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ABSTRACT
The pantograph-catenary system is a critical component for

trains required to run at higher speeds. The pantograph often
includes nonlinear characteristics and the scope of this work is
to investigate if nonlinear dynamic phenomena can occur in an
existing design. A model of a pantograph suspension subsystem
has been developed according to physical parameter values of
the head suspension of the Schunk WBL88/X2 pantograph,
providing electric power to the Swedish high-speed train X2.
Studies of the system response for different force excitation
show both harmonic, subharmonic and chaotic behaviour for
the investigated parameter regions.

INTRODUCTION
A pantograph current collector transfers electric power

from an overhead catenary system to a train, see Fig. 1. The
pantograph mechanism often consists of a head assembly and a
variable-height frame assembly. The frame assembly raises the
head assembly into forced contact with the catenary system.
The catenary consists of an arrangement of wires suspended
from support poles. The catenary is staggered from side to side

in a horizontal plane to distribute the wear on the contact head
of the pantograph.

As railway companies strive for higher speeds, the
problem of satisfactory current collection becomes increasingly
important. The performance of the current collection system
depends on the dynamic properties of the interacting
pantograph and catenary. If the dynamic performance of the
system is improved, the variation in contact force is decreased,
leading to a reduction in loss of contact, arcing and wear and
consequently, possibilities of higher speed.

Pantographs often include geometric nonlinearities,
nonlinear stiffness and damping (Poetsch et al., 1997). This
indicates that nonlinear phenomena such as subharmonic
motion, chaotic motion and multiple solutions might occur
(Aidanpää et al., 1994, Natsiavas, 1990, Natsiavas and
Gonzales, 1992, Shaw and Holmes, 1983). Models of
pantographs which include some nonlinearities have been used
in for example ERRI (1992), Larsson and Drugge (1998) and
Levy et al. (1968) without special attention to nonlinear
phenomena. To investigate if such phenomena can occur in this
type of design, a pantograph used on the Swedish high-speed
train X2 is studied.

Figure 1. A train with its overhead current collection system.
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In this work, the dynamic behaviour is investigated using
numerical simulations. A subsystem of a head assembly
suspension is modelled and the system response is studied for
different frequencies of harmonic excitation and bias force.

STUDIED SYSTEM
The pantograph design studied is the Schunk WBL88/X2

pantograph from Schunkgruppen Nordiska AB, Lenhovda,
Sweden. It consists of a head assembly and a frame assembly,
see Fig. 2. The head assembly includes two carbon collector
strips and a head frame. A suspension at each end of the strips,
see Fig. 3, allows the carbon collector strips to move
individually.

Figure 2. CAD model of a Schunk WBL88/X2
pantograph (Larsson and Drugge, 1998).

Figure 3. Carbon collector strip suspension.

The suspension, i.e. the studied subsystem, consists of leaf
springs and rigid links, see Fig. 4. The two links and the upper
leaf spring comprise a four bar linkage which is controlling the
vertical movement of the carbon collector strip. The upward
displacement of the strip is limited by the head frame and the
downward displacement by the lower leaf spring. In the figure
the subsystem is shown in its unloaded position, that is, the
system is at rest at the upper limit.

Figure 4. Definition of subsystem parts.

MODELLING
The main part of the pantograph motion is assumed to

occur in the subsystems. Consequently, the head frame is
considered to be fixed. Each carbon collector strip is assumed
to be excited at mid-point, that is, the zigzag of the catenary is
neglected. Due to symmetry, only one subsystem needs to be
considered. The dynamics of the leaf springs is assumed to be
dominated by the first bending mode. Therefore, the subsystem
can be considered as one-dimensional for small amplitudes.
The subsystem is modelled as a one degree of freedom system,
see Fig. 5, where the characteristics of the suspension is
modelled by piecewise linear springs. The system is statically
pre-loaded and excited by a harmonic force. The equation of
motion for this system is shown in Eq. (1). In Fig. 5 the model
is shown in a statically pre-loaded condition.

Figure 5. Schematic model of the subsystem.
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Table 1. Subsystem parameter values.

m [kg] k [N/m] c [Ns/m] Ff [N] kU [N/m] kL [N/m]
1.66 1.103 2.6 0.15 6.104 6.55.103

The parameter values describing the subsystem are
determined from measurements on a full-scale pantograph, at
Schunkgruppen Nordiska AB. The damping is assumed to
behave as a combination of viscous and Coulomb damping
(Larsson and Drugge, 1998). The parameter values are listed in
Table 1.

The contact force between the pantograph and the catenary
excites the system. The force is mainly composed by a static
component and a dynamic component dependent on the
running speed and the vibrational behaviour of system (Poetsch
et al., 1997). The excitation has a periodicity due to the
distance between support poles and droppers (Galeotti et al.,
1993). It is assumed that the contact force can be approximated
with a static pre-load and a harmonic variation, see Eq. (2). As
an example, a train running at a constant speed of 160 km/h on
a catenary with a pole distance of 60 m and a dropper distance
of 8.8 m will be excited with a pole frequency of 0.7 Hz and a
dropper frequency of 5 Hz. The pre-load, F0, depends on a
static pneumatic uplift force and a velocity dependent
aerodynamic uplift force.

                           ( ) ( )tFFtF A ωsin0 −=                                (2)

RESULTS
The simulations have been performed by numerical

integration of the equation of motion described in Eq. 1. Two
cases have been considered, see Table 2.

Table 2. Definition of studied excitations.

Case F0 [N] FA [N]
1 12.5 6.25
2 20.0 6.25

In the studied cases, the static pre-load between the full-
scale pantograph and catenary is assumed to be 50 N. Thus, the
static pre-load of a subsystem is 12.5 N. In the first case, the
aerodynamic force contribution is considered to be negligible,
such as for a train running at low speed. The second case
illustrates a situation when the train is running at higher speed,
with a resulting aerodynamic uplift force as consequence.

In Case 1, a pre-load of 12.5 N corresponds to the
displacements xU=0.0125 m and xL=0.0210 m. For this case,
the mass is positioned closer to the upper stop. For Case 2 the
corresponding displacements are xU=0.0200 m and xL=0.0135

m, which results in a system that is vibrating closer to the lower
stop.

Some examples of responses for Case 1 are shown in Fig.
6 as time histories and phase plane portraits. In the phase plane
it is easier to identify a periodicity in the response since a
closed trajectory will be found for any repetitive phenomenon.
To obtain these diagrams, a set of initial conditions are chosen
and the equation of motion is solved. The transient part of the
motion is neglected and the characteristics of the motion during
100 periods of excitation are plotted. The first three seconds of
the time histories are shown. A dash-dotted line represents the
periodicity of the excitation force. Examples of response for
Case 2 are shown in Fig. 7

To investigate the behaviour of the system for different
excitation frequencies, some characteristic measures of the
motion are used. The mapping used are Poincaré sections and
velocities at impact. Poincaré sections represent a trajectory in
the phase plane sampled once during each period of excitation.
If the response is periodic with the same period as the
excitation, the points will converge after a transient to one
single point in the phase plane. If the response is periodic with
a period that is a multiple of the excitation, subharmonic
motion, the Poincaré section will consist of a set of points. The
Poincaré section of a chaotic trajectory has a fractal-like
structure with an uncountable number of points, see Fig. 8. The
Poincaré section is chosen to be at the phase 2π times the
excitation frequency.

In the bifurcation diagrams shown in Figs. 9 and 10,
velocity values from the Poincaré sections and velocities at
impact are plotted versus the excitation frequency. To obtain
these diagrams, a set of initial conditions are chosen and the
equation of motion is solved. The transient part of the motion is
neglected and the characteristics of the motion during the
following 100 periods of excitation are plotted, at the current
frequency.  The frequency is then increased by one step and the
last state of the system at phase 2π, from the previous
frequency response, is taken as initial conditions for the new
frequency. The procedure is repeated for the following
frequency. The frequency is varied from 2 to 6 Hz, with an
increment of 0.01 Hz.

These diagrams provide information about the expected
motions, its relation to the frequency of excitation and its
impact characteristics. In the impact velocity bifurcation
diagrams, impacts with the upper stop are characterised by
positive velocities, while impacts with the lower stop have
negative velocities.
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Figure 6. Samples of time histories and phase plane portraits of responses for Case 1.

f=2.80 Hz
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Figure 7. Samples of time histories and phase plane portraits of responses for Case 2.
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Figure 8. Poincaré diagram for Case 1 and an
excitation frequency of 2.80 Hz.
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Figure 9. Bifurcation diagrams for Case 1.
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Figure 10. Bifurcation diagrams for Case 2.

DISCUSSION AND CONCLUSIONS
A nonlinear model of a pantograph suspension subsystem

has been derived according to physical parameter values of
the head suspension of the Schunk WBL88/X2 pantograph. In
this model the pantograph is considered to be symmetrically
excited with a harmonic and a bias force, and the main
pantograph motion is assumed to occur in the head assembly.
In reality, the dynamic behaviour of the system also depends
on other factors, such as the characteristics of the frame
assembly and the catenary. Nevertheless, in order to
understand the behaviour of the system undergoing a more
general excitation, it is of importance to first understand the
dynamic behaviour of the subsystems due to harmonic
excitation.

Fig. 6 illustrates different types of behaviour for Case 1.
Periodic response with the same frequency as the excitation,
subharmonic responses with periods that are two and five
times the period of the excitation, and also a region with
chaotic response occurs. The characteristics of the behaviour
for different frequencies are illustrated in Fig. 9. From 2 to
2.76 Hz the response is periodic with the same period as the
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excitation. When the excitation frequency is increased to 2.77
Hz the mass starts to impact the upper stop. The response is
irregular and the Poincaré sections show fractal-like structures
implying chaotic behaviour, see Fig 8. At 2.87 Hz the
response becomes periodic again with a subharmonic motion
of period ten. At 2.88 Hz the response is subharmonic with a
period five motion and this behaviour continues up to 2.92 Hz
where a subharmonic motion of period four occurs. The
periodicity decreases to a period two motion at 2.95 Hz and
ends up with a response that is periodic with the same period
as the excitation from 3.65 to 6 Hz. For frequencies higher
than 4.7 Hz the mass starts to impact both stops.

Fig. 7 illustrates different types of behaviour for Case 2.
Subharmonic responses with periods that are two, three and
four times the period of the excitation, and finally an irregular
behaviour occur. In Fig. 9 the characteristics of the behaviour
for different frequencies are illustrated. From 2 to 2.87 Hz the
response is periodic with the same period as the excitation.
The mass starts to impact the lower stop when the excitation
frequency is increased to 2.88 Hz. The response is
subharmonic with a period two motion up to 3.29 Hz where
the response becomes periodic with the same period as the
excitation again. The response continues to be a period one
motion until 3.90 Hz, where it becomes subharmonic with a
period of three. The mass is now impacting both stops. At
3.94 Hz the response becomes subharmonic of period two. At
4.30 Hz the response is a period four motion. Between 4.34
and 4.49 Hz the response is irregular. At 4.50 Hz the response
is subharmonic again with a period of two. Finally, the
response is of period one from 4.51 to 6 Hz.

The chaotic attractor shown in Fig. 8 has characteristics
typical for impacting systems, i.e. the apparent
disconnectedness of the attractor as well as the sharp corners.
These are signs of the mass undergoing low velocity ‘grazing’
impacts (Stensson and Nordmark, 1994) which causes the
system to become unstable. This is also visible in the
bifurcation diagrams shown in Figs. 9 and 10. When low
velocity impacts occur in the impact velocity diagrams,
irregular motion is visible in the Poincaré point velocity
diagrams.

To conclude, it is shown that nonlinear phenomena such
as subharmonic motion and chaotic response can occur in a
pantograph current collector suspension subsystem. These
effects are therefore important to consider, when designing
this type of product. It also put special demands on the
analysis methodology used during the product development

process since the dynamic behaviour can be very sensitive to
changes in parameters and initial conditions.

ACKNOWLEDGMENTS
The financial support from the Swedish Research Council

for Engineering Sciences and the Swedish Foundation for
Strategic Research is gratefully acknowledged.

REFERENCES
Aidanpää, J-O, Chen H.H. and Gupta, R.B. 1994.

Stability and Bifurcations of a Stationary State for an Impact
Oscillator. CHAOS, 4 (2), 621-630.

ERRI. 1992. Pantograph/overhead line interaction.
Question A 186, First draft, 2 July,1992.

Galeotti, G., Galanti, M., Magrini, S. and Toni, P. 1993.
Servo Actuated Railway Pantograph for High-speed Running
with Constant Contact Force. Proc. Instn. Mech. Engrs., 207,
37-49.

Larsson, T. and Drugge, L. 1998. Dynamic Behaviour of
Pantographs due to Different Wear Situations. In Computers
in Railways VI, Ed. B. Mellit et al., WIT Press, Southampton,
869-880.

Levy, S., Bain, J.A. and Leclerc, E.J. 1968. Railway
Overhead Contact Systems, Catenary-Pantograph Dynamics
for Power Collection at High Speeds. Journal of Engineering
for Industry, 692-700.

Natsiavas, S. 1990. Stability and Bifurcation Analysis for
Oscillators with Motion Limiting Constraints. Journal of
Sound and Vibration, 141 (1), 97-102.

Natsiavas, S. and Gonzalez, H. 1992. Vibration of
Harmonically Excited Oscillators with Asymmetric
Constraints. Journal of Applied Mechanics, 59, 284-290.

Poetsch, G., Evans, J., Meisinger, R., Kortum, W.,
Baldauf, W., Weitl, A. and Wallaschek, J. 1997.
Pantograph/Catenary Dynamics and Control, Vehicle System
Dynamics, 28, 159-195.

Shaw, S.W. and Holmes, P.J. 1983. A Perodically Forced
Piecewise Linear Oscillator. Journal of Sound and Vibration,
90, 129-155.

Stensson, A. and Nordmark, A. 1994. Experimental
Investigation of some Consequences of Low Velocity Impacts
in the Chaotic Dynamics of a Mechanical System.
Philosophical Transactions of Royal Society of London A,
347, 439-448.


