] contains a rect-
angular box. In the center of this box is a dashed vertical
line, this marks the median value (or 50th percentile) of the
data. The left edge of the rectangular box marks the 25th
percentile, and the right edge marks the 75th percentile.

In figure 3 box-plots of best-fit rectangle values for the
entirely visible pellets are shown. It is clear that an in-
crease of the best-fit rectangle values correlate with an in-
crease of sieve size. It is noticeable that the distributions
slightly overlap, although more significantly for the smaller
size classes 9 mm and 10 mm. Perfect discrimination into
different sieve sized cannot be expected but a majority of
the pellets should be possible to discriminate correctly.

In figure 4 box-plots of best-fit rectangle values for the
partially visible pellets are shown. As expected, the best-
fit rectangle values are shifted to smaller values compared
with the values for visible pellets. It is important to notice
that these distributions overlap significantly, such that they
cannot be discriminated between. This emphasises the un-
suitability for sizing partially visible pellets based only on
their visible profile.

It is clear that best-fit rectangle values for partially visi-
ble pellets cannot be used to estimate sieve size. It is critical
to identify these pellets so they can be excluded from any
size estimate of pellet piles.
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Figure 4. Distributions of calculated best-fit
rectangle for partially visible pellets. The dis-
tribution of the best-fit rectangle values over-
lap.

4 Classification

Generally all classifiers try to predict a response, here
denoted y, from a set of feature values, here denoted x. De-
tailed information can be found in the books [7] and [11].

In this research, we propose a method to overcome over-
lapped particle error when estimating the surface size dis-
tribution of a pellet pile. Logistic regression is used to clas-
sify pellets on the surface of a pile between two visibility
classes; entirely visible and partially visible. As partially
visible pellets cannot be sized correctly with the calculated
best-fit rectangle area, partially visible pellets must be ex-
cluded from any estimate of the surface size distribution of
a pellet pile.

We then apply logistic regression to classify visible pel-
lets into different sieve size classes based on the calculated
best-fit rectangle area.

4.1 Feature Extraction

In image analysis, shape analysis is a common approach
to describe and classify specific objects, or regions, in an
image.

2D shape features have been used to detect broad-leaved
weeds in cereal crops [16], to allow a rover to classify the
shape and other geologic characteristics of rocks [9], to in-
vestigate the suitability of an imaging system to measure
shape of particles [4] and for detection and classification of

rocks [18]. A 3D feature called visibility ratio have been
used to classify the visibility of rocks in piles [19].

In this work we extract 25 different features to describe
each pellet. These are a collection of shape features used
by the above authors. There is no room for a description of
all features here, a brief description of the selected features
will be given later in this text.

4.2 Classification methods

The distribution of feature values in a data set is impor-
tant to investigate in order to choose the right classification
method. Inspection of our data set shows that the feature
values are not multivariate normally distributed. The type
of the response value also need to be considered when clas-
sification method is chosen. The response variable’s type is
binary for the visibility classification as the visibility class
of a pellet is either entirely visible or partially visible. The
response variable’s type for size classification is ordinal as
a pellet’s size class range from sieve size 6.3 mm to 14 mm.

Johnson [11] suggests to use logistic regression as a clas-
sification method when the features values distribution are
not multivariate normal. A rigorous description of logistic
regression can be found in An Introduction to Generalized
Linear Models [6].

Logistic regression can be used when the response vari-
able are binary, ordinal or nominal. In the case when the
response variable can only take two values, the method is
called binary logistic regression. The form of the logistic
regression model is shown in equation 1 where y is the re-
sponse variable, x is a feature vector, β0 is a constant and
β1 is a vector of parameters. P (y = 1|x) denotes the prob-
ability that y = 1 given the observed feature vector x. The
model, or more specifically, β0 and β1 is fit to the known
data via the use of maximum likelihood estimation.

P (y = 1|x) =
eβ0+β′

1x

1 + eβ0+β′
1x

(1)

For response variables that have a natural order, the or-
der can be used to form an expression for the cumulative
probability using ordinal logistic regression. In equation
2 the cumulative probability is shown, where the possible
response values is i = 1, 2, ..., J and J is the number of
possible response values.

P (y ≤ i) =
i∑

j=1

P (y = j|x) =
eβ0j+β′x

1 + eβ0j+β′x (2)

From equation 2 the probability for each category given
a feature set is easily derived knowing that P (y ≤ J) = 1.

Logically, the response of the classifiers are y = j where
P (y = j|x) > P (y = k|x)1 for all k �= j.
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4.3 Feature Selection

As stated before, 25 features are extracted to describe
each pellet on the surface of the pile. Some features are
strongly correlated and some do not contribute with infor-
mation that can be used to discriminate between the two
visibility classes. An important step when designing a clas-
sifier is to select a set of features that can be used to discrim-
inate between desired classes efficiently. We use backward
elimination to find a set of features that are statistically sig-
nificant for discriminating between different size classes of
pellets.

Backward elimination of features is an iterative tech-
nique that includes all features in the model as an initial
step. The technique tests whether there are features in the
model that are statistically insignificant and remove the least
significant one. It is important to not remove multiple fea-
tures in each iteration even though they are determined to be
statistically insignificant. Features may be insignificant in
combination with other features but significant when those
features are removed. The iterative process stops when a
set of features is obtained where all features are found to be
statistically significant.

To test whether a feature is statistically insignificant the
parameters β0j and β are fit to the data using maximum
likelihood estimation, then Wald statistics for each feature
are calculated. Wald statistics are calculated by equation 3
where Z is Walds chi-square value, b is the parameter es-
timated for a feature and σb is the estimated variance of
b. Z is then compared against a chi-square distribution to
obtain a p-value that will indicate whether a feature is sta-
tistically insignificant. If the p-value for a feature is larger
than the predetermined significance level, then the feature
is deemed insignificant and may be removed. In every iter-
ation the feature with the largest p-value above the prede-
termined significance level is removed.

Z =
b2

σb
(3)

Using backward elimination with a significance level of
2%, 4 statistically significant features are selected for dis-
criminating between entirely visible and partially visible
pellets. The final set of features are:

• Equivalent area diameter [23] is the diameter of a
circle with equal area as the region of interest. The
equivalent area diameter is calculated by equation 4.

ED = 2 ∗
√

Area

π
(4)

• Visibility ratio [19] is a boundary following algorithm
that accommodates sparse, irregularly spaced 3D co-

Predicted

K
no

w
n Entirely visible Partially visible

Entirely visible 89.7 10.3
Partially visible 3.87 96.13

Table 3. Confusion matrix that show how en-
tirely visible and partially visible pellets in the
second pile are classified.

ordinate data to allow the determination of entirely vis-
ible and partially visible rocks.

• Minor axis [14] is the length of the minor axis of the
ellipse that has the same normalized second central
moments as the region.

• Major axis [14] is the length of the major axis of the
ellipse that has the same normalized second central
moments as the region.

4.4 Validation

How well the visibility and sizing classifiers perform are
validated using the holdout method. The holdout method
is a technique where a classifier is developed on a specific
training set. A test set, separate from the training set, is
used to estimate how well the classifier performs on new
data. This method gives an unbiased estimate of classifiers
performance. As our data consist of two separate piles of
pellets collected in the same conditions, we use the first pile
as the training set and the second pile as the test set.

5 Validation of Visibility Classification

In table 3 a confusion matrix is presented for the visibil-
ity classification results of the second pile. Binary logistic
regression with a feature set composed by effective diame-
ter, major axis, minor axis and visibility ratio is used. 89.7
% of the visible pellets and 96.13% of the partially visible
pellets are classified correctly.

6 Overcoming Overlapped Particle Error

To show how the identification of partially visible pellets
may overcome overlapped particle error, ordinal logistic re-
gression is used to classify each entirely visible pellet into
a sieve size class. Best-fit rectangle area is used by itself to
discriminate between the different size classes.

The sizing classification results for the entirely visible
pellets can be seen in table 4. The confusion matrix shows
the classification accuracy for pellets of size class 6.3 mm,
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Predicted size class (mm)
(mm) 6.3 9 10 11.2 12.5 14

K
no

w
n

si
ze

cl
as

s 6.3 84.21 15.78 0 0 0 0
9 18.18 24.64 57.57 0 0 0

10 0 12.77 82.98 4.26 0 0
11.2 0 0 19.05 73.81 7.14 0
12.5 0 0 7.14 21.43 14.28 57.14

14 0 0 0 0 0 100

Table 4. Confusion matrix (percentages) that
show the sizing classification results for en-
tirely visible pellets. The table show how pel-
lets of each size class is classified.

6.3 9 10 11.2 12 14
0

0.1

0.2

0.3
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0.7

Figure 5. Known and estimated surface size
distribution for the entirely visible pellets.
The solid line is the known and the dashed
line is the estimated surface size distribution
of entirely visible pellets.

10 mm, 11.2 mm and 14 mm is above 73 %. The classifica-
tion accuracy is low for the two size classes 9 mm and 12.5
mm. However, we note that pellets that are misclassified are
classified to a size class close to the known size class.

Even though perfect classification of pellet’s size class is
not achieved, an estimate of the surface size distribution is
achieved for the entirely visible pellets. In figure 5 known
and estimated surface size distribution is shown for the en-
tirely visible pellets on the surface of the pile. The dashed
line, which is the estimated surface size distribution, follow
the solid line, which is the known surface size distribution.

7 Conclusion

Visibility classification of pellets in a pile have been
presented to overcome overlapped particle error. Pellets
were collected and manually sieved into different sieve size
classes. The pellets were mixed in a pile and scanned with
a 3D camera system. We define two visibility classes; en-

tirely visible and partially visible. This is a significant dis-
tinction as partially visible pellet’s size cannot be correctly
estimated with existing size measures and would bias any
size estimate. We overcome overlapped particle error by
only estimating the surface size distribution with entirely
visible pellets. Binary logistic regression is used with 4 op-
timal features to describe a pellet selected from a total of 25
features. Holdout method is used to estimate the visibility
classifier’s accuracy to predict 89.7 % of the entirely visible
and 96.13 % of the partially visible pellets correctly. It is
shown that the surface size distribution of the visible pellets
can be estimated correctly using best-fit rectangle.
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