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ABSTRACT
Software development for small, real-time and resource con-
strained, embedded systems is becoming increasingly com-
plex. To be able to guarantee robustness and reliability,
the underlying infrastructure should not be based upon ad
hoc solutions. In this paper we identify three key features
of a minimalistic Real-Time Operating System (RTOS), and
presents the run-time system of Timber, a reactive deadline-
driven programming language. We scrutinize the function-
alities of the run-time system in the light of real-time re-
quirements, and emphasize the importance of integrating
an adequate notion of time, both semantically in the pro-
gramming interface as well as part of the run-time system.

1. BACKGROUND
Software development for small, real-time and resource con-
strained, embedded systems is becoming increasingly com-
plex. In order to guarantee robustness and reliability, the
underlying infrastructure should not be based upon ad hoc
solutions. For this reason real-time operating system (RTOS)
features for small embedded systems have gained recent in-
terest.

We have identified a set of desired key features. A minimal-
istic RTOS should at least:

• supply sufficient infrastructure for reactive concurrent
programming,

• preserve state integrity, and

• realize real-time constraints.

In addition, it is beneficial if the RTOS and its program-
ming interface provides the ability of formal reasoning about
system properties, which would be useful towards safe and
minimal system dimensioning. It is also desirable if this can
be accomplished without limiting the expressive power of
the programming interface.

RTOS’s in general are too heavy weighted for small em-
bedded devices, but a few proposals have been presented.
Among them are systems like Contiki[10], PicoOS[3], FreeR-
TOS[2], Nucleus RTOS[1], and TinyOS[12, 11, 5]. All of
these systems have their unique characteristics, but we will,
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in short, only present the last one. TinyOS is a minimal op-
erating system suitable for the smallest embedded devices.
It is based upon a component structure and a reactive event-
based concurrency model. Its core footprint is only about
500 bytes. Robustness is partly achieved by a static ana-
lyzer for data race detection. The major problem that still
remains unsolved in TinyOS, as well as in all the others, is
the realization of real-time constraints in run-time. To be
able to semantically guarantee some degree of robustness,
TinyOS has restrictions in terms of expressive power. For
instance, dynamic storage allocation is not allowed.

In this paper, we will present the run-time system of Timber
[8, 9], a reactive deadline-driven language for embedded pro-
gramming. The language it self will only be presented briefly
and we will focus on the run-time system features. Readers
interested in learning more about the language should read
[8, 9] or visit [4]. Space does not allow a detailed side-by-side
comparison of features in this paper, although such an eval-
uation is forthcoming. We will show that Timber offers a
systematic approach to deal with real-time issues in embed-
ded programming, unique in that the language semantics is
fully reflected in the run-time system - in fact the run-time
system and the application are one! This allows the exe-
cutable to be fully tailored to the problem at hand, which
is hard (or even impossible) to achieve under the tradional
paradigm that separates the application from the operating
system.

2. TIMBER - A SHORT INTRODUCTION
Timber, TIme - eMBEdded - Reactive, is a reactive, real-
time, concurrent, object-oriented, functional programming
language. It is based upon O’Haskell which in turn is an
extension to Haskell [16, 15]. The development of the lan-
guage is a joint effort by Luleȧ University of Technology,
Chalmers University of Technology, and Oregon Health and
Science University.

In brief, the language is based upon concurrently execut-
ing reactive objects [17]. The inter-object communication is
message-based by means of synchronous and asynchronous
message sends. A message send is equivalent to invoking a
method of the recipient object.

Even though Timber is a general purpose language [9], it
is primarily designed to target embedded systems, and we
will discuss the aspects of the language in the context of
embedded programming.



1 sonar (port,alarm) =
2 template
3 t := baseline
4 ping = before (50*us) action
5 port.write(beepOn)
6 t := baseline
7 after (2*ms) stop
8 after (1*s) ping
9 stop = action
10 port.write(beepOff)
11 echo = before (5*ms) action
12 distance = k*(baseline-t)
13 if (distance < limit) then
14 alarm.on
15 return{
16 sonar = echo
17 start = ping
18 }
19 main regs =
20 template
21 s <- sonar ((regs!0xac00) a)
22 a <- alarm (regs!0xa3f0)
23 return {
24 reset = s.start
25 irqvector = [
26 (sonarIRQ, s.sonar),
27 (buttonIRQ, a.off)
28 ]
29 }

Figure 1: Example Timber program, A Sonar

2.1 Records and Objects
Besides primitive data types such as integers, floating point
numbers, etc., Timber includes user-defined records and prim-
itive types to support object-orientation. Records can either
be used to define immutable data or to describe interfaces
to objects.

Timber objects basically consists of two parts, an internal
state and a communication interface. An object is instan-
tiated by a template construct, which in turn defines the
initial state of the object and its communication interface.
The template construct can be seen as a module, offering
an input interface and requiring an output interface, when
instantiated into an object.

The primitive object-oriented types are Action, Request,
and Template, which all are subtypes of Cmd. The mean-
ing of the Action and Request types are asynchronous and
synchronous message sends, respectively. These actions and
requests are collectively called methods. Template is the
type defining the template command from which objects are
created.

A Timber program has to include a specific main template.
The communication interface of this template is system de-
pendent. For embedded devices the input interface usually
contains a reset method and bindings from interrupts to ac-
tions. We will discuss this interface more thoroughly later
on. The output interface is the environment in which the
Timber program will operate. In the context of embedded
devices, it shall at least provide methods to read from and
write to ports.

At system startup, the main template command will be ex-
ecuted, creating an instance of the object main and then

executing the reset method. The system will supply the
main object with its environment.

2.2 Methods
A method is invoked by a message send command, either
an asynchronous action or a synchronous request. A Tim-
ber program running on an embedded device can be seen
as a set of concurrent objects, all awaiting external stimuli
initially caused by interrupts. A method can basically do
three things, it can update the state of the object, create
new objects, and invoke methods of other objects. After
an external stimulus, the chain of reactions will eventually
fade out and the system will return to the state of waiting
for new stimuli. We will refer to the time when the whole
system is inactive and passive as the idle state, or idle time.

Each message in Timber has a corresponding baseline (ear-
liest release time) and deadline attached to it. By default, a
message inherits baseline and deadline from its sender but
for asynchronous messages both can be adjusted by after

and before constructs.

2.3 Objects as concurrent reactive processes
Objects in Timber has its own execution context, or thread
of control. Inter-object communication is achieved by message-
passing. Only one method within an object can be active
at a time, and the object state is only accessible through
its methods. This results in mutual exclusion of state mu-
tations, usually referred to as state integrity. Furthermore,
a method cannot block the object thread indefinitely which
leads to a controllable responsiveness of each object.

The input interface of the main template is, as mentioned
earlier, a reset method and an interrupt vector. The inter-
rupt vector is a vector of tuples, connecting interrupt num-
bers to actions. This is how the environment will have the
ability to trigger the reactive Timber program.

3. THE RUN-TIME SYSTEM OF TIMBER
The functionalities of the run-time system is directly re-
flected by the semantics of the language. The key features
that needs to be facilitated in terms of functionalities of the
run-time system are as follows:

Scheduling: The fundamental functionality of the run-time
system to achieve concurrency between Timber ob-
jects, with scheduling based on the baselines and dead-
lines of their methods.

Message-passing: Supplying sufficient infrastructure for
the inter-object communication.

Threading: Facilitating the unique execution contexts for
Timber objects.

Time: Ability to supply sufficient time information to make
baselines and deadlines meaningful.

Interrupt handling: Functionality for receiving and dis-
tributing interrupts throughout the system.

Environment interface: Implementation of the interface
to the environment.



* Memory Manager

* IRQ/Message handler

* Time

R
T

S
* Scheduler

* Environmental Interface

Timber Application

Embedded Device

Figure 2: Timber Run-Time System overview

Automatic memory management: Timber does not rely
on explicit allocations and deallocations of dynamic
data and needs an automatic memory manager to serve
with garbage collection.

The semantics of Timber actually does not imply a specific
scheduling algorithm. It rather states the following: Every
method invoked by a message send has to be finished within
the specified time-line (between its baseline and its deadline).

The language also requires two levels of scheduling, one
for messages (method invocations) within an object, and
one between objects. The intra-object scheduling is non-
preemptive due to state integrity, and priority inversion is
solved by priority inheritance. The inter-object scheduling
is preemptive, though, and realized in the run-time system
by strict EDF, where the current deadline of an object is
equivalent to the deadline of its most urgent message.

The message-passing mechanism in the run-time system is
facilitated by message queues. Each object holds a queue
of messages sorted by EDF. In addition to the local queues
of each object, the run-time system also holds a queue of
timed messages. A message send will insert the message
into the queue of the recipient object. The corresponding
method will be executed when the object has that message
first in queue and is scheduled to run. Messages with a
baseline ahead in time will be stored in a global queue of
timed messages. This queue is sorted by earliest baseline
first.

To accomplish concurrency between objects, each object
needs to have its own execution context. At least they need
a reference to their current execution point in the code. We
will further base the context on a non-shared stack envi-
ronment, adding the current stack-pointer to each context.
The ability to use a shared stack environment is under in-
vestigation, mostly based on the work by Baker presented in
[6, 7]. The context switching and storage is accomplished by
means of non-local goto, storing the code- and stack-pointers
in jump-buffers attached to each object.

A notion of time is essential for the run-time system in ac-
complishing correct scheduling. Baselines and deadlines are
naturally expressed relatively to the actual occurrence of a
message send. A straight-forward way to supply the neces-
sary scheduling information is to calculate an absolute time
from a global baseline for all message sends. This will greatly
simplify the comparisons needed for scheduling, only deal-
ing with notions of when a method has to be finished and
making the time when a message send occurred necessary
only locally and temporarily.

The main task of the interrupt handling mechanism is to
serve as an interface between the interrupts and the message-
passing mechanism. This is solved by a generic interrupt
handler for hardware interrupts and a timer interrupt han-
dler. Both of these handlers translate the interrupts into
messages and post them as any other message sent by the
application. This makes the handling of interrupts trans-
parent to the rest of the system, which treats them as any
other message.

The run-time system will allow context-switches to occur at
three occasions. First of all, a context-switch may occur af-
ter a method is finished. This means that when the method
finishes, the object will return the control back to the sched-
uler, which in turn will do the eventual context switch. The
second case is after an interrupt has occurred and the cor-
responding message is sent. Both the first and the second
case may cause a context-switch, but will not necessarily
result in that. The third and final case will always cause a
context-switch, which occurs on a synchronous request. To
be able to receive the requested value, the calling object has
to let the recipient object execute the method, and thus a
forced context-switch will occur.

The environment interface includes the low-level implemen-
tation of time, hardware initializations of interrupts, and
environment methods used by the main template. When
a Timber program is in its idle state (all objects are in-
active) the device is put into proper sleep-mode to lower
the power-consumption. The low-level implementation of
achieving this is also included in the environment interface.

The semantics of Timber is highly dependent on the ability
to allocate memory storage dynamically. Furthermore, as
mentioned, the language does not include any explicit allo-
cation/deallocation commands. It is thus crucial to include
a garbage collector in the run-time system.

A prototype of a reference counting garbage collector has
been implemented for the run-time system of Timber [14]
and currently a copying collector is under development. The
work has so far shown a set of collector characteristics but
due to space limitations they are only addressed in short. A
thorough description of the collector is forthcoming.
1 The memory manager will reclaim garbage memory when
the system is in its idle state.
2 The time needed for bookkeeping during execution of
any method of the program is kept constant and small.
3 The time it takes to perform a whole garbage collection
cycle will at worst be proportional to the maximum amount
of simultaneously live memory.
4 The amount of contiguous free heap storage has to be



at least the maximum amount of simultaneously live mem-
ory. This however should not be misunderstood as a need
for twice as much memory than a system based on explicit
allocations/deallocations. It is a rather trivial fact that, in
a multi threaded system, avoidance of deallocating seman-
tically live data will most of the times result in a lot of
semantically dead data to be kept alive. This is almost im-
possible to measure but if such a measurement would have
been accomplished, it would not be surprising if it showed
a factor much greater than two between the amount of data
kept alive and the semantically live data for a typical em-
bedded application.
5 The collector is incremental, that means, the application
can preempt the collector with a very fine time granularity.
The needed atomic operations of the collector is constant
and small and no extra bookkeeping is needed during a col-
lection cycle.

4. TIMBER IN A REAL-TIME CONTEXT
Timber objects and TinyOS Components are very similar in
terms of their design motivations. Both hold the dynamic
property of a state, that will be repeatedly updated dur-
ing the lifetime of the system. The updates will be made
by procedures associated to the object or component. Tim-
ber objects include methods whereas TinyOS components
includes tasks and command/event handlers. Notions of
concurrency and reactivity are also supported on both plat-
forms. TinyOS achieves concurrency through enabling event
handlers to interrupt the current executing thread of control,
either a task or another handler. Timber facilitates concur-
rency by enabling the scheduler to intervene the execution
of a method at the occurrence of an interrupt.

4.1 Semantic Characteristics
Timber is, in contrast to TinyOS, an object-oriented lan-
guage that not only allows, but rather demands the ability
of dynamic storage allocation due to the extensive use of
immutable data. Timber allows objects to be created dy-
namically with very little restrictions. An object may even
be created by executing a locally defined template command
within a method. TinyOS does not allow dynamic storage
allocation at all.

The most unique and significant feature of Timber is its di-
rect real-time support. Timing constraints can be expressed
in the source code and will migrate into meaningful schedul-
ing data used by the scheduler at run-time.

Timber eliminates the risk of data races by means of mutual
exclusion between methods that may access common muta-
ble data. Instead of relying on the programmer to avoid data
races, this protection is induced by the language semantics.

4.2 Run-Time Characteristics
The presence of time is the major characteristic that perme-
ates the entire run-time system. Every scheduling decision
is based upon timing constraints originally expressed in the
source code.

Another major part of the run-time system is the memory
manager. The real-time characteristics of the memory man-
ager is mainly due to the common memory usage behavior

of Timber applications. The allocator is totally predictable
(incrementing a free pointer) and the collector is transpar-
ent due to the fact that it only runs during idle time. The
collector is furthermore incremental with a very fine granu-
larity and no extra bookkeeping is needed during a collection
cycle.

In contrast to TinyOS, the scheduler can perform schedul-
ing decisions at the occurrence of any interrupt, if desirable.
However, in cases where the deadline of an interrupt-handler
is extremely short, the run-time system may also be config-
ured to run the handler directly, without passing through
the scheduler. The semantics of the language guarantees
that only the ability to meet deadlines, not the meaning of
the program itself, may be affected by such a choice.

4.3 Analysis and System Dimensioning
We have not discussed how Timber enables analyses for
proper system dimensioning and verification. An example
of this is shown in [18] by Svensson et al., where a WCET
analysis for the schedulable units of Timber programs is
presented. This is the first fundamental step in perform-
ing whole system schedulability analysis. It has also been
shown that the fundamental tools in WCET analysis can be
applied in other analyses, such as memory usage analysis
[19].

5. CONCLUSION
We have shown how the run-time system of Timber facil-
itates the main infrastructure for reactive concurrent real-
time software development. The integration of time is con-
sistent and meaningful throughout the whole system, from
the system specifications in the source code into each schedul-
ing decision made in run-time. The combination of reactive
objects and controlled use of mutable state eliminates the
risk of data races and preserves state integrity. Dynamic
memory storage allocation and garbage collection relieves
the programmer from the error-prone task of manual mem-
ory management. The graph of objects may also, due to the
ability to create objects dynamically, change rapidly over
time, resulting in a more agile system than the case where
the run-time structure is static. In contrast to TinyOS,
Timber does not require any limitations in expressive power
to avoid race conditions, this is instead guaranteed by the
language semantics. Furthermore, the core of the run-time
system has a greater potency (scheduling, memory manage-
ment, etc.) than the corresponding parts of TinyOS, with-
out introducing any unsafe real-time characteristics..

Timber mainly lacks two things in comparison to other mini-
malistic RTOS’s such as TinyOS. First of all, TinyOS is well
adopted, well tested, and well understood by practitioners.
It has been available for several years and many practition-
ers have joined in. Second of all, the heritage of TinyOS is
a lot more known by general practitioners due to the well-
known imperative language C [13]. We cannot even start to
compare C with Haskell in terms of how many well-skilled
practitioners each programming paradigm has.

The language Timber includes more features than we have
been able to cover within the scope of this paper. Features
like polymorphism, sub-typing, inheritance, partial applica-
tion, etc. may not be fundamental for embedded real-time



programming, but may prove useful also in this field. We
have throughout this paper discussed the characteristics of
the run-time system of Timber in the light of the common
idea of how an RTOS should look like. In contrast to this
point of view, the paper also points towards a rather new
paradigm, to wit the importance of the programming lan-
guage metaphor. The language Timber, with its concurrent
object model, can actually be seen as the most fundamental
part of the RTOS presented in this paper, due to the fact
that all features of the run-time system is directly induced
by the language semantics. This furthermore means that
the run-time system is as complex (or simple) as the appli-
cation needs. The programming language and the run-time
system is thus not separate parts.

5.1 Future Work
Due to the fact that both the language Timber and its
run-time system is still in the stage of development, many
features are still missing. Garbage collection is still not
fully implemented and integrated into the run-time system.
Many features in the run-time system are still cumbersome
and lack some functionalities. Even though the multiple
message queues (one for each object) is a straightforward
solution to accomplish the two level scheduling, it may not
be the most efficient solution. It will be interesting to see if
the two level scheduling can be accomplished by one queue
solely. Another optimization that will increase the efficiency
significantly in terms of memory usage is the use of a shared
stack environment [6, 7], either completely shared or a hy-
brid solution. These optimizations will make the run-time
system less unwieldy.

Due to the characteristics of the language, Timber provides
ample opportunities to system analysis. It has been shown
that WCET analysis can be performed on the schedulable
units in Timber [18], which lays the foundation for whole sys-
tem schedulability analysis. The knowledge of how WCET
analysis can be performed will also be useful for the real-
ization of memory usage analysis [19]. It will furthermore
be interesting to see how the programming interface and
the run-time system characteristics can render possibilities
for an analysis framework including a definition of impor-
tant behavioral attributes of embedded real-time software
systems, and realization of tools to measure them.
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