A Generalized Sidelobe Canceller Formulation for Multi-Rank Capon Beamforming*

Louis Scharf,¹ Ali Pezeshki,² Magnus Lundberg,³ and Henry Cox,⁴

Statistics, Colorado State University, Ft. Collins, CO
²Electrical & Computer Engineering, Colorado State University, Ft. Collins, CO
³Computer Science & Electrical Engineering, Luleä University of Technology, Sweden
⁴Lockheed Martin–Orincon Defense, Arlington, VA

The Thirteenth Annual Workshop on Adaptive Sensor Array Processing MIT Lincoln Laboratories, Lexington, MA, 7-8 June 2005

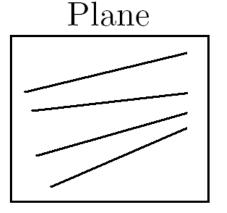
*Supported by ONR (John Tague) under contract N00014-04-1-0084 and by AFOSR/DARPA (John Sjogren/Doug Cochran) under contract FA9550-04-1-0371.

Outline

- Wavefront Models & Corresponding Subspace Signal Models
- A Quick Review of Matched Subspace & Matched Direction Beamformers
- 3. The GSC for Linearly- & Quadratically-Constrained Capon Beamformers: The Multi-Rank Case
- 4. Preliminary Findings

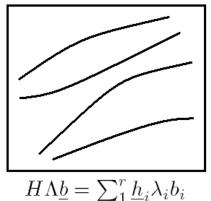
1. Wavefront Models & Corresponding Subspace Signal Models

1.1 The ergodic case



$$\underline{\psi} = [1, e^{j\theta}, \dots, e^{j(L-1)\theta}]^T$$

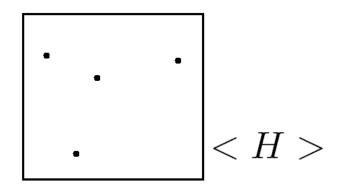
Slepian



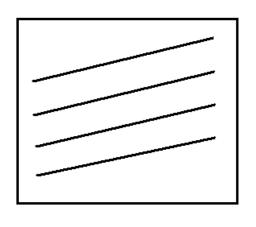
Slepian:
$$R_{ss}=\int\limits_{-\pi\beta}^{\pi\beta}(\underline{\psi}\,\underline{\psi}^{\star})(e^{j\theta})\frac{d\theta}{2\pi\beta}$$

$$\cong H\Lambda^2H^{\star}$$

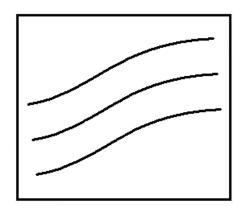
(Randomly generated planewaves from a manifold are indistinguishable from randomly generated Slepians from a subspace . . . from second-order statistics.)

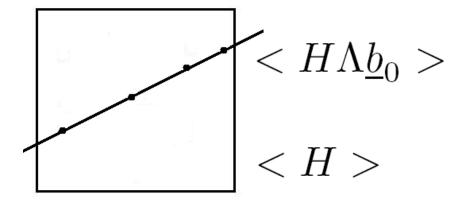


1.2 The non-ergodic Case



 $R_{ss} = \underline{\psi}\underline{\psi}^{\star}(e^{j\theta})$ vs $H\Lambda\underline{b}_0\underline{b}_0^{\star}\Lambda H^{\star}$ distinguishable, but the Slepian model is not identifiable from second-order statistics.

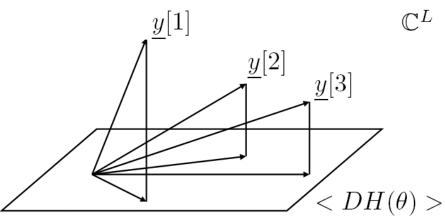




2. A Quick Review of Matched Subspace & Matched Direction Beamformers

2.1 Ergodic Case (Matched Subspace)

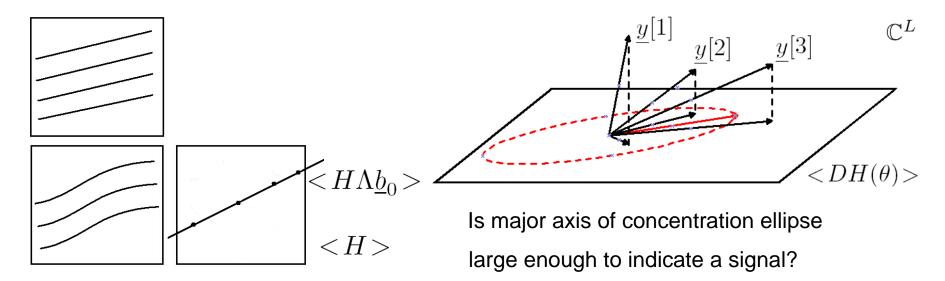




Are summed energies large enough to indicate a signal?

$$\begin{array}{lll} B(\theta) &= \operatorname{tr} Y^{\star} D(e^{j\theta}) P_H D^{\star}(e^{j\theta}) Y & : \text{ unsteer data/steer projection} \\ &= \operatorname{tr} Y^{\star} P_{D(e^{j\theta})H} Y & : \text{ steer subspace} \\ &= \sum_1^M \sum_1^r |(D(e^{j\theta})\underline{h}_i)^{\star} y[m]|^2 & : \text{ BF \& Div} \end{array}$$

2.2 Nonergodic Case (Matched Direction-Besson)



$$B(\theta) = \max \operatorname{ev}(Y^{\star}D(e^{j\theta})P_{H}D^{\star}(e^{j\theta})Y)$$

: learns the line $H\Lambda \underline{b}_0$ from snapshots and uses it to match

3. The GSC for Linearly- & Quadratically-Constrained Capon Beamformers– The Multi-Rank Case, $W \in \mathbb{C}^{L \times r}$

3.1 Linear (Cox 1972/73)

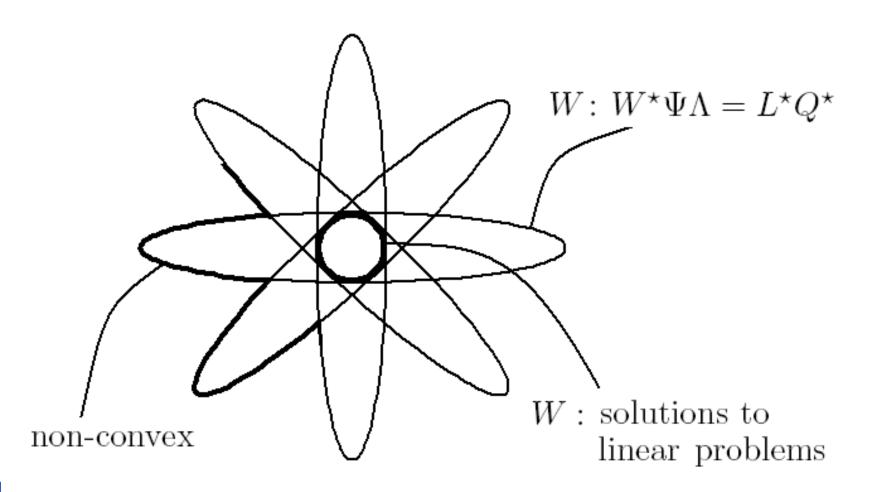
$$\min_{W} \ \mathrm{tr} \ W^{\star}RW \ \ \mathrm{u.c.} \ \ W^{\star}\Psi\Lambda = L^{\star}Q^{\star}$$

3.2 Quadratic (ASAP 2005)

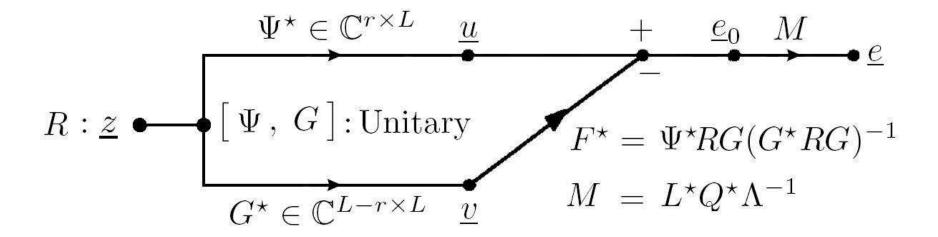
$$\min_{W} \ \mathrm{tr} \ W^{\star}RW \ \ \mathrm{u.c.} \ \ W^{\star}\Psi\Lambda^{2}\Psi^{\star}W = D$$

- 3.3 Connections & Comments
 - (a) If $L^*L = D$, then solution to linear problem meets constraints of quadratic problem for every choice of unitary Q ($Q^*Q = I$).
 - (b) Linear problem is convex (Lagrange). Quadratic problem is non-convex (majorization)
 - (c) The set of solutions to linear problem is a convex set of candidates for the quadratic problem.

3.4 Geometry



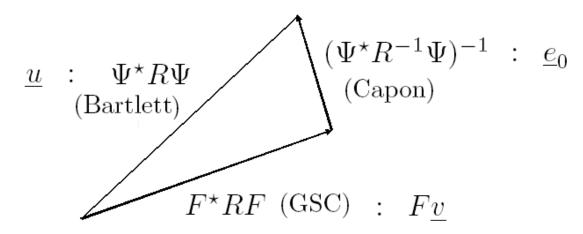
3.5 Solutions & GSC & Geometry



$$W_0^\star = \Psi^\star(I - RG(G^\star RG)^{-1}G^\star) = \Psi^\star(I - K): \text{ oblique}$$

$$P_0 = E\underline{e}_0\,\underline{e}_0^\star = (\Psi^\star R^{-1}\Psi)^{-1} = \Psi^\star R\Psi - F^\star RF$$

3.5 Solutions & GSC & Geometry (Continued)



This is Pythagorean decomposition of multi-rank Bartlett into multi-rank Capon plus multi-rank GSC.

$$(\Psi^{\star}R^{-1}\Psi)^{-1} \leq \Psi^{\star}R\Psi$$
 (Schwartz)

Consideration of the term $M = L^*Q^*\Lambda^{-1}$ pre- and post-multiplies each term by M and M^* .

3.6 Question: Q is a free unitary matrix. Is there a choice that minimizes output power

$$P = \operatorname{tr} M P_0 M^{\star}; \quad M = L^{\star} Q^{\star} \Lambda^{-1}$$

The answer is yes- it amounts to searching the circle in the atomic picture and the answer is

$$Q^{\star}\Lambda(\Psi^{\star}R^{-1}\Psi)\Lambda Q = \operatorname{diag}(\mu_i)$$

 $P = \operatorname{tr} M P_0 M^\star = \sum_{i=1}^r \frac{d_i}{\mu_i}$ (Multi-rank Capon)

$$D = diag(d_i) \& \mu_i = ev_i(\Lambda(\Psi^*R^{-1}\Psi)\Lambda) = ev_i(R_{ss}^{H/2}R^{-1}R_{ss}^{1/2})$$

 Λ and Ψ come from signal subspace model $R_{ss} = \Psi \Lambda^2 \Psi^*!$

4. Preliminary Findings

Design parameters are R_{ss} (Ψ, Λ) & D. For example, if $d_i = \frac{\mu_i}{\sum_{1}^r \mu_i}$, then

$$P(\theta) = \frac{1}{\frac{1}{r} \sum_{i=1}^{r} ev_i(R_{ss}^{H/2}(\theta)R^{-1}R_{ss}^{1/2}(\theta))}$$

A design model for R_{ss} is

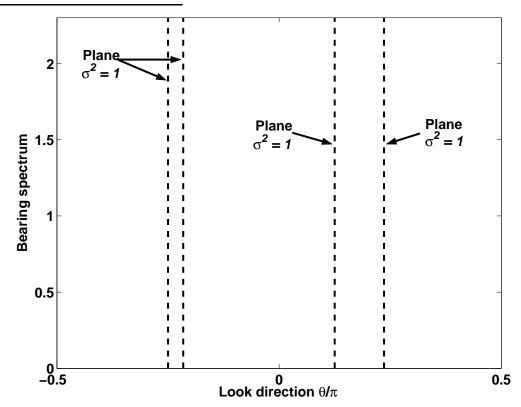
$$R_{ss} = \epsilon \underline{1} \underline{1}^* + (1 - \epsilon) \int_{-\pi\beta}^{\pi\beta} (\underline{\psi} \, \underline{\psi}^*) (e^{j\theta}) \frac{d\theta}{2\pi\beta}$$
$$\cong \epsilon \underline{1} \underline{1}^* + (1 - \epsilon) \Psi \Lambda^2 \Psi^*$$

where $0 \le \epsilon \le 1$ determines our confidence in the planewave and Slepian models.

Pre- and post-multiplication of R_{ss} by $D(e^{j\theta})$ and $D^{\star}(e^{j\theta})$ steers R_{ss} to angle θ , to get $R_{ss}(\theta)$.

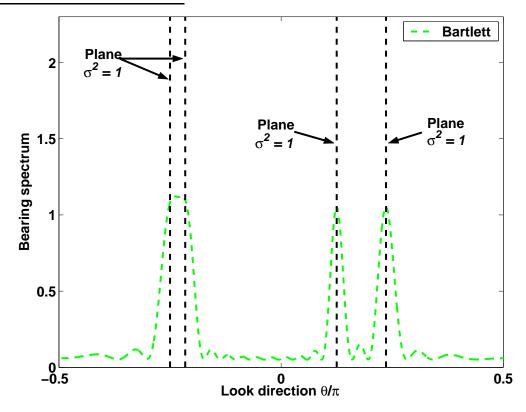
20-element ULA. Four uncorrelated planewaves with equal powers $(\sigma^2=1)$. Two of them (LHS) within Rayleigh limit. Input SNR is 0 dB.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$



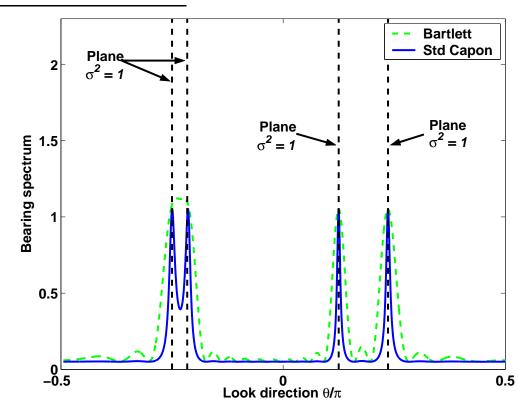
20-element ULA. Four uncorrelated planewaves with equal powers $(\sigma^2=1)$. Two of them (LHS) within Rayleigh limit. Input SNR is 0 dB.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$



20-element ULA. Four uncorrelated planewaves with equal powers $(\sigma^2=1)$. Two of them (LHS) within Rayleigh limit. Input SNR is 0 dB.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon = 0.75$; $\beta = 0.1$.

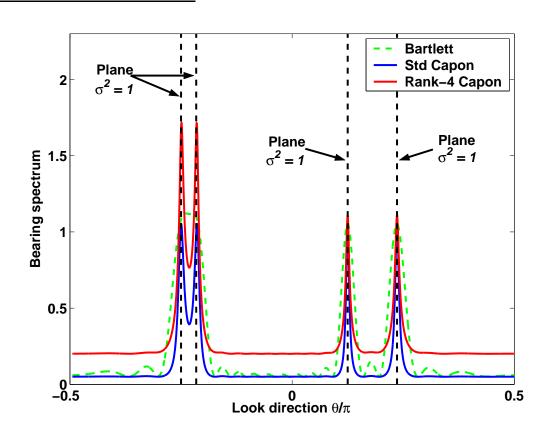


20-element ULA. Four uncorrelated planewaves with equal powers $(\sigma^2=1)$. Two of them (LHS) within Rayleigh limit. Input SNR is 0 dB.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$

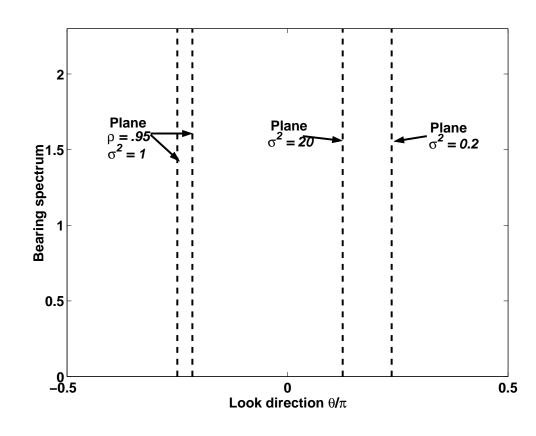
Bartlett, standard Capon, and rank-4 Capon all detect.

Standard Capon and rank-4 Capon resolve the closely-spaced planewaves.



Two planewaves on the LHS are now correlated ($\rho=0.95$), but have equal powers ($\sigma^2=1$). The RHS planewaves are uncorrelated, but one is much stronger than the other ($\sigma^2=20$ vs $\sigma^2=0.2$). Input SNR is 0 dB for sources with unit power.

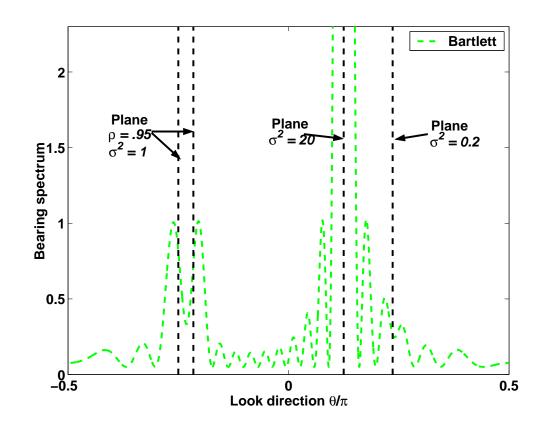
 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$



Two planewaves on the LHS are now correlated ($\rho=0.95$), but have equal powers ($\sigma^2=1$). The RHS planewaves are uncorrelated, but one is much stronger than the other ($\sigma^2=20$ vs $\sigma^2=0.2$). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$

Bartlett does not detect the weak source.

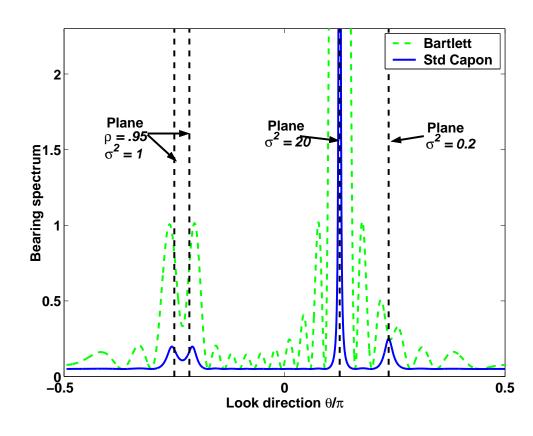


Two planewaves on the LHS are now correlated ($\rho=0.95$), but have equal powers ($\sigma^2=1$). The RHS planewaves are uncorrelated, but one is much stronger than the other ($\sigma^2=20$ vs $\sigma^2=0.2$). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$

Bartlett does not detect the weak source.

Standard Capon has low detectibility for correlated sources, and peaks slightly off the correct locations; Detects the weak planewave.



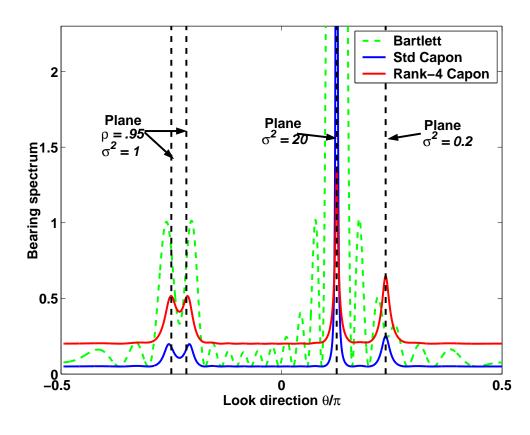
Two planewaves on the LHS are now correlated ($\rho=0.95$), but have equal powers ($\sigma^2=1$). The RHS planewaves are uncorrelated, but one is much stronger than the other ($\sigma^2=20$ vs $\sigma^2=0.2$). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$

Bartlett does not detect the weak source.

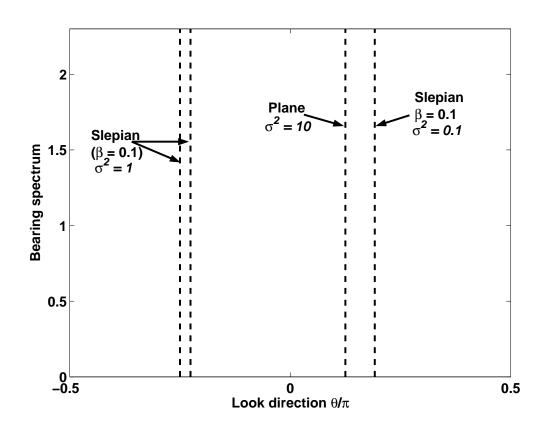
Standard Capon has low detectibility for correlated sources, and peaks slightly off the correct locations; Detects the weak planewave.

Rank-4 Capon has low detectibility for correlated sources, but resolves them at correct locations; Detects the weak planewave.



Two Slepian waves ($\beta=0.1$, approx rank-3), with equal powers ($\sigma^2=1$), within Rayleigh limit (LHS sources). One strong planewave ($\sigma^2=10$) followed by one weak Slepian wave ($\sigma^2=0.1$) (RHS sources). Input SNR is 0 dB for sources with unit power.

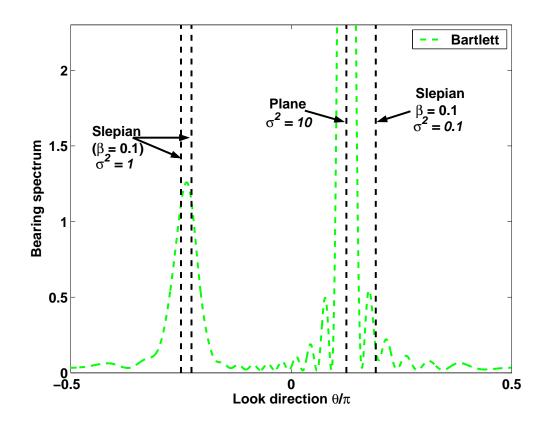
 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon = 0.75$; $\beta = 0.1$.



Two Slepian waves ($\beta=0.1$, approx rank-3), with equal powers ($\sigma^2=1$), within Rayleigh limit (LHS sources). One strong planewave ($\sigma^2=10$) followed by one weak Slepian wave ($\sigma^2=0.1$) (RHS sources). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon=0.75;$ $\beta=0.1.$

Bartlett does not detect the weak source.

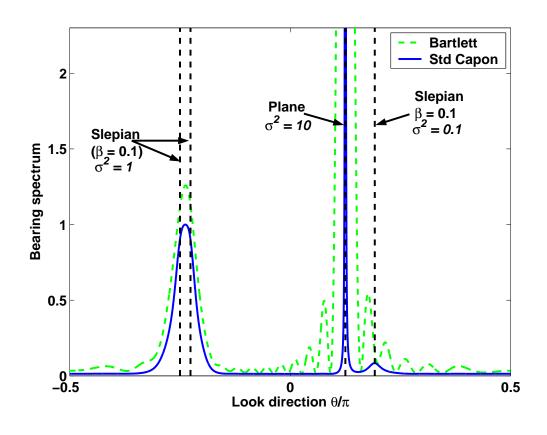


Two Slepian waves ($\beta=0.1$, approx rank-3), with equal powers ($\sigma^2=1$), within Rayleigh limit (LHS sources). One strong planewave ($\sigma^2=10$) followed by one weak Slepian wave ($\sigma^2=0.1$) (RHS sources). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon = 0.75$; $\beta = 0.1$.

Bartlett does not detect the weak source.

Standard Capon does not resolve the closely-spaced Slepians.



Two Slepian waves ($\beta=0.1$, approx rank-3), with equal powers ($\sigma^2=1$), within Rayleigh limit (LHS sources). One strong planewave ($\sigma^2=10$) followed by one weak Slepian wave ($\sigma^2=0.1$) (RHS sources). Input SNR is 0 dB for sources with unit power.

 R_{ss} is rank-4 (rank-1 plane + rank-3 Slepian); $\epsilon = 0.75$; $\beta = 0.1$.

Bartlett does not detect the weak source.

Standard Capon does not resolve the closely-spaced Slepians.

Rank-4 Capon resolves the two Slepians, and the strong planewave from the weak Slepian.

