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Abstract:  In mechanical applications it is essential that unexpected dynamics 

are avoided. The industry wants to build reliable machines that are not sensitive to 

initial conditions. Therefore, a simple method has been developed to extract all sets of 

stable bifurcation diagrams. The method gives a designer a good overview of possible 

dynamics and thereby the possibility to select a safe operating region. The method is 

described and demonstrated with a rub-impact rotor. The practical usage of this 

method is to help the designer to determine if parameter ranges exist where coexistent 

solutions will appear. Thereby one can design the system to work in parameter ranges 

where only one acceptable solution exists. 
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1. Introduction 
In industrial applications there are several situations where non-linear 

vibrations can occur. When designing machines, nonlinear behaviour is 

normally unwanted. However, these nonlinear phenomena cannot always be 

avoided. When a system is non-linear it is unsatisfying to present only one 

possible solution, without considering if other solutions are present. The cell 

mapping method is one way to find all solutions for a given set of 

parameters. The method was developed in a series of reports e. g. Hso[1,2], 

Hsu and Kim[3] and Tongue[4].  

The method is useful for low order systems where a global picture of 

possible dynamic attractors can be obtained. For a single frequency and with 

all parameters fixed, the cell mapping approach is a powerful tool to analyse 

all solutions. Though in real life applications, parameters are seldom known 

with such accuracy that one can be completely satisfied with the method. A 

small change in the parameters can change the dynamics. If however, the cell 

mapping approach could be applied to a parameter range, design of systems 

with known motion in parameter intervals should be possible. 

In dynamic analysis on intervals, the bifurcation diagram has become a 

general tool, Feigenbaum[5]. The diagram gives bifurcation values and also 

some insight in the  type of bifurcations for large parameter ranges. The only 

disadvantage is that the bifurcation diagram technique only follows one 

stable solution. Therefore one cannot be sure if other solutions can exist and 

where. 

 In this paper a method is suggested, based on the ideas from the cell 

map and the bifurcation diagram technique. After simulation and analysis of 
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the results, several sets of bifurcation diagrams are extracted. The method is 

therefore in this paper called “multi-bifurcation diagram”. By use of this 

method, detailed information about the dynamics of the system can be 

obtained. When all solutions are known, the designer can hopefully find 

parameter ranges with acceptable solutions or at least know what kind of 

problems to expect. The method has been developed in the papers by 

Aidanpää[6-8] but was not described in detail. 

The method is finally demonstrated on a rub-impact Jeffcott rotor with 

Coulomb friction. Several studies have been performed on the Jeffcott rotor 

with this kind of rubbing impacts e. g. [9-14]. The model is suitable since 

several routes to chaos and multiple solutions have been reported.  

2. Method 
In order to evaluate the dynamics for several stable solutions, a method with 

ideas from the cell map and bifurcation diagram techniques is used. 

Hereafter, the method is called multi-bifurcation diagram. For each frequency 

the dynamic is simulated for a large number of initial conditions (1 in Figure 

1).  From each initial condition, a set of Poincaré sections is collected after 

steady state is reached (2 in Figure 1).   The resulting Poincaré sections then 

are plotted in the same way as in the bifurcation diagram technique.  

 

 

 
Figure 1. Description of the multi-bifurcation diagram technique. Initial 

conditions in 1, the corresponding solution from each initial condition plotted 

in a bifurcation diagram 2 and 3 shows the extracted new bifurcation 

diagrams. 
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By analysing the results from the multi-bifurcation diagram different 

solutions can be found. Since the initial conditions can be traced for each 

solution, new bifurcation diagrams can be simulated for all solutions. Hence 

one can plot several sets of bifurcation diagrams which contain several stable 

solutions of the system (3 in Figure 1). When generating the bifurcation 

diagrams the system needs to be simulated both for increasing and decreasing 

frequencies, in order to extract the complete bifurcation diagram. After 

extracting all solutions, several sets of bifurcation diagrams describing 

possible solutions to the system become available. 

 

3. Example on a rub impact Jefcott rotor  

 
3.1. The model 
The model of the Jeffcott rotor is shown in Figure 2.  The mass of the rotor, 

2m, is supported by the shaft with stiffness k and damping c (not material 

damping). The rotor is amplitude-limited by the stator which has a diameter 

2! larger than the rotor.  The rotor is also subjected to the gravity field g.  
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Figure 2. Rub impact model of the Jeffcott rotor. 
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The origin of the coordinate system is chosen to the centre of the stator 

according to Figure 2B. The spin speed is # and the position of the rotor 

centre is described by the polar coordinates r for the radial displacements and 

" for angular displacements. When r exceeds the radial clearance ! the rotor 

becomes in contact with the stator. This contact is described by a stiffness ks 

and frictional coefficient $ which results in the contact forces fr and ft. 

 

The equations of motion can then be written 
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Let R be the radius of the rotor. Then the velocity of the contact point 

becomes    
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with the slip-contact ( 0*cV ) described by 
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Stick occurs when Vc is zero and this state is valid as long as the tangential 

contact force is less than the frictional force. The equation of motion for the 

stick phase becomes 

% & % & % & % &

% & % & % & % &!$""##"

!""##"

#"

'/)'')

''''('))

'(

rkgmtumrcrm

whilevalid

rkgmtumrmkrcrm

rR

s

s

cossin2

sincos

2

22

!!

!!!!

!

      (4)  

 

Let 
m

k
n (#  and introducing the non-dimensional quantities 

n

c
c

n

s
s

n

t
t

n

r
r

nn

n
n

V
V

m

k

m

f
f

m

f
f

g
g

m

c

u
utt

R
R

r
r

#!#
#

!#!#!##
0

!
#

#
#

#
!!

((

((((

(((((

ˆ,ˆ

,ˆ,ˆ,ˆ,
2

,ˆ,ˆ,ˆ,ˆ,ˆ

2

222
  (5) 

 

The non-dimensional equations of motions then become 
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with the slip contact ( 0ˆ *cV ) described by  
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The equation of motion for the stick phase ( 0ˆ (cV ) becomes 
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The model (Eqs 6 to 8) is now complete for analysis and simulations. 

 

3.2. Results 

From Equation (5) it is clear that an initial rub is possible when +ĝ 1. A 

system is selected with û =0.125, !=0.6, ĝ =1.962, $=0.2 and s#̂ =240. 

This system is similar to the one suggested in Chu and Zhang[10]. The 

bifurcation diagram for increasing frequency #̂  is shown in Figure 3.  

 

 
 

 

Figure 3. Bifurcation diagram of the system 
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The system has a period one solution up to #̂ !3. Then a region of long-

periodic or chaotic motion appears which ends with a sudden jump to a 

period one solution. In Figure 3 one can observe that the periodic solution 

suddenly jumps in to long-periodic motions and as the frequency increases 

several crises and jump phenomena occur. 

 

In Figure 4 the results of the simulations are shown for the multi-

bifurcation diagram 

 

 
 

Figure 4. The multi-bifurcation diagram. 

 

Comparing Figure 3 with Figure 4 shows clear differences. By analysing the 

Poincaré section one can separate the different solutions. Since the initial 

conditions are known for each solution one can perform new simulations of 

each attractor. The first point of each new solution is taken as initial 

conditions for new bifurcation diagrams. From these initial points the 

bifurcation diagrams are generated for increasing and decreasing frequencies. 

The decreasing frequency simulation is only performed in order to find the 

exact position of the first appearance of the new attractor. In the interval 

#̂ =[2.95, 3.4], five different attractors can be found. In Figure 5 four of 

them are shown. In the upper left position the solution is shown for the same 

bifurcation diagram as in Figure 3 (solution A).  One can again observe the 

sudden jump from a period one solution to a long periodic solution at 

#̂ !3.02. In the upper right position (solution B) a bifurcation diagram with a 

period doubling sequence in to the long-periodic or chaotic motion is found. 

One can observe that the sudden jump in solution A goes to the same attractor 

as in solution B. In the lower left position solution C is shown. Here another 

period doubling sequence is found in the same interval. 
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Figure 5. Bifurcation diagrams extracted from the solutions found in the 

multi-bifurcation method. 

 

It is interesting to note that the solution jumps back to solution A and 

B after #̂ !3.05. In the lower right corner solution C is shown. Here a third 

period doubling sequence is found. Even a fifth attractor exist (solution E) 

starting at #̂ !3.18. This is the initiation of the period one solution which can 

be observed after #̂ !3.4 in Figure3. This solution can also be observed as 

the period 1 curve at the top of Figure 4.   

 

7. Conclusions 

In this paper a simple method (multi-bifurcation diagram) is presented to 

extract sets of bifurcation diagrams. The method is then demonstrated on a 

rub-impact jeffcot rotor. It is found that five different bifurcation diagrams 

exist for the studied interval. However, large regions are found where only 

one solution exist. By detecting regions containing a single solution, the 

method can be used to design a system with low risk of unwanted dynamics. 
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