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Abstract: Accurate and robust mobile robot localization is very important in many robot
applications. Monte Carlo localization (MCL) is one of the robust probabilistic solutions to
robot localization problems. The sensor model used in MCL directly influence the accuracy
and robustness of the pose estimation process. The classical beam model suffers from non-
smooth likelihood functions. The non-smooth likelihood function has two negative effects on
the localization process. The first one when the likelihood function has extreme peaks because
of low measurement noise. It has been shown that the MCL would fail in such conditions. The
second one when the robot operates in highly cluttered environments, small changes in the
pose of the robot can lead to large changes in the measured values that result in localization
degradation. A common solution is to artificially smooth the likelihood function or to use a small
fraction of the measurements. In this research, an adaptive sub-sampling of the measurements
is proposed to improve the likelihood function. The sampling is based on the complete scan
analysis. The specified measurement is accepted or not based on the relative distance to other
points in the 2D point cloud. Real data recorded from Sick LMS 200 laser scanner mounted over
pioneer 3at robot has been used to prove the smoothness of the resultant likelihood compared
to the original one.
This is an ongoing research!
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1. INTRODUCTION

Probabilistic localization techniques have been demon-
strated to be a robust approach to mobile robot local-
ization. They allow the vehicles to globally localize them-
selves, to efficiently keep track of their position, and to
even recover from localization failures. One of the key
challenges in context of probabilistic localization, how-
ever, lies in the design of the so-called observation model
P (z|x,m) which is a likelihood function that specifies how
to compute the likelihood of an observation z given the
robot is at pose x in a given map m. For probabilistic
approaches the proper design of the likelihood function is
essential (Pfaff et al. (2008)).

Several sensor models are based on the basic concept of the
well known beam model that is also used in traditional
MCL methods. The beam model considers the sensor
readings as independent measurement vector z

z = [z1, z2, . . . , zK ] (1)

which is represented by a one dimensional parametric
distribution function depending on the expected distance
in the respective beam direction.

The model calculates the likelihood of each individual
beam to represent its one-dimensional distribution by
a parametric function depending on the expected range
measurement.
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Fig. 1. Single beam distribution

This model is sometimes called raytracing or ray cast
model because it relies on ray casting operations within
an environmental model e.g., an occupancy grid map, to
calculate the expected beam lengths.



P (z|x,m) =

K∏
k=1

P (zk|x,m) (2)

This likelihood function can have a major influence on the
performance of Monte Carlo Localization. (Thrun et al.
(2001)) observed that more particles are required if the
likelihood function is peaked. To deal with this several
techniques have been proposed. Either to directly sample
from the observation model which is inaccurate (Thrun
et al. (2001); Lenser and Veloso (2000)) or dynamically
adapt the number of particles as in KLD sampling, (Fox
(2003)). However, for very accurate sensors, the number
of particles could be very large. An other solution is
to inflate the measurement uncertainty or neglect some
of the sensor beams. In this research, an adaptive sub-
sampling of the measurements is proposed to improve the
likelihood function. The sampling is based on the complete
scan analysis. It is adaptive, because the sampling may
differ from scan to another. The specified measurement is
accepted or not based on the relative distance to other
points in the 2D point cloud. Instead of using all the
’K’ beams in the equation above, adaptively reduce the
number of beams in each scan according to the complete
scan analysis (euclidean distance in this case)

P (z|x,m) =

K∏
k=1

P̄ (zk|x,m)

P̄ (zk|x,m) =

{
1 if |zk − zk−1| ≤ δ
P (zk|x,m) if |zk − zk−1| > δ

(3)

The δ is the distance threshold value. Based on the as-
sumption that the very close points in the 2D space are
most likely to be reflected from the same obstacle and
therefore can be reduced. On the other hand, measure-
ments that well separated in the 2D space are most likely
to be reflected from different obstacles.

2. RESULTS

The above described reduction scheme has been tested on
real data taken from LMS200 Laser scanner mounted on
Pioneer 3at mobile robot Fig. 2.

Fig. 2. LMS200 Laser scanner mounted on Pioneer 3at
mobile robot used for the data recording.

Fig.3 shows the likelihood relative function peaks for both
classical beam model (in blue) and the reduced one (in
red). The y-axis is the ratio between the first and the peaks
in the likelihood function. It is clear that the peaks have
been reduced greatly. The x-axis represents about 1600
scan recorded during robot mapping of the lab.

Fig. 3. Likelihood peaks reduction
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