Educating engineering designers for a multidisciplinary future

Mattias Bergström
Åsa Ericson
Luleå University of Technology (LTU)
Division of Functional Product Development

Detlef Matzen
Adrian Tan
Technical University of Denmark (DTU)
Department of Mechanical Engineering
Section of Engineering Design and Product Development

Functional Product Development (FPD) and Product Service Systems (PSS)

- Different names…
 - Similar intentions!
 - A product development view
 - Support engineering designers and teams
 - Knowledge
 - Process
 - Methods
 - Tools
 - Integrating a service perspective
 - For the purpose to
 - Develop FPD/PSS offerings
 - Life cycle perspective/life cycle commitment
 - Need fulfillment drives the development process
 - Take additional aspects into early phases, e.g., environmental
What? Why? How?

- Education of engineering designers
- FPD/PSS trigger a new role
 - Extended responsibilities
- An engineering design curriculum which integrates the domains of
 - Socio-technological analysis
 - Synthesis
 - Technical skills

Requirements on future engineering designers

- Growing importance of
 - Information technology in supporting the life cycle performance of products
 - Worldwide collaboration
 - In enterprises and between enterprises/actors in
 - Development
 - Manufacturing
 - Delivery
 - Services & Support
- The engineering designer as a coordinator and integrator
 - Guiding communication between different professions
 - Extracting/analyzing and drawing conclusions on user needs and offering potentials
 - Driving business development by synthesis of PSS offers
And now...

- Examples from education of engineering designers from:
 - LTU – lecture course
 - A process view
 - A challenge to extend the perspective
 - Another challenge collaboration in design teams
 - DTU – project course
 - A product life synthesis view
 - Understanding a product’s utility and providing it in a more efficient manner
 - Design of not just the physical artefact, but also the product life system
A deep dive, an example...

- Lego exercise
 » To experience what can be problematic
 • Lecturing is one thing, make things happen another
 » Go from needs to product very fast, approx 10 min exercise
 • Task – what is at hand?
 - Shared vision
 • Roles – who is going to do what?
 - Assign a team
 • Collaboration – do what with whom?
 - Team competences
 • Communication – from one point of view to another
 - Tacit knowledge
 - Complicated
 » = a bit more prepared for the project part
 • Have a sense of what will be

Lecture course @ LTU

- ‘Live as we learn’
- Education
- Industry
Case course @ DTU

- The student teams are first guided through an analysis of the initial product's product life cycle, yielding insights into four aspects of product design:
 - identification of current environmental impacts,
 - life phase systems the product encounters,
 - activities that involve the human actor (i.e. customer) and the product,
 - actor-network that support and supply these activities throughout the product’s life.
- Based on the analysis, goals are set for the improved solution and concepts are developed for a new product/service-system.
- This way the students are lead through
 - engineering and
 - socio-technical analysis tasks and thereby laying the foundation for their
 - synthesis work
in the concept development phase of the project

Product life gallery
Actor-networks and Actors activity cycles
Our message...

- FPD/PSS an interest in industry today
 - Importance of socio technical competences in future education of engineering designers
- Challenge traditional engineering design curriculum
 - Not only problem-solving, also problem definition
 - More tacit aspects into concept phase
 - Extended responsibilities for engineering designers
- A new role in real product development projects