
Supporting Ubiquitous Interaction in Dynamic
Shared Spaces through Automatic Group Formation

Based on Social Context

Juwel Rana

Pervasive and Mobile Computing

Luleå University of Technology

Luleå-971 87, Sweden

Email: juwel.rana@ltu.se

Johan Kristiansson

Ericsson Research

Luleå-971 28, Sweden

Email: johan.j.kristiansson@ericsson.com

Kåre Synnes

Pervasive and Mobile Computing

Luleå University of Technology

Luleå-971 87, Sweden

Email: kare.synnes@ltu.se

Abstract—This paper investigates how the management of
groups that communicate electronically, such as group formation,
can be simplified based on users’ context and social relations.
This work builds on a framework for Aggregated Social Graphs,
where each node represents the relational strength to other users.
The strength of a relation is calculated by utilizing information on
how we communicate using mobile phone calls, emails, and social
networks in combination with additional sources of information
such as from calendars. A contextual group management schema
is presented where contextual parameters such as tags, locations
and objects are used to prune an aggregated social graph in
order to automatically form a group.

The schema is implemented in a runtime environment based
on the Distributed Shared Memory service available at Ericsson
Labs. The feasibility of the proposed schema is then studied
through a prototype implementation both in a web-browser and
as a mobile app. The study shows that a group can be formed
automatically and that a lightweight communication session
then can be initiated for that group.

Index Terms—Social Media Intelligence, Social Graphs, Con-
textual Group Management, Web-based Collaboration, Mobile
Applications, Shared Spaces.

I. INTRODUCTION

The Internet is rapidly transforming our society through

changing how we communicate and interact with ubiquitous

communication services, where new collaborative and mobile

technologies are driving a change towards spontaneous and

nomadic work [1], [2]. This change has an enormous impact

on groups, organizations and social networks as well as our

society in general [3], [4]. However, effortless provisioning

of group communication services may be a key to expand

the use of effective collaboration in teams and organizations

while fostering new forms of Internet behavior through social

computing.

Group communication services such as Google+ Hangout,

Facebook, Groupboard, and Groupon are soon ubiquitously

available on anything from personal computers to smartphones

DISCLAIMER: The work has been carried out as part of an academic
research project and does not necessarily represent Ericsson views and
positions.

and pads [5]. However, group communication services like

these can be quite cumbersome to use, as significant manual

efforts are required to initiate and manage groups as well

as configure the communication tools [6], [7]. For example,

most of the group communication services consider manual

operations for participants selection in arranging meeting

events. Thus, the motivation behind this work is to study how

lightweight group communication can be provided based on

contextual group management and (dynamic) shared spaces

[8], [9].

Today’s social networking services follow centralized group

management which lock users in a single platform [10].

On the contrary, contextual group management involves us-

ing information from multiple platforms such as call logs,

social networks, calendars, etc., to automatically filter and

recommend collaborators to invite to group communication

sessions. Benedikt et. al, analyse several requirements for

decentralized group management in distributed systems [10].

On top of those requirements, this paper proposes using

a runtime environment based on Aggregated Social Graphs

(ASG), that maintains social graph information on user’s local

devices (contact-book, call-logs) and cloud-services (LinkedIn,

Facebook, MySpace) while analyzing communication history

for mining user’s communication pattern [11]. This is then

used to identify collaborators and inviting them to a shared

space for communication and collaboration purposes.

A shared space would include tools based on the context

and purpose of the group communication session, basically

composing the group communication service of widgets

for shared notes, shared maps, real-time chat, and so on.

This paper proposes using a web-based service based on

the Distributed Shared Memory (DSM)1 at Ericsson Labs

to create lightweight communication services tailored to

group specific contexts [9], [8]. The runtime environment

thus combines using social computing with web-based

communication services to achieve as automated group

management as possible.

1https://labs.ericsson.com/apis/distributed-shared-memory

2012 ASE International Conference on Social Informatics (SocialInformatics 2012) / 2012 ASE International Conference on Cyber

Security (CyberSecurity 2012) / 2012 ASE International Conference on BioMedical Computing

978-0-7695-4938-5/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialInformatics.2012.88

121

The main research problems addressed in this paper are:

• How can automatic group formation be implemented
based on communication patterns and the context of
users?

• How can group collaboration be supported through
automatic and dynamic composition of a lightweight
communication tool?

The rest of this paper is structured as follows: Section

2 introduces background and related work, Section 3 offers

different methods for contextual group formation, and Section

4 presents a high-level architecture and describes a proof-of-

concept prototype implementation. Section 5 describes evalu-

ation of shared spaces in comparison with groupware, which

is followed by discussion in Section 6 on the above mentioned

research questions. Section 7 concludes the paper.

II. BACKGROUND

Web technologies such as HTML5, WebRTC, JavaScript,

and Ajax provide a rich platform for web-based groupware.

Technologies like Google docs, Google+ Hangouts, etc., pro-

vide new opportunities to develop highly interactive web appli-

cations for real-time sharing of texts, pictures, and audio/video

contents. This shows the possibility of constructing a powerful

platform for group communication using web technologies.

Most of the existing collaborative applications only provide

manual invitation of participants, based on access to individual

contact lists, and are thus generally not considering utilizing

social information. Selecting contacts from the contacts list

by using drag-and-drop, such as in Google+, is not always

enough for providing a suitable user experience, as it requires

considerable manual operation.

DSM service provides APIs for developing web-

collaboration apps (which is mentioned as coApps in

the rest of the paper) where the coApps can be dynamically

composed into shared spaces. This so-called (dynamic)

shared space may thus include coApps for real-time sharing

of multiple media, such as notes, chat and maps. Note that

even if shared spaces generally makes it possible to interact,

communicate and share information among group members in

real-time, the main benefit of a shared space is that it can be

tailored to particular communication needs. Thus the goal of

the paper is to create shared spaces automatically on particular

needs and enable real-time collaboration functionalities within

the shared spaces.

In brief, shared spaces facilitate collaboration among the

members of the shared space. Therefore, a user may have

multiple shared spaces for different purposes. A shared space

can be seen as an ad-hoc social network configured with

selected tools for a specific tasks [12]. In other words, shared

spaces are social collaboration services, where the user can

exploit their social networking credentials and may have

more control of their social environment for setting up group

communication and collaboration.

Fig. 1. Conceptual model of group based shared spaces where each of groups
has an unique instance of notes coApp

Shared spaces are implemented using DSM service for

concurrency control and other implementation details for the

coApps. Figure 1 shows three groups A, B and C which

are used for real-time collaboration by using notes coApps.

The DSM service allocates an instance of the notes coApp

for each of the group. All of the three groups thus has

unique identifiers such as /list/groupC/notes is for group C,

and so on to uniquely identify memory addresses for the

shared notes coApps for each of the groups. In this way,

interactions are handled separately in each of the groups.

Figure 2 shows the resource mapping schema proving unique

identifier for each of the coApps in multiple shared spaces.

Thus pressing or touching each of the shared space events

such as sharedspace/abcd opens dedicated shared space for

sharedspace/abcd equipped with coApps personalized for the

participants of sharedspace/abcd event.

A. Aggregated Social Graphs

A social graph shows a user’s relation to other users,

normally for a single social network. An aggregated social

graph merge knowledge from multiple social networks and can

thus give an aggregated view of a user’s relation to other users.

Aggregated social graphs have been elaborately discussed in

[11], proposing an Aggregates Social Graph (ASG) framework

for aggregating social graphs from different social networking

and communication services.

Figure 3 shows the different components and layers of the

ASG framework. The Social Data Aggregator layer consists of

five modules. The social data adaptor collects social data from

individual’s social networks such as Facebook and Twitter.

The Social Data Collector aggregates the social data from

multiple social networks. The unified model of interaction can

be used to process the data and help rank the most valuable

communication channels. Sensor and location data is collected

from various devices, such as GPS devices and mobile phones,

to infer context in the social strength calculation.

122

The top layer consists of three components. The Social

Strength component that calculates the social strength between

users has been previously discussed in the perspective of group

communication [13], [14], [15]. The Social Graph component

maintains the users’ relation to other users, where each node

is associated with a social strength. Lastly, the Group For-

mation component supports creation of groups based on the

ASG framework, by pruning the aggregated social graph by

contextual filtering.

This paper focuses on this last component and shows how

the ASG framework can support group formation where the

most appropriate contacts are invited to a shared space.

B. Related Work

Lightweight group work in everyday life by providing in-

formal awareness, lightweight engagement, low cost meetings,

artifact sharing, as well as ad-hoc membership is discussed

in [8], [16]. This paper proposes contextual groups, which

are formed based on users’ context, tags, key words, pro-

files, location and so on. Contextual group means that group

communication is initiated by identifying appropriate contacts

based on context and then sharing activities inside the group.

Some works have been done on discovering user’s context

based on social network data and mobile sensing [17], [18], but

the task of contextual group formation has not been explored

that much [15], [19].

Different group formation algorithms have recently been

proposed. Michelle et. al identifies two main categories of

group formation software such as over-lapping and non-

overlapping groups [20]. Overlapping group formation has

been studied in [6], [21], while non-overlapping group forma-

tion is considered in [20], [22]. However, only a single domain

of users (such as the e-learning domain) was studied. Con-

textual group formation would need to consider both diverse

domains and over-lapping groups for the best results. Location

Fig. 2. Resource mapping schema: unique identifier for each of the coApps
in multiple shared spaces

Fig. 3. Components and layers of the ASG framework

based group formation is discussed in [19]. The authors show

a prototype where a group can be formed with respect to

particular location. However, dynamic discovery of group

participants is not covered in that work, which is considered as

one of the important factors of group formation. Julian et al.,

shows a novel machine learning approach to discover groups in

ego-centric graph [23]. The authors consider structure of social

graph and profile information for group discovery, which is

covered by our methods through the integration with ASG

framework. Moreover, our methods consider tie-strength as

a parameter of finding trust-worthy participants and multiple

ego-centric graphs for organizing groups freely as well as in

accordance of users’ context.

Operational transformation technology has been widely

used for implementation of collaboration functionalities. DSM

service uses operational transformation algorithms for concur-

rency control. It provides an easy interface for development

of collaborative applications in comparison to the opencoweb

Framework2 and Apache Wookie3. DSM developers need

to have a unique address to transient (list://) or persistent

(phash://) storage. On the other hand, Apache Wave and

Apache Wookie are in ”incubating stage”, therefore these

are lack of providing simple interface for apps development.

Meteor also provides support for cooperative web apps de-

velopments [24]. This focuses on latency compensation by

taking simple and clean approach for data in a distributed en-

vironment. The opencoweb framework has similar JavaScript

API’s in comparison with DSM, however DSM service offers

four different types of memory support such as transient,

transient list, persistent and persistent list. Moreover, unique

memory identifier of DSM service makes the apps develop-

ment more straightforward comparing with other cooperative

web development framework. So far, the existing solutions

do not provide automatic address calculation for dynamically

collaborative group management in the web environment.

C. Motivating Scenario

This sub-section presents a motivating scenario for auto-

matic group formation.

Ebba is planning a party together with her closest friends
and is meeting two of them to organize the party. They discuss
some ideas and decide to create an ad-hoc social network

2http://opencoweb.org/
3http://incubator.apache.org/wookie/

123

for the party. She brings up her mobile creates ad-hoc social
network, where her two friends are automatically added by
using matching locality and tags as indication of interest,
workplace, profile match. Ebba is then presented with a list
of recommended persons based on her and her two friends
aggregated social graph information. They decide to filter out
persons in their age and that lives close to them, then limits
the network size to 20 persons. They decide to remove one
person on the list as she is indicated to be travelling in her
Facebook wall-post and then they activate this social network.

When Ebba arrives home she creates a shared spaces
inviting the persons in the party group. She places a poll
component, some media components and a chat component in
the shared space for the invitation, which she then configures
with adding a name, a song from her current play-list and a
welcome message. She then sends the invitation to the party
group. Some of her friends immediately respond by answering
the poll, chatting suggestions and adding a few photos of
their own. New members are invited that wants to join the
party after hearing about it. At the party people use the app
to continue chat and share photos.

This scenario illustrates the intended use of the shared

spaces. First, Ebba and her two friends are automatically

added to a shared space based on their location and activity

(identified by a tag, such as in calendars or in tweets).

They then create a second shared space based on their social

network, communication history, location, and age. This could

also be done in several iterations, thus also considering friends

of friends.

The number of participants is then limited to 20, using a

ranking scheme for selection. The utilization of context data, in

this case calendar data, indicates the availability of participants

and is used to reduce the list further and not to send out

invitations unnecessarily. Finally the shared space can be used

to document the event and even spread the word of it further.

III. CONTEXTUAL GROUP FORMATION

This section discusses different solutions for contextual

group formation, based on Tags, Locations and Objects.

A. Tag-based Group Formation

A user’s interests, current preferences, and background

information can be considered as tags for group formation.

For example, LTU can be used as a tag to form a group

of users with a background from LTU. Then different

filtering parameters can be used to optimize group formation

function, such as using the proximity of the contacts

and the social strength between the contacts. Proximity

is calculated based of group owner’s current location,

social strength is collected from the ASG framework. The

following algorithm recommend a list of contacts, where

user is the owner of the group, tag contains purposes

of the group, proximity radius defines the area of group

participants, and social strength filter permits the participants

to group formation who have significant tie-strength. By this

approach, the participants who are interested in tag, available

within proximity and have significant tie-strength will be

recommended to form group.

def get_recommened_contacts(user, tag,
proximity_radius, social_strength_filter)

recommended_contacts = Array.new
contacts=ASG.getFirstDegreeContacts(user)

contacts.forEachContact do |contact|

t = contact.interest_tag == tag
l = contact.location == user.location

within proximity_radius
s = contact.social_strength >=

social_strength_filter

if (t && l && s)
recommended_contact.add(contact)

end
end
send_Invitation(recommended_contacts)

end

Another approach of tag-based group formation is

dynamically updating the group with new-contacts of interest.

In that case, every-time when the ASG service updates the

user’s data, the group formation function checks whether new

contacts satisfy the conditions to become participants of the

existing group and if satisfy, it updates the group inviting the

new participants. Thus, the following algorithm invites new

participants dynamically to participate in the group.

def get_dynamic_recommened_contacts()
new_contacts= Array.new
prev_invited_contacts=Array.new
current_recom_contacts=Array.new

ASG.onUpdate(user) do

prev_invited_contacts =
get_invited_contacts(user, tag)

current_recom_contacts =
get_recom_contacts(user, tag,
proximity_radious, s_strength_filter)

new_contacts= current_recom_contact\
prev_invited_contacts

send_Invitation(new_contacts)
end

B. Location-based Group Formation
Location, or proximity, was considered as a filtering

parameter in the previous tag-based approach. However,

124

location is also significant as meeting places such as a super

market, an airport, a bus or train station, a cinema-hall and

so on. Here, the idea is forming temporary groups of people

who are available in a location on a particular moment.

This kind of group can be utilized to share digital media

content related to the location itself such as advertisement,

announcement, in-door maps, and so on. It can also help

friends who are available at that location to meet. Here groups

are formed in a recurrent way such that a user is invited

when proximity constraints are satisfies. Content would thus

not be sent to users that do not meet the proximity constraints.

def temp_group_forming()
new_contacts= Array.new
prev_invited_contacts=Array.new
current_recom_contacts=Array.new

ASG.onUpdate(loc) do

prev_invited_contacts=get_invited_contacts
(location, proximity_radius)

current_recom_contacts =
get_recom_users(loc,proximity_radius)

new_contacts = current_recom_contacts \
prev_invited_contacts

send_Invitation(new_contacts)
end

C. Object-based Group Formation

In object-based group formation, group participants are not

only human users, but it also considers user’s smart devices

such as mobile phones, tablet devices, laptop computers,

televisions, refrigerators, digital projectors, cars, and/or any

kind of connected devices. Thus, an object can be associated

with several human or devices as participants to form a group.

For example, a family can be seen as an object, which has a

physical location (i.e., the home) as identity of the object and

where family members (living at that home) as well as the

smart devices inside that home could form a contextual group.

Therefore, to form a group considering family as the object,

all these entities will be invited to the group. Having such a

group, different kind of scenarios on intelligent home [25]

could be accomplished. For example, Kinect device as being

a participant of family group, could update all participants in

the group about the ongoing activities inside home.

def object_group_forming()
current_rec_entities=array.new
prev_invited_entities=array.new
new_entities=array.new

ASG.onUpdate(Object) do

prev_invited_entities=get_invited_entities
(object_loc, proximity_radius, object)

current_rec_entities=get_rec_entities
(home_loc, proximity_radius, object)

new_entities=current_rec_entities \
prev_invited_entities

send_Invitation(new_entities)
end

D. Factors of Different Group Formation Methods
There are four different methods for contextual group for-

mation presented above, needs to be compared to identify

different circumstances for the suitability of these methods.

The comparison is performed considering following factors:
Contextual information: Contextual information is natu-

rally a vital factor for contextual group formation. Tags,

locations, relationship and so on are example of contextual

information used for group formation.
Group candidates: It is not always enough to only consider

human users as group candidates, as it also is possible to

improve group communication by including smart devices as

the participants of a group. For example, a car can be member

of a group as it may interact with the owner to start the heater

an hour before the owner leave the office in winter season.

At same time, the owner may notify his/her family members

to get ready for a dinner, so that when he/she arrives at the

home, get things ready to drive towards a restaurant. For sure

the calendar element of the restaurant is added as your group

member, which enable the car owner to book a table in time

in the restaurant.
Form of groups: Two types of groups are considered.

Long-term, where the participants may evolve recurrently and

communicate in groups that may remain over time such as for

a football team. Short-term, where a group may be formed

for temporary purposes such as just to establish a relationship

with the current shopping-mall that a user is visiting to enable

the user to receive all the discount offers and the location of

friends in the mall.
Purposes of groups: Generally, there are public and private

purposes for forming a group, while social and productivity

purposes are also important purposes for forming groups.

Social purposes are for instance a user’s intent to increase in-

teraction among his friends and family. Productivity purposes

include adding devices to a group, to increase productivity for

a certain task.
The Table 1 contains comparative analysis of different

contextual group formation methods. The table shows that it is

hard to define which methods are better comparing with each

other. The comparison indicates different methods of group

formation could be useful for creating contextual group on

different purposes.

E. Group Invitation Approaches
Different methods for contextual group formation were

discussed above. However, those methods do not provide de-

125

TABLE I
COMPARATIVE ANALYSIS OF CONTEXTUAL GROUP FORMATION FUNCTIONS

Group formation methods Contextual information Group candidates Form of groups Purposes
Tag based group formation Social strength, location Human users Long-term Private
Tag based concurrent group formation Social strength, location Human users Long-term Public
Location Based group formation Real-world artifacts Human users Temporary Social
Object Based group formation Relationship Devices and Human users Long-term, Temporary Productivity

tails about sending invitation notification to the recommended

contacts. For this purpose, different invitation mechanisms

such as Apple’s push notification [26], Android notification

[27], W3C Web notification [28], web event streaming, HTTP

pooling, emails or SMS can be used as solutions for invitation

notification. A brief description of each of these methods is

given below:

Apple push notification: The Apple push notification ser-

vice can be used to notify recommended contacts to participate

in shared spaces. Generally, Apple’s push notification server

receives notification from the providers, in this case the

invitation service forwards the notification to the appropriate

devices.

Android notification: In Android-based devices, the Noti-

fication Manager registers providers and on receiving notifi-

cation from the registered providers, it passes the notification

combing with the proper intent of the notification. Therefore,

Android notification is another possibility of sending invitation

notification to group participants.

W3C Web notification: Using W3C Web notification,

HTML5 compatible web-browsers are able to receive web

notifications from certain web apps. This approach could

also be useful for sending invitations. However, to apply this

approach certain requirements must be accomplished such as

e-id of the user and so on.

HTTP polling: Through HTTP polling, client applications

send request messages to the server for new invitation events,

and wait until it gets a response from the server. This method

is not very efficient due to its synchronous nature. Comparing

with Android notification, HTTP polling out-performs as it is

synchronous by nature and does not push notifications.

E-mail or SMS: Invitation notification can also be sent

to users via e-mail or SMS services, which is the traditional

approach of invitation (and the most reliable ones).

In the next section, we discuss the architecture of shared

spaces, which utilizes the contextual group formation func-

tionalities.

IV. IMPLEMENTATION

The runtime environment for dynamic shared spaces is

divided into three layers, as depicted in Figure 4, where the

first layer is an application layer targeting foremost mobile

web applications. The applications can be deployed as mobile

apps for smart mobile devices or run in a web browser.

The second layer provides the main functionalities of the

runtime environment and is defined as a Web API for ap-

plication developers. The Web APIs are REST and SOAP

messaging compatible, therefore it is easier for the application

Fig. 4. Different Layers of the Shared Spaces Runtime

developers to utilize these APIs in their application develop-

ment processes. The Group Manager performs the tasks related

to group formation and discovery. The DSM Key Manager

generates unique keys and the Resource Manager assigns

dedicated coApps for new groups. DSM service requires

unique keys for memory management and concurrency control

of the particular coApps.

The third layer contains an Invitation Service that invites

participants to a group while considering multiple ways of

invitation. The DSM Service provides underlying technologies

for managing concurrency for all coApps. The ASG service is

a central part of this layer, as it supports the Group Manager

component to form groups and the Invitation Service to invite

participants.

A. Address Key Generation

As mentioned above, the DSM service requires a unique

address for each of the contextual group. The group address

key is therefore needed to represent a group with a shared

space together with the coApps. In our approach, the group key

is an UUID identifier version 34, which is used to address all

resources in the shared space for a particular group or shared

space. More specifically, it will be used for managing real-

time syncing of shared elements such as widgets for chatting

and media sharing through the DSM service. The group key

is also used to generate a unique Shared Space Access Point

(SSAP) for proving access to the shared space.

B. Dynamic Shared Space Initiation

The sequence to form a group and create a dynamic shared

space is depicted in Figure 5. Group formation is done by

discovering collaborators (members of the group) by using

context, for instance described as a tag, and then generating

the group key to create the group. Creating a group leads to

4http://en.wikipedia.org/wiki/Universally unique identifier

126

Fig. 5. Group formation and dynamic shared space creation

generation of a shared space, which then is associated with

coApps and addressed by SSAP identifier. Lastly, the SSAP

is used to invite the collaborators.

The pseudo code below creates a new-shared space with

coApps as described above. The code uses templates of the

coApps for replicating the resources to form a shared space

for a new group. All these templates contain a function called

DSMonReadyF, which is dynamically updated in each of the

coApps using the group address key. Finally, it associates

all coApps to the shared space for compiling coApps to a

single shared space interface. The interface is shared through

SSAP among the participants for group communication and

collaboration.

Shared spaces and coApps generation

OUTPUT: sharedSpacegroupKey
Require: coApps template, groupKey

groupKey = UUIDgenerator();
for id = 0 ! coApps:length do

Generate Resources for coApps[id]
Associate groupKey to coApps[id]
Update DSMonReadyF to coApps[id]
Associate coApps[id] to

sharedSpacegroupKey
end for
Publish sharedSpacegroupKey

The above pseudo code shows DSM address key man-

agement scheme and resource allocation approaches for a

shared space for performing group collaboration. The purpose

of providing individual address keys for each shared space

is to be able to dynamically join to that shared space. For

this purpose, the pseudo code generates a group address key

and then it allocates all the resources with the same key

in the DSMonReadyF functions. Finally it provides a SSAP

to the shared space for inviting collaborators for performing

collaboration using the shared space.

C. Service Integration

Figure 6 illustrates interactions among different services for

setting the runtime environment of shared spaces. From the

user’s device interface, the user provides requests of forming

groups using keywords to the Group Manager (1). The Group

Manager accesses cloud services, such as the Group Discovery

Service, and DSM Address Key Manager, and processes

the user’s requests. The Group Discovery Service provides

recommended contact lists (2) and also receives the group

access key from DSM Key Manager (3) for the requested

group.

Fig. 6. Service Interaction

The Group Manager then accesses call logs, location and

contact lists for refining and prioritizing the participants list.

After that the Group Manager sends back the recommended

list of participants to the user interface (4). The user can then

review and modify the list before sending the final list of

participants to the Invitation Service (5). If the user does not

like reviewing the list of recommended contacts, automatic

invitation will allow to sent the list directly to Invitation

Service. The Invitation Service distributes the invitation to

the participants using different communication tools such as

e-mail, SMS or Tweets (6). The invitation message contains

the shared space access point of the resources for this newly

formed collaborative environment. Finally, the participants are

able to access the shared space, through the DSM service.

D. Proof-of-concept prototype

The prototype is implemented to prove two major activities.

The first activity is to discover participants and then invite

them to join in a newly created shared space event. The

second activity is participation in that shared space event for

performing collaborative task, at present each of the shared

127

Fig. 7. Creating shared Space, Inviting Collaborators and Performing Collaboration Using Shared Spaces Prototype

space events contains a shared note coApp, a real-time chatting

coApp, a map-sharing coApps.

The prototype provides a sign in feature to the users for

using the apps (Figure 7a). After sign in, the user may type

a keyword as the context of forming contextual group (Figure

7b). Based upon the context keyword, the recommended

participants list can be reviewed by using Review button. If

the user wants to invite all the participants without reviewing,

it presses the ”Create Automated Collaborative Workspace”

button. By pressing that button the user gets invitation message

to join at the shared space to that particular group where differ-

ent tools are available for performing collaborative activities

(Figure 7c). For example, the user may initiate real-time chat

among the invited participants by using the real-time chatting

tool (Figure 7d).

When another user receives a new invitation message, it

appears in the list of shared space events as a new invitation

event (Figure 7f). When a user touches a particular invitation

event, then the user is connected to that shared space session,

and is being able to collaborate with other participants at that

session (Figure 7g). In this case as shown in Figure 7, Eblie

invites Alex to perform collaboration for Group media project

activities. After invitation and creation group media shared

space, if Alex selects real-time chat tool, then Alex will be

able to communicate with Eblue.

V. EVALUATION

This section provides comparative evaluation among dif-

ferent groupware with respect to shared spaces prototype.

Some of the groupware services already cover large set

of group communication tools such as audio/video support,

shared editing and so on. Many of those tools are highly

scalable in nature and perform well in practise such as

Skype, Google+ hangouts. Thus, the evaluation is on up-

coming challenges in group communication considering the

fact of social recommendation. We identify couple of future

requirements in group communication such as automatic group

invitation, social context adaptation, and so on [18]. Based on

128

TABLE II
COMPARATIVE ANALYSIS

GroupWare Automatic invitation Context adaptation Global contacts adaptation coApps integration
Google Hangout - - - x
AdobeConnect - - - -

Skype - - x x
Shared Spaces x x x x

such metrics, the comparative evaluation is performed at the

first place. Thus the metrics are as follows:

Automatic invitation: Groupware tools may invite potential

participants for forming the group via automatic discovery of

participants and sending invitation message to them. In this

way, it avoids unnecessary manual inputs for setting up a group

for collaboration.

Social context adaptation: By adapting social contexts,

groupware tools may able to identify appropriate contacts

based on the contextual information of the contacts from

heterogeneous communication sources.

Global contacts adaptation: By adapting global contacts

from different communication sources, groupware tools may

able to form groups in a large perspective by exploiting a

user’s openID or mobile phone number. In a way, it reduces

sign-in operations to get contacts from heterogeneous group

communication sources.

coApps integration: Integrating coApps within the group-

ware, maximizes the number of interactions among the group

members. For example, shared object annotating tools may

simplify collaboration tasks which is widely using now a

days for sharing social recommendations for movie and music

selections in services such as Netflix5, and Spotify6.

Table 2 shows a comparative analysis of dynamic shared

spaces considering Google+ Hangouts, Adobe-Connect and

Skype. The invitation process in Google+ Hangout is manual

and needs Google ids for setting up a group. Creating a

hangout and email out the URL or post it for everybody to see

and join does not solve contextual group formation problem.

Moreover, it does not adapt users’ emails by using context

and global contacts. However, Google+ Hangouts provides

coApps for media streaming and distributing. Adobe-Connect

is also lack of automatic invitation. It provides a URL for

every collaboration sessions and participants need to get in the

particular collaboration session by doing manual operations.

It could be better by adapting context and global contact or

integrating with diverse coApps. Google+ Hangout supports

importing coApps and has a good API for creating new coAps.

Skype do not support automatic invitation and context adap-

tation but it considers global contact adaptation. For example,

Skype platform is integrated with MySpace and Facebook

social networking services to facilitate communication with

facebook contacts or Myspace contacts using Skype services.

It also supports coApps such as IDroo [29], which may be

used for collaborative meetings. In general, shared spaces are

5www.netflix.com
6http://www.spotify.com/

able to invite group members both as automatically or by

using a review process. It supports social context adaptation,

global contact adaptation as well as it supports coApps as main

collaboration tools.

VI. DISCUSSION

This section discusses the research questions addressed in

this paper. Then, it describes ubiquitous interactions in the

context of group collaboration.

How can automatic group formation be implemented
based on communication patterns and the context of users?

This paper presents four methods for automatic group

formation by using tags, locations or objects in combination

with the ASG framework. This enables group formation to

consider social parameters and the context of users, though

creation of a social graph with information from several social

networks and communication tools (pattern identifies through

analysis of call logs, etc.) where the social graph then is pruned

with contextual parameters.

The prototype implementation shows that these methods are

feasible, both when utilized for mobile and Web applications.

The usage of context is still very simplistic, but is enough

to prove that the social graph can be pruned by considering

multiple types of contextual data.

How can group collaboration be supported through auto-
matic and dynamic composition of a lightweight communi-
cation tool?

Groups can be automatically formed, as described above.

The next step is then to create the group communication

environment as automatic as possible, while supporting tools

to be dynamically included on a need basis. This work utilizes

the DSM service that supports creation of shared spaces,

which are lightweight applications that can be composed into

a tailored service for particular needs.

The conceptual prototype indicates that the full chain of

events from forming a group to select specific apps for

collaboration can be automatic. It also shows that the runtime

environment is possible to run apps both in mobile devices

and in web browsers.

A. Supporting Ubiquitous Interaction

This paper focuses on supporting ubiquitous interaction

by facilitating group collaboration, for which three tasks are

important. The first task is finding appropriate collaborators

for the group, the second task is allocating resources to

initiate collaboration and the third task is inviting participants

using proper communication channels. All these tasks are

accomplished by shared spaces prototype.

129

The shared space prototype shows that today’s social net-

working services can be utilized to form lightweight shared

spaces to perform specific collaboration task. In this work,

we show that shared spaces are not an alternative of social

networking services, rather it builds on the social information

from the networks to make lightweight group communication

easier and more efficient. It is found that the Ericsson Labs

DSM service may play an important role for developing

collaborative applications, tailored to particular needs.

VII. CONCLUSIONS

The paper presents a runtime environment for creating

lightweight shared spaces for communication and collabora-

tion needs. The proof-of-concept prototype shows that contex-

tual group could be formed in a disruptive way i.e., outside

of the boundary drawn by state of the arts social networking

services without losing users’ contacts and contents in those

services. Precisely, the paper shows different functions for

automatic group formation, and adaptation of social computing

in-group specific shared spaces. The proposed runtime en-

vironment makes use of aggregated social graphs for group

management, where information on how we communicate is

gathered from call logs, calendars, social networks, etc.

In future work we will continue to performance analysis

of contextual group formation functions, measure resource

efficiency of shared space prototype based on qualitative and

quantitative data collected from user study.

VIII. ACKNOWLEDGEMENTS

This work was funded by the Research Area Multimedia

Technologies at Ericsson Research, where Stefan Hkansson

has been vital for the direction and execution of the re-

search. We thank to Professor Peter Parnes for the feedback

in this work. The work was also supported by the Centre

for Distance-spanning Technology (CDT) and by the Satin-

II research project partly, funded by the European Regional

Funds. The European Institute of Innovation and Technology

(EIT) ICT Labs also supported the work, through the action

lines ICT-mediated Human Activity, Future Media and Content

Delivery.

REFERENCES

[1] A. Kaplan, “If you love something, let it go mobile: Mobile marketing
and mobile social media 4x4,” Business Horizons, 2011.

[2] D. Zhao and M. Rosson, “How and why people twitter: the role
that micro-blogging plays in informal communication at work,” in
Proceedings of the ACM 2009 international conference on Supporting
group work. ACM, 2009, pp. 243–252.

[3] A. Lenhart, Social media & mobile internet use among teens and young
adults. Pew Internet & American Life Project, 2010.

[4] E. F. Churchill, “The (anti) social net,” interactions,
vol. 17, no. 5, pp. 22–25, Sep. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1836216.1836222

[5] S. McNulty, The Google+ Guide Circles, Photos, Hangouts, and More.
[6] M. Wessner and H.-R. Pfister, “Group formation in computer-supported

collaborative learning,” in Proceedings of the 2001 International
Conference on Supporting Group Work, ser. GROUP ’01. New
York, NY, USA: ACM, 2001, pp. 24–31. [Online]. Available:
http://doi.acm.org/10.1145/500286.500293

[7] D. Gurzick, B. Landry, and K. F. White, “Alternate reality games
and groupwork,” in Proceedings of the 16th ACM international
conference on Supporting group work, ser. GROUP ’10. New
York, NY, USA: ACM, 2010, pp. 303–304. [Online]. Available:
http://doi.acm.org/10.1145/1880071.1880121

[8] Y. Sun and S. Greenberg, “Places for lightweight group meetings:
the design of come together,” in Proceedings of the 16th ACM
international conference on Supporting group work, ser. GROUP ’10.
New York, NY, USA: ACM, 2010, pp. 235–244. [Online]. Available:
http://doi.acm.org/10.1145/1880071.1880111

[9] M. Hoffmann and T. Sumner, “Supporting distributed participatory
design with lightweight communication tools,” Technical Report
CU?CS?2001, 2001. [Online]. Available: http://www.sociotech-
lit.de/HoSu01-SDP.pdf

[10] B. Elser, G. Groh, and T. Fuhrmann, “Group management in p2p
networks.” in ICCCN. IEEE, 2010, pp. 1–8.

[11] J. Rana, J. Kristiansson, and K. Synnes, “Enriching and simplifying
communication by social prioritization,” in Advances in Social Networks
Analysis and Mining (ASONAM), 2010 International Conference on.
IEEE, 2010, pp. 336–340.

[12] R. Juwel, K. Johan, and S. Kare, “Dynamic media distribution in ad-hoc
social networks,” in 2nd International Conference on Social Computing
and its Applications (SCA2012), 2012, pp. 546–553.

[13] J. Kristiansson, J. Hallberg, R. Juwel, K. Synnes, and S. Håkansson,
“Social data ranking and processing,” Dec. 28 2010, uS Patent App.
12/979,493.

[14] A. Ankolekar, G. Szabo, Y. Luon, B. A. Huberman, D. Wilkinson,
and F. Wu, “Friendlee: a mobile application for your social life,” in
MobileHCI ’09: Proceedings of the 11th International Conference on
Human-Computer Interaction with Mobile Devices and Services. New
York, NY, USA: ACM, 2009, pp. 1–4.

[15] R. Grob, M. Kuhn, R. Wattenhofer, and M. Wirz, “Cluestr: mobile
social networking for enhanced group communication,” in GROUP ’09:
Proceedings of the ACM 2009 international conference on Supporting
group work. New York, NY, USA: ACM, 2009, pp. 81–90.

[16] S. Greenberg, K. Tee, and C. Gutwin, “Artifact awareness through
screen sharing for distributed groups,” 2008. [Online]. Available:
http://hdl.handle.net/1880/46642

[17] N. Lane, Y. Xu, H. Lu, A. Campbell, T. Choudhury, and S. Eisenman,
“Exploiting social networks for large-scale human behavior modeling,”
Pervasive Computing, IEEE, vol. 10, no. 4, pp. 45 –53, april 2011.

[18] G. Groh, Contextual Social Networking. Habilitation Thesis in Com-
puter Science, 2012.

[19] R. Lübke, D. Schuster, and A. Schill, “Mobilisgroups: Location-based
group formation in mobile social networks,” in PerCom Workshops,
2011, pp. 502–507.

[20] R. I. González-Ibáñez and C. Shah, “Group’s affective relevance:
a proposal for studying affective relevance in collaborative
information seeking,” in Proceedings of the 16th ACM international
conference on Supporting group work, ser. GROUP ’10. New
York, NY, USA: ACM, 2010, pp. 317–318. [Online]. Available:
http://doi.acm.org/10.1145/1880071.1880128

[21] A. Inaba, T. Tamura, R. Ohkubo, M. Ikeda, and R. Mizoguchi, “Design
and analysis of learners’ interaction based on collaborative learning
ontology,” in Proceedings of EuroCSCL01, 2001, pp. 308–315.

[22] C. Shah and G. Marchionini, “Awareness in collaborative information
seeking.” JASIST, pp. 1970–1986, 2010.

[23] M. Julian and L. Jure, “Learning to discover social circles in ego
networks,” in NIPS, 2012.

[24] (2012, Aug.) Meteor. [Online]. Available: http://meteor.com/
[25] J. Gómez-Romero, M. A. Serrano, M. A. Patricio, J. Garcı́a, and

J. M. Molina, “Context-based scene recognition from visual data in
smart homes: an information fusion approach,” Personal Ubiquitous
Comput., vol. 16, no. 7, pp. 835–857, Oct. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00779-011-0450-9

[26] (2012, Aug.) Apple push notification service. [Online]. Available:
http://developer.apple.com/

[27] (2012, Aug.) Android notifications. [Online]. Available:
http://developer.android.com/guide/topics/ui/notifiers/index.html

[28] (2012, Aug.) W3c web notifications. [Online]. Available:
http://www.w3.org/TR/notifications/

[29] (2012, Aug.) Idroo. [Online]. Available: http://www.idroo.com/

130

