Silane-crosslinking efficiency in wood-polyethylene composites: Study of different polyethylenes

Göran Grubbström and Kristiina Oksman

Division of Design and Manufacturing of Wood and Bionanocomposites, Luleå University of Technology, Sweden

10th International Conference on Wood & Biofiber Plastic Composites
Background
Challenges for WPCs

- Strength and toughness
- Lowering the weight
- Improving long-term material properties
Challenges for WPCs

- Strength and toughness
- Lowering the weight
- Improving long-term material properties

Crosslinking:

- Higher strength and toughness
- Creep resistance
Crosslinked WPCs

Non-crosslinked

Crosslinked

Polymer matrix

WF
Crosslinked WPCs

Non-crosslinked

Crosslinked

Polymer matrix

Creep resistance
Crosslinked WPCs

Non-crosslinked

Crosslinked

Strength and toughness

Polymer matrix
Previous studies

Pre-treated wood flour/fibers
Sapieha et al. (1990), Kuan et al. (2004), Xiong et al. (2008), etc.

Add reactants during compounding
Nogelova et al. (1998), Janigova et al. (2001), Bengtsson et al. (2006)
Previous studies

Pre-treated wood flour/fibers
Sapieha et al. (1990), Kuan et al. (2004), Xiong et al (2008), etc.

Add reactants during compounding
Nogellova et al. (1998), Janigova et al. (2001), Bengtsson et al. (2006)

Peroxide-crosslinking
Silane-crosslinking
Crosslinked polyethylene

Peroxide-crosslinking

PE
Crosslinked polyethylene

Peroxide-crosslinking

\[\text{PE} \rightarrow \text{Crosslinked PE} \]

Silane-crosslinking

\[
\begin{align*}
\text{MeO} & \quad \text{Si} & \quad \text{OMe} \\
\text{OMe} & \quad +3 \text{H}_2\text{O} & \quad \text{OH} \\
\text{HO} & \quad \text{Si} & \quad \text{OH} \\
& & +3 \text{CH}_3\text{OH}
\end{align*}
\]
Crosslinked polyethylene

Peroxiide-crosslinking

Silane-crosslinking

\[
\text{PE} \quad \rightarrow \quad \text{MeO}_2\text{Si} \quad \rightarrow \quad \text{HO}_2\text{Si} \quad + 3 \text{H}_2\text{O}
\]

\[
\rightarrow \quad \text{HO}_3\text{Si} \quad + 3 \text{CH}_3\text{OH}
\]

\[
\rightarrow \quad \text{HO}_2\text{Si} \quad + \text{H}_2\text{O}
\]
Crosslinked polyethylene

Peroxide-crosslinking

Silane-crosslinking

Molten state

Solid state
Crosslinked polyethylene

Peroxide-crosslinking

Silane-crosslinking

Side-reaction (Scorch)

Molten state

Solid state
Silane-crosslinked polyethylene

Differences between type of polyethylene

High-density polyethylene
HDPE

- Less
- Less
- Slower

Low-density polyethylene
LDPE

- More
- More
- Faster

Polymer chain scission
Scorch
Curing

Silane crosslinked WPC

One-step process:
(Bengtsson et al., 2006)
Silane crosslinked WPC

One-step process:
(Bengtsson et al., 2006)

Compounding
Silane-grafting
Profiling

Store composite

H₂O
Objective for the study

- Investigate possibility to use silane-technology for LDPE-WPCs
- Compare results to our previous study of crosslinked HDPE-WPC
Materials and Processing
Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE MFI 12</td>
<td>47 wt-%</td>
</tr>
<tr>
<td>LDPE MFI 0.4</td>
<td>50 wt-%</td>
</tr>
<tr>
<td>Wood flour</td>
<td>3 wt-%</td>
</tr>
<tr>
<td>TPW113 (Struktol, U.S.A.)</td>
<td></td>
</tr>
</tbody>
</table>

- **Wood flour**: Softwood, 300-500μm
- **Lubricant**: TPW113 (Struktol, U.S.A.)
Materials

<table>
<thead>
<tr>
<th></th>
<th>HDPE</th>
<th>LDPE (recycled)</th>
<th>Lubricant</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MFI 12</td>
<td>MFI 0.4</td>
<td>TPW113 (Struktol, U.S.A.)</td>
<td></td>
</tr>
<tr>
<td>Wood flour</td>
<td>Softwood, 300-500μm</td>
<td>50 wt-%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VTMS 97% (Sigma Aldrich, U.S.A.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DCP 98% (Sigma Aldrich, Japan)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE (MFI 12)</td>
<td>47 wt-%</td>
</tr>
<tr>
<td>LDPE (recycled, MFI 0.4)</td>
<td></td>
</tr>
<tr>
<td>Wood flour</td>
<td>50 wt-%</td>
</tr>
<tr>
<td>Softwood, 300-500μm</td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td>3 wt-%</td>
</tr>
<tr>
<td>TPW113 (Struktol, U.S.A.)</td>
<td></td>
</tr>
<tr>
<td>Vinyltrimethoxysilane</td>
<td>12:1 w/w + 4 wt-%</td>
</tr>
<tr>
<td>VTMS 97% (Sigma Aldrich, U.S.A.)</td>
<td></td>
</tr>
<tr>
<td>Dicumyl peroxide</td>
<td></td>
</tr>
<tr>
<td>DCP 98% (Sigma Aldrich, Japan)</td>
<td></td>
</tr>
</tbody>
</table>
Materials

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>LDPE</td>
<td></td>
</tr>
<tr>
<td>MFI 12</td>
<td>MFI 0.4</td>
<td></td>
</tr>
<tr>
<td>Wood flour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwood, 300-500μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPW113 (Struktol, U.S.A.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyltrimethoxysilane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTMS 97% (Sigma Aldrich, U.S.A.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicumyl peroxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 98% (Sigma Aldrich, Japan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>47 wt-%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 wt-%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 wt-%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12:1 w/w</td>
<td>+ 3 wt-%</td>
</tr>
</tbody>
</table>
Materials

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>LDPE</td>
<td></td>
</tr>
<tr>
<td>MFI 12</td>
<td>MFI 0.4</td>
<td>47 wt-%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood flour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softwood, 300-500μm</td>
<td></td>
<td>50 wt-%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td></td>
<td>3 wt-%</td>
</tr>
<tr>
<td>TPW113 (Struktol, U.S.A.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyltrimethoxysilane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTMS 97% (Sigma Aldrich, U.S.A.)</td>
<td>12:1 w/w</td>
<td>+ 3 wt-%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicumyl peroxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCP 98% (Sigma Aldrich, Japan)</td>
<td>25:1 w/w</td>
<td></td>
</tr>
</tbody>
</table>
Reactive extrusion

Twin screw extrusion
- Compounding and profiling
 - Throughput 5.2 kg/h
 - Residence time 55-60 s.
 - Melt temp. ~195°C

(Coperion W&P ZSK18 MEGAlab)
Curing conditions

Room temperature (RT)
- 21°C
- RH 30-40%

Sauna (SA)
- 90°C
- RH close to 100%

Storing times:
- 0, 3, 6, 12 hours,
- 1, 2, 3, 4, 6, 9 days
Sample coding

HDPE-composites
- HD Non-X
- HD-X

LDPE-composites
- LD Non-X
- LD-X
- LD-X (low)
Testing and Results
Processing

HDPE-composite

LDPE-composite

Non HD-X Non LD-X LD-X (low)
Processing

Extruder torque:

- **HDPE-composite**
 - Non: 35%
 - HD-X: 60%

- **LDPE-composite**
 - Non: 45%
 - LD-X (low): 60%
 - LD-X: 70%
Processing

HDPE-composite
- Extruder torque: 35% 60%
- Die swelling: Not significant

LDPE-composite
- Extruder torque: 45% 60-70%
- Die swelling: 4% 20% 40%
Degree of crosslinking

Measure insoluble gel content
(ASTM D2765)

- Sample in 120 Mesh pouch
- In boiling xylene for 12 hours
- Extracted mass (%) measured
- Degree of crosslinking = 100 – Extract (%)
Degree of crosslinking

HD-X

LD-X

Storing time (days)

0 1 2 3 4 5 6 7 8 9

0% 20% 40% 60% 80% 100%

56%

35%

Storing time (days)

0 1 2 3 4 5 6 7 8 9

0% 20% 40% 60% 80% 100%
Degree of crosslinking

HD-X
- RT: 35%
- SA: 60%

LD-X (Low)
- RT: 39%
- SA: 56%
Mechanical testing

LDPE-composites
Flexural properties

HDPE-composites*
Tensile properties

* Grubbström and Oksman 2009
Mechanical properties

HDPE-composites

- Tensile stress (MPa)
- Strain (%)

Graph showing tensile stress vs. strain for HD-X and Non-X materials at RT and SA conditions.
Mechanical properties

LDPE-composites

Flexural stress (MPa) vs. Strain (%)

- Non-X
- LD-X (low)
- LD-X

RT
SA
Morphology

HDPE-Composite

LDPE-Composite

Non-X

Crosslinked
Short-term creep

DMA
(TA Instruments)

- **Specimen**: 60.0 x 12.5 x 2.5 (mm)
- **Dual cantilever mode**
- **Static stress 5 MPa**
- **30°C**
- **5 hours + 1 hour recovery**
Short-term creep

HDPE-composites

- RT
- SA

LDPE-composites

- LD-X
- Non-X
- LD-X (low)
Conclusions
Conclusions

- There are differences in crosslinking efficiency depending on type of polyethylene in the WPC
- The technology works for both HDPE and LDPE
- LDPE-composite:
 - More sensitive for reactants
 - Cures faster
 - Do not need storing in Sauna
Future work

- Minimize crosslinking in extrusion process
- Silane-crosslinking process: RT, SA
- Long-term properties
Acknowledgements

- Skellefteå Kraft and Nordea for financial support
Questions?
<table>
<thead>
<tr>
<th>Sample code</th>
<th>σ (MPa)</th>
<th>E (MPa)</th>
<th>ε (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neat LDPEa</td>
<td>18 ± 1</td>
<td>260 ± 40</td>
<td>14,4 ± 0,4</td>
</tr>
<tr>
<td>LD Non-X</td>
<td>13 ± 1</td>
<td>1768 ± 163</td>
<td>2,6 ± 0,3</td>
</tr>
<tr>
<td>LD-X RT</td>
<td>16 ± 1</td>
<td>675 ± 70</td>
<td>7,6 ± 0,3</td>
</tr>
<tr>
<td>LD-X SA</td>
<td>14 ± 1</td>
<td>646 ± 60</td>
<td>6,1 ± 0,9</td>
</tr>
<tr>
<td>LD-X RT (low)</td>
<td>26 ± 2</td>
<td>1423 ± 160</td>
<td>5,1 ± 0,5</td>
</tr>
<tr>
<td>LD-X SA (low)</td>
<td>24 ± 1</td>
<td>1382 ± 70</td>
<td>4,7 ± 0,3</td>
</tr>
<tr>
<td>Neat HDPEb</td>
<td>26 ± 1</td>
<td>1266 ± 64</td>
<td>6,1 ± 0,4</td>
</tr>
<tr>
<td>HD Non-X</td>
<td>11 ± 2</td>
<td>1562 ± 204</td>
<td>1,8 ± 0,3</td>
</tr>
<tr>
<td>HD-X RT</td>
<td>18 ± 1</td>
<td>1749 ± 97</td>
<td>2,4 ± 0,1</td>
</tr>
<tr>
<td>HD-X SA</td>
<td>19 ± 2</td>
<td>1888 ± 118</td>
<td>2,2 ± 0,2</td>
</tr>
</tbody>
</table>

a Flexural properties for all HDPE-samples

b Tensile properties for all LDPE-samples
<table>
<thead>
<tr>
<th>Sample code</th>
<th>Storing mode</th>
<th>Storing time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 hour</td>
<td>3 hours</td>
</tr>
<tr>
<td>LD-X</td>
<td>Sauna</td>
<td>56%</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>56%</td>
</tr>
<tr>
<td>HD-X</td>
<td>Sauna</td>
<td>35%</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>35%</td>
</tr>
<tr>
<td>LD-X (low)</td>
<td>Sauna</td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td>RT</td>
<td>39%</td>
</tr>
</tbody>
</table>