
Multi-Purpose Models for QoS Monitoring

Stefan Wallin, Viktor Leijon.
Luleå University of Technology LTU Skellefteå, SE-931 87 Skellefteå Sweden

stefan.wallin@dataductus.se, leijon@csee.ltu.se

Abstract

Telecom operators face an increasing need for

service quality management to cope with competition
and complex service portfolios in the mobile sector.
Improvements in this area can lead to significant
market benefits for operators in highly competitive
markets. We propose an architecture for a service
monitoring tool, including a time aware formal
language for model specification. Using these models
allows for increased predictability and flexibility in a
constantly changing environment.

1. Introduction

Service operators face many new challenges in
network management [1]. Among the most important
trends is the increasing move towards service centric
management. It is necessary for an operator to deliver
predictable quality of service.

There are currently few useful solutions for dealing
with QoS for a large number of services types, service
instances and users.

Figure 1: Overall goal for QoS monitoring

The picture above illustrates the overall QoS
problem. To get a good general measure of QoS,
multiple parameters need to be taken into account. It is
fairly easy to have a state for a single service at a given
time for one customer. But a large telecom operator
needs to have an overall picture with support for
different views. Different service views can include
geographical, customer-based, SLA service etc. With
such service views an operator can connect technical

service quality with business goals.
We are not trying to define individual QoS

parameters for specific network technologies or
services. Neither are we trying to define “good service
quality”. These areas are already well covered by
individual standards, research and products. Instead we
are trying to provide general capability for building
large scale, multi purpose service models

This paper defines the following components for a
service management system:

• We give a simple definition of Quality of
Service in section 2.1.

• Using this definition in Section 2.2 we examine
what kinds of scenarios a service monitoring
tool must be able to handle.

• The outline for the architecture of a service
monitoring system is given in section 3.1.

• Finally, in Section 3.2, we present a novel
service modeling language, with built in
capabilities for dealing with time and
relationships between objects

2. Overview

2.1. Quality Of Service

There are several different interpretations of what
Quality of Service means, each with different scopes.

In the IETF the term Quality Of Service typically
refers to technologies to achieve “good quality”. QoS
in this sense is a means to prioritize network traffic,
manage bandwidth and congestion, and to help ensure
that the highest priority data gets through the network
as quickly as possible. The IETF uses the following
definition of QoS [2]: “A set of service requirements to
be met by the network while transporting a flow”.
Important solutions from this domain are IntServ [3],
DiffServ [4], MPLS [5] and Policy solutions [6]. These
are all important QoS solutions to achieve good service
quality with Internet protocols. Similar solutions exist
for other domains like fixed networks, 2G/3G networks
[7] and specific services such as VoIP, customer care
processes, etc. These QoS techniques are aimed at
controlling and monitoring QoS in an objective way.

The ITU uses a more end-user focused definition of
the term [8]: “the collective effect of service
performance which determines the degree of
satisfaction of a user of the service”. Using this
definition takes one step further in that it includes the
subjective/perceived measurements by an end-user.
Casas [9] presents a method to measure perceived
Quality Of Service and the relationship between
subjective and objective measurements.

The relationship between service quality and
customer loyalty in general is discussed by Bloemer
[10]. He also enhances the quality of service definition
into a third level: “service quality is a function of the
difference scores or gaps between expectations and
perceptions (P - E)”.

Why is an overall picture of quality of service
needed?

• SLAs: service providers want to sell SLAs
where they promise a certain service quality.
These promises should be expressed in a
formal way that can be measured. SLAs often
includes several kinds of QoS parameters
ranging from technical parameters like jitter
and delay to more indirect parameters like
customer care or process metrics

• Service quality: service providers are often
overwhelmed with individual QoS
parameters, but these are not integrated into
an overall service view. It is hard to get
information about current, past and future
service quality.

• Dynamic networks: services are carried over
different networks like xDSL, WLAN, 3G. In
order to support seamless roaming and still
keep the perceived service quality we need
calculations which span several different
domains.

• Quality Assurance: organisations are
currently introducing QoS mechanisms in the
traditional sense, but not always monitor the
quality of the services.

• QoS definition framework: new applications
and services are constantly being defined.
Each of these new services will have its own
specific QoS parameters. There is a need for a
common understanding about which these
parameters are, and what their meaning is.

• Governmental authorities have a growing
need to monitor the quality of operators from
a functional and service perspective.

For a more in-depth coverage of the motivations
behind an overall solution for monitoring QoS see for
instance Espvik [11] or Räisänen [12].

We conclude that the definition of QoS must be
neutral and generic. It must encompass statements such
as: - What is the quality of the Swedish GSM network?
- What was the quality of the Swedish GSM network
last Christmas Eve? - What is the quality of all the
services provided to customer B? -How did a failure
on a specific base station affect the GSM service in
Stockholm at 10.00 AM yesterday?

Considering these requirements have lead us to
adopt the following simple definition:

Quality of Service is defined as a function of service
parameters.

These functions and the interpretation of the

parameters are part of a specific model, and formulated
by experts on the particular service. In some sense the
function should represent the "degree of conformance
of the service delivered to a user by a provider in
accordance with an agreement between them" [8].

2.2 Use Cases

In order to make more concrete the kind of
functionality a system for service modeling must have
we present a few important use cases.

Many of these use cases are represented by
complicated models, and require the combination of
several different areas of expertise. A service modeling
language should be able to express them in the way the
domain experts defines them.

2.2.1 An end-customer view. This is the traditional
view in QoS, examining the quality of a single flow,
for a single customer at a single point in time. This is
the most basic requirement, and has been the focus of
much previous research [13].

The requirement here is to be able to determine what
QoS the customer is getting, and to compare that to the
QoS the customer has purchased. How to compute the
relevant parameters is service dependent.

2.2.2 A customer care view. If we instead view a
customer care organization the picture changes
slightly. The customer care representative is not as
interested in the separate quality measures, since she
may have responsibility for a hundred different types
of service delivered to a million different customers.

For customer care, an aggregate picture is required.
Something that gives a picture of the total quality
delivered. There is also a need for drill down
capability, to explore the root cause for customer
complaints.

2.2.3 A marketing view. A marketing organization has
a very different focus, it needs to be able to predict
customer loyalty, based on service price and service
quality.

This requires a model of customer behavior, and of
how quality relates to loyalty [10]. This means that the
same performance indicators could be used for
marketing as for the end user view. But how they are
viewed could be very different, and the model must be
able to accommodate this.

2.2.4 A technical view. In contrast, a field engineer
has a view that is relatively simple; all he wants to
know is what he should fix next. He needs to be able to
extract the highest-priority fault within his area of
responsibility.

The challenge here is to calculate a priority from the
model. This requires that QoS problems be mapped to
a single piece of hardware.

2.2.5 A what-if scenario. Another interesting
possibility is to examine what-if scenarios.

You should be able to experimentally change
parameters and see their effect. If we cancel the lease
on a backup link, for example, what would the effect
on customer satisfaction be? What would the financial
effect be like?

3. Reference Architecture for a QoS
Monitoring Solution

3.1 Overall

In order to be able to fulfill these use-cases, we are
suggesting a three pronged solution consisting of:
1. A modeling language, with sufficient power to

express the complex models needed for the use-
cases. This language must be able both to express
the way that parameters are computed from each
other and to express the structure of the service
model.

2. An analytic engine, which can execute the
modeling language and compute the values of all
the parameters. This engine needs to have the
appropriate interfaces, and be parallelizable so that
it can be implemented in a scalable and fault-
tolerant fashion.

3. Information visualization systems, interfaces to
extract and present the relevant data from the
analytic engine. This can be accomplished by a
combination of integration with report generators
and a general, data driven interface.

Figure 2: QoS Monitoring Framework
It is imperative that the system has enough power to

express the models, and that it is simple enough that
integrating it into the support systems of an operator is
feasible. This forces us to make a design trade-off
between power and flexibility.

There are already languages and system to create
models such as Modelica [14] which is targeted at
modeling physical systems. We have a different scope,
but we note that just as in models of the physical
world, the concept of time will be very important in
our system.

3.2 A Language for Service Modeling

We use a tailor-made programming language for
defining services and service level agreements. This
enables us to create services using well understood
methods of program construction. The language has
two main purposes: first it will define the structure of
the model, and second, it will define the relationship
between parameters and determine how they will be
computed.

We propose a simple, pure, functional language for
defining calculation rules, with the following key
features:

1. The language is object oriented to facilitate the
object oriented structure of a service model.

2. We use type-inference to make the service
modeling less error-prone and to facilitate
composition of components.

3. Due to the nature of service modeling, the
programming language must be able to treat time as
an integral part of the syntax: all variables are seen
as arrays, indexed by a time stamp.

4. It is possible to use the time-index syntax to
retrospectively change the value of variables.

5. List comprehension and an extensive set of built-in
functions provide the power needed to express
complex models.

To make the language more concrete we present a

simplified example taken from a model of a cellular
network. The first class, cell, defines what
properties we associate with a cell; and that it has a
single measurement input (errCount). The
definitions state how the parameters errRate and
linkErrors should be computed from other
parameters. Note the @ sign, which is used to indicate
access to a time indexed value.

The second definition, CellSL, defines a service
level - a promise on the behavior of the underlying
component - which encompasses the cell. It uses the
parameters from the cell to form a view of the
component. In effect saying “If we apply a Service
Level on this cell, this is what the status would be
like?”.

Note that the service level is parametric with regards
to the number of errors allowed. We provide the
specialization BronzeCellSL, which gives specific
values.

Finally we define the relationships between Cell and
Links, Cell Service Levels and Cells. When
relationships are defined it establishes implicit
attributes: Class1 <=>* Class2 gives the implicit class2
attribute in Class1 (list value) and the class1 attribute
in class2
Definition:
class Cell:
 input errCount

 errRate =
 (errCount@NOW - errCount@(NOW-10m))/10

 linkErrors =
 sum l.errors (l in link)
class CellSL:
 properties maxOwnErrors, maxLinkErrors
 status = worst errStatus linkStatus
 errStatus =
 linearThreshold cell.errRate 0
 maxOwnErrors
 linkStatus =
 simpleThreshold
 cell.linkErrors maxLinkErrors

def BronzeCellSL =
 CellSL(maxOwnErrors=>10,
 maxLinkErrors => 15)

Cell <=>* Link
CellSL => Cell

Instantiation of the classes are separated from the

definition. The example below shows the naïve case
when objects are created one-by-one.

Instantiation:
cell1 = new Cell
link1 = new Link
cellsl1 = new CellSL
connect cell1 link1

3.3 The Engine

The language requires a special runtime
environment, which is responsible for marshaling
inputs and outputs from the language and evaluating
the expressions.

All the services that the engine provides are related
to variables, the main services are:

• getValue(variable,time)
• setValue(variable,time)
• subscribeVariable(variable,startTime,stopTime)

Since we define a purely functional language, there

can be no side-effects of the computations except for
the updating of variables. This means that the engine
can utilize laziness to avoid computing unnecessary
values, as well as caching to avoid re-computing
values. The laziness and the possibility to implement
parallelism in the engine will enable the engine to scale
up to the size needed. The engine is designed to be able
to handle systems of up to 2 million objects, with up to
5 million parameter calculations per minute.

Although we focus on monitoring and visualizing
the status of the services, we consider automatic
actions to be an important part of a service
management solution. These automatic actions include
controlling the network or notifying operations. This
will be possible by subscribing to the appropriate
parameters.

3.4 The Visualization Tools

The open design of the engine makes it possible,
and desirable, to build many kinds of interfaces
towards the system to extract relevant information. The
initial effort focuses on two major parts, a data driven
data visualization tool, where you can examine objects
on a simple dashboard to display their associated
variables, and, drill-downs in the object hierarchy. The
second part is the integration with a report generation
tool, to allow periodic reports on the status of a system.

4. Related Work

Previous efforts on QoS monitoring have been
focused primarily on frameworks, which we explore in

section 4.1. There have also been some work on
modeling, which we present in section 4.2

4.1 Quality of Service Frameworks

There are several different approaches to managing
and measuring service quality. We have divided them
into three categories.

• Control: frameworks that actually try to manage
resources in order to achieve a QoS Level

• Single – flow measurement: focused on
measuring a specific traffic flow.

• End-to-end QoS Monitoring: trying to measure
and monitor the overall quality of service.

4.1.1 Control Frameworks. The primary QoS
techniques developed by the IETF are IntServ,
DiffServ, and QoS techniques for MPLS [3-5]. Another
class of QoS control frameworks rooted in the IETF
are different flavors of Policy-based management
(PBM) [6]. PBM provides a way to allocate network
resources, primarily network bandwidth, QoS, and
security, according to business policies. The European
Commission has funded two programs focusing on
QoS; AQUILA [15], [16] and TEQUILA [17]. Both
attempt to define service definition and traffic
engineering tools for the Internet to obtain quantitative
end-to-end Quality. They are more focused on IP
services and actually managing QoS where we are
defining a framework for any service and limited to
monitoring. Tequila tried to establish an IETF working
group on formal service level specifications [18].

4.1.2 Single-flow measurements frameworks. Probes
simulate and measure end-users behavior using the
network as a black-box in order to estimate the actual
delivered network service quality. Probes exists for
mobile services as well as IP protocols, all have the
limitation of measuring a single user at a defined
location.

4.1.2 End-to-end Monitoring Frameworks. An
obvious way to estimate the end-to-end QoS is of
course to involve the user. MOS [19] (Mean Opinion
Score) is probably the most common method for voice
QoS in this area.

Eurescom funded a end-to-end monitoring effort;
eQOS [11][20]. eQOS gives an excellent background
description of what we are trying to achieve. TAPAS
[21] is a similar effort applying SLAs and QoS to
application server solutions. It uses SLAng, see below,
to define the SLAs. Services have a complex life-cycle,
where monitoring QoS of a deployed service is only
one phase. The EU FP6 project MobiLife [22] is

studying packet-based services from an end-user
viewpoint and addresses the whole life-cycle for
services.

Service providers are looking for technical solutions
for monitoring their operational service quality as well
as to be able to sell and monitor customer specific
SLAs. This has led new products in this area, for
example HP OpenView SQM [23], Digital Fuel
Service Flow [24], Managed Objects SLM [25]. These
products are quite successful in collecting events and
measurements and monitoring SLAs. Most of the tools
have weaknesses in the service modeling area; they
deploy various UML flavors or simple object modeling
techniques which allow for very little static analysis,
for instance to be able to determine dependency graphs
to facilitate lazy computation of parameters. Our work
aims to improve service modeling and computational
aspects such as time based calculations, and
maintaining the state of a massive number of services
and users.

4.2 Service Modeling

Probably the most extensive standards effort within
service modeling is CIM [26]. CIM uses UML as the
modeling language, and defines an XML mapping to
exchange the models. The key strengths in CIM are the
modeling guidelines and patterns that are used by the
standard models and by enterprise extensions. The
most important implementation is Microsofts
implementation of CIM in their solution for
management of Windows, “WMI” [27]. As pointed out
by Microsoft in their System Definition Model [28]
CIM can ”become unwieldy if used to describe the
abstracted virtual constructs of a distributed system”.
CIM is aimed more at instrumentation rather then end-
to-end service modeling. IETF is reusing the CIM
model in the IETF Policy Framework WG, [29]. Many
of the industry players behind CIM, are now joining up
behind Service Modeling Language [30]. Based on the
experience from CIM it does not start with large
models. An important part of any service model
covering a defined QoS is of course the SLAs. SLAng
[31] is a language focused on defining formal SLAs in
the context of server products like J2EE and typical
ASP environments with web services, server
applications. While CIM, SML and SLAng are rooted
in the IT segment, TeleManagement Forum is trying to
define a telecom related information model; the System
Information Model, SID [32]. It is comparatively high
level and models entities in telecom operators’
processes. However, SID is being refined and moving

closer to resources by incorporating CIM.

5. Conclusion and Future Work

We have shown a feasible architecture for a service
monitoring framework, and described a new approach
to service modeling using a formal language with
suitable characteristics, such as an inherent notion of
time. Our current focus is on developing and studying
the formal properties of the service modeling language,
and examining what kind of static analysis we can
perform. We will also implement and evaluate a
prototype of the framework. Another exciting angle is
to study how service models are created and
investigate what kind of generalizations are possible in
the form of design patterns for models. We are also
interested in finding characteristics for bad and good
models respectively.

6. References

1. Wallin, S. and V. Leijon, Rethinking Network

Management Solutions, in IT Professional. 2006. p. 19-
23.

2. Crawley, E., RFC2386, A Framework for QoS-based
Routing in the Internet, B.R. R. Nair, H. Sandick
Editor. 1998, IETF.

3. Braden, R., RFC 1633, Integrated Services in the
Internet Architecture: an Overview, S.S. D. Clark,
Editor. 1994, IETF.

4. Blake, S., RFC 2475, An Architecture for Differentiated
Service, M.C. D. Black, E. Davies, Z. Wang, W. Weiss,
Editor. 1998, IETF.

5. Rosen, E., A. Viswanathan, and R. Callon, RFC3031,
Multiprotocol Label Switching Architecture. 2001,
IETF.

6. Verma, D.C., Simplifying network administration using
policy-based management. Network, IEEE, 2002.
16(Mar/Apr 2002): p. 20-26.

7. 3GPP, 3GPP TS 23.107, Quality Of Service (QoS)
Concept and Architecture, version 5.13. 2004.

8. ITU-T, ITU-T Recommendation E.860, Framework of a
service level agreement. 2002, ITU-T.

9. Casas, P., User Perceived Quality of Service in
Multimedia Networks: a Software Implementation, in
MVD Telcom, I.I. Diego Guerra, Editor. 2006:
Montevideo Uruguay.

10. Bloemer, J., Linking perceived service quality and
service loyalty: a multi-dimensional perspective.
European Journal of Marketing, 1998. 33.

11. Espvik, O., A Common Framework for QoS/Network
Performance in a multi-Provider Environment. 1999,
Eurescom.

12. Räisänen, V., Service Management Evolution, in IST
Mobile and Wireless Communications Summit. 2005:
Dresden, Germany.

13. Galetzka, M., User-Perceived Quality of Service in
Hybrid Broadcast and Telecommunication Networks, in
5th Workshop on Digital Broadcasting. 2004.

14. association, M. Modelica Homepage. 2006 [cited 2006
November 24]; Available from:
http://www.modelica.org/.

15. Hermann Granzer, e.a., Aquila: Adaptive Resource
Control for QoS Using an IP-based Layered
Architecture. 2003.

16. Koch, B.F. and H. Hussman. Overview of the project
AQUILA (IST-1999-10077). in Architectures for
Quality of Service in the Internet. 2003. Warsaw,
Poland: Springer.

17. Asgari, A., et al., A Scalable Real-time Monitoring
System for Supporting Traffic Engineering, in IEEE
Workshop on IP Operations and Management (IPOM
2002),. 2002: Dallas, USA.

18. Goderis, D., et al. Service Level Specification Semantics
and Parameters. 2000 [cited; Available from:
http://www.ist-tequila.org/standards/draft-tequila-sls-
00.txt.

19. ITU-T, Recommendation P.800.1 (07/06) Mean
Opinion Score (MOS). 2006, ITU.

20. Jensen, T., Managing Quality of Service in Multi-
Provider Environment, in Telecom 99. 1999: Geneva,
Switzerland.

21. Lodi, G., et al. Experimental Evaluation of a QoS-
aware Application Server. 2005.

22. Mrohs, B., C. Rack, and S. Steglich. Basic building
blocks for mobile service provisioning. 2005.

23. HP. Service Quality Manager. 2006 [cited; Available
from:
http://openview.hp.com/products/sqm/index.html.

24. DigitalFuel. Service Flow. 2006 [cited; Available
from: http://www.digitalfuel.com/products/sla-
management.aspx.

25. ManagedObjects. Business Service Level Manager.
2006 [cited; Available from:
http://www.managedobjects.com/solutions/bslm.jsp.

26. DMTF, Common Information Model. 2006.
27. Microsoft. WMI - Windows Managment

Instrumentation. 2006 [cited; Available from:
http://www.microsoft.com/whdc/system/pnppwr/wmi/
default.mspx.

28. Microsoft. System Definition Model. 2006 [cited;
Available from:
http://www.microsoft.com/windowsserversystem/dsi/s
dm.mspx.

29. Moore, B., et al., RFC3060 Policy Core Information
Model -- Version 1 Specification. 2001, IETF.

30. Boucher, J., Service Modeling Language Specification.
2006, Microsoft.

31. D. D. Lamanna, J.S., and W. Emmerich. SLAng: A
language for service level agreements. in 9th IEEE
Workshop on Future Trends in Distributed Computing
Systems. 2003: IEEE Press.

32. TeleManagementForum, Shared Information&Data
SID Model, in Business View Concepts, Principles and
Domains. 2005, TeleManagement Forum.

