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Abstract— This paper presents a multi-rank generalization of

the Capon beamformer to accommodate model mismatch in

situations where the unknown signal of interest lies in a multi-

dimensional subspace. By expanding the beamforming subspace

robustness (or diversity) is achieved at the expense of resolution.

The generalization involves solving a quadratically-constrained

quadratic minimization problem, and designing a constraint

matrix. Three strategies for designing this constraint matrix are

discussed. Simulation examples are presented to demonstrate the

performance of the multi-rank Capon beamformer.

I. INTRODUCTION

Capon beamforming is widely used in radar, sonar, and dig-

ital communications. The standard Capon beamformer relies

on the predictable and planar structure of the propagating

wavefront. In many applications, however, the structure of

the propagating wavefront is not planar. This may be due to

calibration errors, uncertainties about the direction of arrival,

local scattering, multi-path, etc. In such scenarios, mismatches

between the presumed and actual signal models are known

to degrade the performance of the Capon beamformer, unless

proper measures are taken [1],[2].

To date, several approaches have been reported to robustify

the Capon beamformer, among which are the robust adaptive

beamformers of [3] and [4], and the robust Capon beamform-

ers of [5] and [6]. These approaches are more or less similar,

in the sense that the resultant beamformer is the principal

eigenvector of a diagonally loaded version of R
−1

Rss, and

is of rank-1. Here R and Rss are data and signal covariance

matrices, respectively.

In this paper, we develop a multi-rank extension of the

Capon beamformer. The idea is that a beamforming method

that maps the power in a multi-dimensional subspace is more

likely to be robust to model mismatches than a method that

maps the power in a one-dimensional subspace. Roughly

speaking, a multi-dimensional subspace beamformer may be

viewed as a matrix consisting of a collection of rank-1

beamformers that are matched to perfect planewaves at nearby

angles. Therefore, we may think of the power out of a multi-

rank beamformer as the average power of multiple rank-1
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beamformers over a range of angles. This seems like a di-

versity combining idea. However, averaging of powers results

in loss of resolution. Thus, the downside of expanding the

beamforming subspace is that robustness is achieved at the

expense of resolution. Unlike the approaches of [3]-[6] where

the Capon spectrum is determined by a single eigenvalue of

R
−1

Rss, in our approach multiple eigenvalues of R
−1

Rss

determine the spectrum, each of which is weighted to meet a

constraint.

The idea of forming multi-rank spectral estimators and

beamformers is not new. In fact, the multiple window approach

of Thomson [7],[8] may, in some sense, be viewed as a multi-

rank extension of the Bartlett method. A multi-rank gener-

alization of the Capon beamformer has been reported in [9]

and [10], which involves a linearly-constrained quadratic mini-

mization problem. Our multi-rank generalization of the Capon

beamformer (also see [11]), however, involves a quadratic

minimization under a quadratic power constraint. We have

recently discovered a connection between these linearly- and

quadratically-constrained minimization problems [12]. It turns

out that the quadratically-constrained problem, which is non-

convex, can be solved by solving a set of linearly-constrained

convex problems and then determining the best linear solution

over the set of all linear solutions, which is convex with respect

to orthogonal transformations. In addition, the solutions to

both linearly- and quadratically-constrained problems may

be cast in the form of oblique projections, for which there

are illuminating circuit diagrams called generalized sidelobe

cancellers [12].

In this paper, we limit our scope to developing a multi-

rank extension of the Capon beamformer under a set of

quadratic constraints, and evaluating its performance. The

connection between our multi-rank Capon beamformer and

the one reported in [9] and [10] is established in [12].

II. PROBLEM SETUP

Consider the observation model

x = s + n (1)

where s ∈ C
n is the source vector or signal of interest, with

covariance Rss = E[ssH ], x ∈ C
n is the data vector, recorded
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by n sensors, with covariance R = E[xx
H ], and n ∈ C

n is a

proper noise vector, with covariance Rnn = E[nn
H ].

In a perfect planewave case, the source vector s and its

covariance matrix Rss are modelled as

s = ψ(θ)s = D(θ)1s (2)

Rss = Rss(θ) = ψ(θ)σ2

sψ(θ)H = D(θ)1σ
2

s1
H
D(θ)H (3)

where s is a zero-mean complex normal variable with

variance σ
2

s = E[s2], 1
H = [1, 1, . . . , 1]/

√
n is the

normalized bearing vector at broadside, and D(θ) =
diag(1, ejπ sin θ

, . . . , e
j(n−1)π sin θ) is the diagonal matrix that

steers the wavefront to angle θ, and ψ(θ) = D(θ)1.

In general, however, the wavefront s can be non-planar

(wrinkled) and may be modelled as

s = D(θ)

πβ
∫

−πβ

ψ(θ′)µ(θ′, k)
dθ

′

√
2πβ

(4)

with covariance matrix

Rss(θ) = E[ssH ] = D(θ)[

πβ
∫

−πβ

ψ(θ′)ψ(θ′)H
S(θ′)

dθ
′

2πβ
]D(θ)H

(5)

where the µ(θ′, k) are uncorrelated random variables with

powers E[µ(θ′, k)2] = S(θ′) over the (−βπ, βπ] angular

bandwidth. In other words, the wavefront is produced in

accordance to a power spectrum over a spread of angles.

The signal covariance matrix in (5) may be shown to be of

approximate rank p = [βn] + 1, where [βn] is the integer part

of βn.

Assuming that S is constant over the (−βπ, βπ] angular

bandwidth, the expressions for s and Rss(θ) may be approx-

imated by

s(θ) = D(θ)Φv (6)

Rss(θ) = D(θ)Φ(θ)RvvΦ(θ)H
D(θ)H (7)

where Φ = [φ1, . . . ,φp] ∈ C
n×p is the matrix containing

the first p Slepian basis vectors, and v is a vector of random

complex coefficients with covariance Rvv = E[vv
H ]. The

complex vector Φv is a non-planar (wrinkled) wavefront at

broadside, which is steered to angle θ using D(θ). In much

of what follows we use the notations Rss and ψ, with the

understanding that these are Rss(θ) and ψ(θ).
To fully exploit the multi-dimensional signal subspace,

it seems natural to map the power in a multi-dimensional

subspace, using a multi-rank beamformer, rather than to map

it in a one-dimensional subspace, using a rank-1 beamformer.

The power out of a multi-rank beamformer, say W(θ) =
[w1, . . . ,wr](θ) ∈ C

n×r, may be considered as the sum of

the powers out of the rank-1 beamformers wi:

P (θ) =

r
∑

i=1

w
H
i Rwi = tr{WH

RW} (8)

This is consistent with the idea of multi-window spectrum

estimators of [7] and [8].

III. MULTI-RANK CAPON BEAMFORMING

The standard Capon beamforming problem is posed as

min
w

P = w
H
Rw u.c. w

H
Rssw = 1 (9)

where Rss = σ
2

sψψH is the rank-1 signal covariance matrix

for the perfect planewave s = ψs with E[s2] = 1. Correspond-

ingly, the Capon bearing spectrum and the Capon beamformer

are

PC =
ψHψ

ψHR−1ψ
(10)

w =
R

−1ψ

ψHR−1ψ
(11)

A natural rank−r generalization of (9) may seem to be

min
W

P = tr{WH
RW} u.c. tr{WH

RssW} = 1 (12)

where W = [w1, . . . ,wr] ∈ C
n×r. However, under the trace

constraint in (12) the columns of W do not have to be linearly

independent. The problem will therefore decouple, and at the

solution, the columns of W will be within scalar factors

of the standard rank-1 Capon beamformer. Consequently, the

resulting beamformer will still be rank-1 and no subspace

expansion is obtained.

In order to force the columns of W to be linearly indepen-

dent, we consider the constrained minimization problem

min
W

P = tr{WH
RW} u.c. W

H
RssW = D (13)

where D ∈ C
r×r, with r ≤ p, is a positive definite constraint

matrix. To provide unit energy in the look direction, in analogy

to the rank-1 Capon beamformer, we also require tr{D} =
1. Note that Rss and D are design parameters. The signal

covariance matrix Rss may be modelled as in (5) or (7). Later

on we will present a few strategies for designing D.

Consider an SVD of the presumed signal covariance matrix

Rss of the form

Rss = UΣU
H

=
[

Up U⋆

]

[

Σp 0

0 0

] [

U
H
p

U
H
⋆

]

= UpΣpU
H
p

(14)

where U = [Up U⋆] ∈ C
n×n is an orthogonal matrix, and

Σp = diag(σ1, . . . , σp) carries the nonzero eigenvalues of

Rss, with σ1 ≥ · · · ≥ σp > 0. The matrix Up ∈ C
n×p is

an orthonormal basis for the presumed signal subspace and

U⋆ ∈ C
n×(n−p) is an orthonormal basis for the subspace

orthogonal to < Up >. Further, consider an SVD of D of the

form

D = A∆A
H (15)

where A
H
A = AA

H = Ir and ∆ = diag(δ1, . . . , δr), with

δ1 ≥ · · · ≥ δr > 0.

Solving the constrained quadratic minimization problem in

(13) results in the multi-rank Capon bearing spectrum

PMRC(θ) =

r
∑

i=1

δi(θ)

λi(θ)
(16)
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where λi(θ) is the ith eigenvalue of R
H/2

ss R
−1

R
1/2

ss , i.e.

λi = evi(R
H/2

ss R
−1

R
1/2

ss ) (17)

with λ1 ≥ · · · ≥ λp > 0. Here R
1/2

ss ∈ C
n×p is a square-

root of Rss = R
1/2

ss R
H/2

ss of the form R
1/2

ss = UpΣ
1/2

p S,

with Σ
1/2

p = diag(
√

σ1, . . . ,
√

σp) and S ∈ C
p×p an arbitrary

orthogonal matrix. For detailed derivations of (16), and also

the solution for the rank−r Capon beamformer W, see the

Appendix.

Equation (16) shows that the spectrum PMRC is an har-

monic average of the weighted eigenvalues of R
H/2

ss R
−1

R
1/2

ss ,

where the weights are determined by the eigenvalues of the

constraint matrix D. In a signal-plus-interference-plus-noise

model, R
H/2

ss R
−1

R
1/2

ss may be interpreted as the signal-to-

signal-plus-interference-plus-noise matrix, and its eigenvalues

λi may be viewed as the per mode signal to total power ratios.

Thus, the spectrum PMRC may be interpreted as an harmonic

average of the weighted per mode signal to total power ratios,

where the weights are designed to meet a set of quadratic

constraints.

Remark: When r = 1, D = 1, and Rss = ψψH , then

the Capon spectrum in (16) becomes the standard Capon

beamforming in (10).

IV. DESIGNING THE CONSTRAINT MATRIX D

The expression in (16) shows that the spectrum PMRC

depends only on the eigenvalues of the constraint matrix D

and not its eigenvectors. Thus, without loss of generality,

we assume that D is diagonal: D = diag(δ1, . . . , δr), with

δ1 ≥ · · · ≥ δr > 0. In what follows three strategies for

designing D are presented.

Choice 1: For the first choice, we consider

δi =
1

r
(18)

where the normalization by r guarantees tr{D} = 1. For this

choice of D, the spectrum P reduces to the harmonic mean

of the λi:

PMRC =

r
∑

i=1

1

λi

(19)

The problem with this choice of D is that the spectrum PMRC

is dominated by the smallest eigenvalue of R
H/2

ss R
−1

R
1/2

ss . In

other words, the mode with the smallest per mode signal to

total power ratio has the most impact on the spectrum. Because

of this, we anticipate that the performance for this choice

of D degrades as rank increases. For r = 1, the spectrum

PMRC coincides with the spectrum of the standard Capon

beamformer, i.e. 1/λ1.

Choice 2: Another choice is to select the δi based upon the

eigenvalues of the signal covariance matrix Rss. That is, to

choose

δi =
σi

r
∑

i=1

σi

(20)

Unlike the first choice, in this case D is angle dependent, as

the σi = evi(Rss) are functions of the look direction θ. For

this choice of D, the spectrum becomes

PMRC =

r
∑

i=1

σi/λi

r
∑

i=1

σi

(21)

Again, for r = 1 the spectrum reduces to that of the standard

Capon beamformer, i.e. 1/λ1.

Choice 3: Another way to design D is to think of the δi as

weights that determine the contribution of the wi in building

the spectrum. One way to weigh the wi is to choose the δi

proportional to the eigenvalues of R
H/2

ss R
−1

R
1/2

ss , i.e.

δi =
λi

r
∑

i=1

λi

. (22)

This design for D is also angle dependent, as the λi =

evi(R
H/2

ss (θ)R−1
R

1/2

ss (θ)) are functions of the look direction

θ. This choice of D yields the spectrum

PMRC =
1

r
∑

i=1

λi

(23)

Unlike Choice 1, here the spectrum is not dominated by the

smallest eigenvalue of R
H/2

ss R
−1

R
1/2

ss , as each component in

the summation in (23) contributes to the overall spectrum.

Similar to the previous choices, for r = 1 the spectrum reduces

to that of the standard Capon beamformer, i.e. 1/λ1.

V. SIMULATION RESULTS

In this section, we present two numerical examples to eval-

uate the performance of the multi-rank Capon beamformers of

Section III, and study how the design of the constraint matrix

D affects the performance. We consider a uniform linear array

with n = 20 elements, and half-wavelength inter-element

spacings. In the first example, three uncorrelated sources are

incident on the array: two perfect planewaves (within the

Rayleigh limit from each other) at angles θ1 = −π/4 and θ2 =
−π/4.45 and a wrinkled wavefront with angular bandwidth of

2πβ = .2π (i.e. β = 0.1), centered at θ3 = π/8. In the second

example, the sources at θ1 = −π/4 and θ2 = −π/4.45 are

wrinkled with β = 0.1, and the one at θ3 = π/8 is a perfect

planewave.

For the first example, the data covariance matrix R may be

constructed as

R = Rss(θ1) + Rss(θ2) + Rss(θ3) + Rnn (24)

where Rss(θi) = ψ(θi)σ
2

s,iψ(θi)
H , i = 1, 2 are covariance

matrices for the two planewaves, and Rss(θ3) is the covariance

matrix of the wrinkled wavefront:

Rss(θ3) = D(θ3)[

πβ
∫

−πβ

ψ(θ′)ψ(θ′)H
S(θ′)

dθ
′

2πβ
]D(θ3)

H

(25)
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The matrix Rnn = σ
2

nI is the noise covariance. We choose

σ
2

s,i = 1 (i = 1, 2), and σ
2

n = 0.01, for input SNR of 7dB

at each sensor. In the second example, we just reverse the

roles of Rss(θ1), Rss(θ2), and Rss(θ3). This is the way the

data covariance matrix R is constructed. For beamforming,

the signal covariance matrix Rss(θ) is an angle dependent

design parameter, which is computed using (5), at each look

direction.

Example 1: Figure 1(a) shows the bearing spectra for the

standard Bartlett and Capon beamformers. The locations of the

sources are illustrated by vertical solid lines. The two sources

at θ1 = −π/4 and θ2 = −π/4.45 are the perfect planewaves,

and the one at θ3 = π/8 is the wrinkled wavefront. Figures

1(b)-(d) show the bearing spectra for the multi-rank Capon

beamformers for the three choices of D, discussed in Section

IV. In each figure, the bearing spectra are plotted for rank-1

to rank-3 Capon beamformers. As can be seen the standard

Bartlett and Capon beamformers offer low detectability for

the wrinkled wavefront. In addition, it seems that the standard

Capon beamformer tends to treat the wrinkled wavefront at

θ3 = π/8 as if there were multiple planewaves at nearby

angles, instead of a single non-planar wave. The multi-rank

Capon beamformers, on the other hand, offer high detectability

for the wrinkled wavefront, but show poor performance for the

perfect planewaves. It is clearly seen that as the rank of the

Capon beamformer increases the bearing spectra around the

source locations become wider, and hence resolution is lost.

In addition, the broadening of the bearing spectra with the

increase in rank is most significant for the first choice of D

(i.e. D = I) and least significant for the third choice of D

(i.e. the one in (22)). Thus, it seems that the third choice for

D results in the smallest loss of resolution compared to the

other two.

Example 2: In this example, the perfect planewaves at

θ1 = −π/4 and θ2 = −π/4.45 are replaced by two wrinkled

wavefront with β = 0.1, and the wrinkled wavefront at θ3 =
π/8 is replaced by a perfect planewave. Figure 2(a) shows

the corresponding bearing spectra for the standard Bartlett

and Capon beamformers. The bearing spectra for the multi-

rank Capon beamformers are plotted in Figures 2(b)-(d). As

can be seen, the standard Capon beamformer cannot resolve

the two winkled wavefronts, due to their angular spread.

The multi-rank Capon beamformers, however, are able to

resolve them. Similar to the previous example, the multi-rank

Capon beamformers offer higher detectability for the wrinkled

wavefronts, but lower detectability for the perfect planewaves,

compared to the standard Capon and Bartlett beamformers.

The effects of rank and choice of D on the performance of

the multi-rank Capon beamformers are also similar to those in

Example 1. That is, the increase in rank results in the loss of

resolution. Further, the third choice for D (Fig. 2(d)) seems to

offer the narrowest bearing response, while maintaining high

detectability for the wrinkled wavefronts.

VI. CONCLUSIONS

A multi-rank generalization of the Capon beamformer has

been presented. The idea is to expand the beamforming sub-

space to accommodate model mismatches. The generalization

involves solving a quadratically-constrained quadratic mini-

mization problem and designing a positive definite constraint

matrix. Three strategies for designing the constraint matrix

have been discussed. Two simulation examples have been

presented, suggesting that multi-rank Capon beamformers

provide robustness to model mismatches at the expense of

resolution. However, these results are preliminary. It must be

emphasized that, so far, our other simulation results have been

mixed, making it difficult to make a definitive claim about the

scenarios for which the multi-rank Capon beamformers are

preferred. Our experiments with constraints continue, as do

our comparisons with other robust beamformers.

APPENDIX

Since U = [Up U⋆] is a basis for C
n, without loss of

generality, we express W ∈ C
n×r as

W = UB = [Up U⋆]

[

Bp

B⋆

]

= Wp + W⋆ (26)

where Bp ∈ C
p×r and B⋆ ∈ C

(n−p)×r are matrices that build

the orthogonal parts of W, i.e. Wp = UpBp and W⋆ =
U⋆B⋆, inside < Up > and < U⋆ >.

We start by satisfying the quadratic constraint

W
H
RssW = D. Using the SVD in (14) and replacing for

W from (26), we may simplify the constraint to

[

B
H
p B

H
⋆

]

[

Σp 0

0 0

] [

Bp

B⋆

]

= D (27)

or equivalently

B
H
p ΣpBp = D. (28)

Therefore, Bp must be of the form

Bp = Σ
−H/2

p ED
H/2 (29)

where Σ
−H/2

p = Σ
−1/2

p = diag(1/
√

σ1, . . . , 1/
√

σr) is a

square-root of Σ
−1

p = Σ
−H/2

p Σ
−1/2

p , and E ∈ C
p×r is a

slice of an orthogonal matrix, yet to be determined. Thus,

E
H
E = Ip and EE

H = PE, where PE is an orthogonal

projection onto < E >. The matrix D
1/2 ∈ C

r×r is a square-

root of D = D
1/2

D
H/2. From the SVD in (15), one possible

choice for D
1/2 is

D
1/2 = A∆

1/2 (30)

where ∆
1/2 = diag(

√
δ1, . . . ,

√
δr). We could post-multiply

any r × r orthogonal matrix on the right hand side of (30).

However, the product of such a matrix with E in (29) would

still be a slice of an orthogonal matrix. Thus, without loss of

generality, we assume that such a matrix is absorbed in E.

Using (30), we may write Bp as

Bp = Σ
−H/2

p ED
H/2 = Σ

−H/2

p E∆
H/2

A
H

. (31)
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Fig. 1. Bearing spectra for the standard Bartlett and Capon beamformers, and multi-rank Capon beamformers. Going from (b) to (c) to (d) the multi-rank
Capon beamformers are constructed with the constraint matrix D being chosen as in (18), (20), and (22), respectively. The sources are two perfect planewaves
(within the Rayleigh limit from each other) at θ1 = −π/4 and θ2 = −π/4.45, and a wrinkled wavefront, with β = 0.1, centered at θ3 = π/8.
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Fig. 2. Bearing spectra for the standard Bartlett and Capon beamformers, and multi-rank Capon beamformers. Going from (b) to (c) to (d) the multi-rank
Capon beamformers are constructed with the constraint matrix D being chosen as in (18), (20), and (22), respectively. The sources are two wrinkled wavefronts,
with β = 0.1, centered at θ1 = −π/4 and θ2 = −π/4.45, and a perfect planewave at θ3 = π/8.

Inserting W = UpBp + U⋆B⋆ in P = tr{WH
RW} yields

P = tr{(RH/2
UpBp + R

H/2
U⋆B⋆)

H

(RH/2
UpBp + R

H/2
U⋆B⋆)}.

(32)

Assuming Bp is fixed, we minimize P with respect to B⋆.

This results in a least squares solution for B⋆ of the form

B⋆ = −(RH/2
U⋆)

†

R
H/2

UpBp (33)

where ( · )† denotes the Moore-Penrose pseudo inverse [13].

Plugging B⋆ in (32) yields

P = tr{BH
p U

H
p R

1/2[I − PRH/2U⋆
]RH/2

UpBp}

= tr{BH
p U

H
p R

1/2
P

⊥

RH/2U⋆

R
H/2

UpBp}
(34)

where PRH/2U⋆
= R

H/2
U⋆(R

H/2
U⋆)

† is an orthogonal

projection onto < R
H/2

U⋆ >, and P
⊥

RH/2U⋆

= I−PRH/2U⋆

is an orthogonal projection onto the subspace orthogonal to

< R
H/2

U⋆ >. Let

PR−1/2Up
= R

−1/2
Up(U

H
p R

−1
Up)

−1
U

H
p R

−H/2 (35)

be the orthogonal projection onto < R
−1/2

Up >. Then, it is

easy to show that

P
⊥

RH/2U⋆
= PR−1/2Up

(36)

as P
H
R−1/2Up

PRH/2U⋆
= 0, and PR−1/2Up

and PRH/2U⋆

together span the entire C
n.

Using (35) and (36), we may write (34) as

P = tr{BH
p (UH

p R
−1

Up)
−1

Bp} (37)

Plugging Bp = Σ
−H/2

p ED
H/2 in (37) yields

P = tr{EH(ΣH/2

p U
H
p R

−1
UpΣ

1/2

p )−1
ED

H/2
D

1/2} (38)

Replacing D
1/2 from (30) results in

P = tr{EH(ΣH/2

p U
H
p R

−1
UpΣ

1/2

p )−1
E∆} (39)

We now minimize P with respect E, keeping in mind that

E
H
E = Ir. Define M as

M = Σ
H/2

p U
H
p R

−1
UpΣ

1/2

p (40)

and let µi be the ith eigenvalue of E
H
M

−1
E:

µi = evi(E
H
M

−1
E) (41)

where 0 < µ1 ≤ · · · ≤ µr. Inserting M in (39) and using a

majorization result for matrix trace [14]1 yields the inequality

P = tr{EH
M

−1
E∆} ≥

r
∑

i=1

µiδi. (42)

Let

M = VΛV
H (43)

be a SVD of M, where Λ = diag(λ1, . . . , λp), λ1 ≥ · · · ≥
λp > 0 carries the eigenvalues of M, and the matrix V is

orthogonal: V
H
V = VV

H = Ip. Then,

M
−1 = VΛ

−1
V

H ;

Λ
−1 = diag( 1

λ1

, . . . ,
1

λp

)
(44)

1Majorization result for matrix trace: Let T and S be r × r nonnegative
definite matrices, with eigenvalues 0 ≤ t1 ≤ · · · ≤ tr and s1 ≥ · · · ≥ sr ≥
0, respectively. Then, tr{TS} ≥

∑

r

i=1
tisi.
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is an eigenvalue decomposition of M
−1, in which the eigenval-

ues are arranged in ascending order: 0 < 1/λ1 ≤ · · · ≤ 1/λp.

Since E is a slice of an orthogonal matrix, from Poincare’s

separation theorem [15]2, the eigenvalues of M
−1 and

E
H
M

−1
E satisfy the inequality

1

λi

≤ µi ≤
1

λp−r+i

, i = 1, . . . , r. (45)

The left hand side equality in (45) holds when E diagonalizes

M, i.e. when E is a slice of V.

Combining (42) and (45), and plugging in M = VΛV
H

yields

P = tr{EH
VΛ

−1
V

H
E∆} ≥

r
∑

i=1

δi

λi

(46)

The equality holds when E
H
V = [Ir 0] or equivalently

E = V

[

Ir

0

]

= Vr (47)

where Vr ∈ C
p×r carries the first r columns of V. Finally,

the minimum value of P is Pmin = PMRC ,

PMRC =

r
∑

i=1

δi

λi

. (48)

Let S be an arbitrary orthogonal matrix. Then the eigen-

values of SMS
H = SΣ

H/2

p U
H
p R

−1
UpΣ

1/2

p S
H are the same

as the eigenvalues of M = Σ
H/2

p U
H
p R

−1
UpΣ

1/2

p . Noting

that R
1/2

ss = UpΣ
1/2

p S
H is a square-root of Rss, i.e. Rss =

R
1/2

ss R
H/2

ss , we may express λi as

λi = evi(R
H/2

ss R
−1

R
1/2

ss ). (49)

This completes the derivation of (16).

To determine the solution to W = Wp + W⋆, note that

from (26), (31), and (47), Wp is obtained as

Wp = UpBp = UpΣ
−H/2

p VrD
H/2

. (50)

Using (26) and (33), we may write W⋆ as

W⋆ = U⋆B⋆ = −KWp (51)

where

K = R
−H/2

PRH/2U⋆
R

H/2 = R
−H/2

P
⊥

R−1/2Up
R

H/2

(52)

is an oblique projection [16],[17]. Therefore, W⋆ is obtained

by obliquely projecting Wp using −K. Using (50) and (51),

the rank−r Capon beamformer W is

W = Wp + W⋆ = (I − K)Wp. (53)

2Poincare’s Separation Theorem: Let S ∈ Cp×p be a Hermitian matrix
with eigenvalues 0 ≤ s1 ≤ · · · ≤ sp, X ∈ Cp×r

(r ≤ p) a slice of an

orthogonal matrix, i.e. XH
r Xr = Ir , and 0 ≤ t1 ≤ · · · ≤ tr the eigenvalues

of XHSX. Then, si ≤ ti ≤ sp−r+i, i = 1, . . . , r ≤ p.
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