A regional scale 3D-model of the Skellefte mining district, northern Sweden

Tobias E. Bauer, Saman Tavakoli, Pär Weihed
Division of Geosciences and Environmental Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden

Pietari Skyttä
Department of Geosciences and Geography, University of Helsinki, FI-00014 Helsinki, Finland

Tobias Hermansson, Rodney Allen
The Boliden Group, SE-936 81 Boliden, Sweden

Mahdieh Dehghannejad, María A. García Juanatey, Christopher Juhlin
Department of Earth Sciences, Uppsala University, SE-75236 Uppsala, Sweden

Abstract. Three dimensional geological modelling was carried out in the Palaeoproterozoic Skellefte district in northern Sweden. Modelled volumes range from regional to semi-regional to deposit scale. A multidisciplinary approach combined both geological studies, such as structural and facies analysis and geochronology with geophysical techniques, such as reflection seismic, magnetotelluric, electrical, potential field, and petrophysical studies. Resulting data was interpreted and visualised as 3D-surfaces and bodies in gOcad. Additionally, modelling uncertainties showing the origin and handling of data were assigned and presented as a colour-coded model. The resulting model reveals a framework of major high-strain zones, key lithological contacts and the setting of deformed VMS deposits in the Skellefte district. The 3D-model of the Skellefte district can act as a background for exploration activities in the region.

Keywords: 3D-modelling, VMS deposit, Skellefte district, Palaeoproterozoic

1 Introduction

The Palaeoproterozoic Skellefte mining district is one of the most important mining districts in Europe hosting 79 volcanogenic massive sulphide (VMS) and several orogenic gold deposits and prospects (Allen et al. 1996; Kathol and Weihed 2005). The main unit is the c. 1.9 Ga Skellefte Group, comprising mainly felsic, meta-volcanic rocks. The VMS deposits are located in the uppermost part of Skellefte Group stratigraphy at the transition to the overlying Vargfors Group which is characterised by meta-sedimentary rocks (Fig. 1; Kathol and Weihed 2005). The dominant intrusive rocks are represented by calc-alkaline, multiple phase intrusions of the Jörn intrusive complex (1.89 – 1.86 Ga; Bejgarn et al. 2012 and references therein). The rocks were deformed and metamorphosed during the Svecokarelian Orogeny at 1.90 – 1.80 Ga (Weihed et al. 2002). Structures in the Skellefte district are characterised by a distinct pattern of WNW-ESE and NNE-SSW-striking faults. Allen et al (1996), Allen (2005 unpublished company report), Coller (2008 unpublished company report) and Bauer et al (2011) have showed that these faults have a syn-extensional origin and have been reactivated during subsequent compressional events.

2 Regional geological framework

The bedrock of the Skellefte district comprises 1.95 – 1.86 Ga Palaeoproterozoic volcanic arc rocks and associated intrusive rocks (Allen et al. 1996; Kathol and Weihed 2005). The main unit is the c. 1.9 Ga Skellefte Group, comprising mainly felsic, meta-volcanic rocks. The VMS deposits are located in the uppermost part of Skellefte Group stratigraphy at the transition to the overlying Vargfors Group which is characterised by meta-sedimentary rocks (Fig. 1; Kathol and Weihed 2005). The dominant intrusive rocks are represented by calc-alkaline, multiple phase intrusions of the Jörn intrusive complex (1.89 – 1.86 Ga; Bejgarn et al. 2012 and references therein). The rocks were deformed and metamorphosed during the Svecokarelian Orogeny at 1.90 – 1.80 Ga (Weihed et al. 2002). Structures in the Skellefte district are characterised by a distinct pattern of WNW-ESE and NNE-SSW-striking faults. Allen et al (1996), Allen (2005 unpublished company report), Coller (2008 unpublished company report) and Bauer et al (2011) have showed that these faults have a syn-extensional origin and have been reactivated during subsequent compressional events.

3 Geological and geophysical in-data

Regional and semi-regional scale field mapping and associated structural analysis were tested and validated by 2D-forward modelling with MOVE by Midland Valley Exploration Ltd. (Bauer et al. 2011). Combined with sedimentary facies analysis by Bauer (2012) and structural analysis with geochronological studies by Skyttä et al. (2012) a structural conceptual model was developed. This conceptual model was tested and validated by observation of the sparse drill-cores. For the deposit scale models abundant near-mine drill core data, level plans and cross-sections were available (Boliden Mineral AB). For regional scale modelling,
Figure 1. Inset map: Generalized Fennoscandian Shield geology. Geological domains: BB = Bothnian Basin; NC= Norrbotten Craton. The dashed line marks the boundary between the rocks with Archæan and Proterozoic Nd-signatures (Mellqvist et al., 1999). Geology drawn after Koistinen et al. (2001). Main map: Geological overview of the Skellefte district, as loosely defined by the occurrence of the Skellefte Group metavolcanic rocks, and their immediate vicinity. Intrusions: Vi = Viterliden, Ga = Gallejaur, Rg = Rengård, Ka = Karsträsk, Si = Sikträsk, GI, GII, GIII, GIV = Jörn type intrusions, phases I-IV. Geology after Kathol et al. (2005) and Bergman Weihed (2001).

4 Modelling methodology

Several models were built at three different scales, whereas special emphasis was put at the regional scale model in this work. Three dimensional modelling was mainly carried out in gOcad (Paradigm) using the SPARSE plug-in (Mira Geoscience). To simplify modelling workflows, the regional scale modelling volume was split up into several semi-regional scale sub-projects. For each sub-projects available data was imported in form of maps and cross-sections into gOcad. Drill holes were visualised as lines with attached lithological information. Structural measurements were visualised as disks and lineation vectors with real 3D orientation. Furthermore, strike and dip values of...
geological contacts were interpolated along the map traces of the corresponding contacts. Based on these results, structures and lithological contacts were modelled in three dimensions as surfaces (Fig. 2). VMS deposits were either available as 3D-models from the Boliden Group exploration department or modelled from digital and paper level plans and cross-sections.

5 Uncertainties

Modelling uncertainties were assigned for the final 3D-model of the Skellefte district in order to visualise the bases on which 3D-surfaces and bodies were constructed.

The resulting uncertainty model shows the distribution of primary data, interpolation of structural data, interpretation of geophysical data as well as areas without sufficient data. In order to visualise the modelling uncertainties, uncertainty values from 1 to 4 for the relevant regions on the 3D-objects have been assigned and colour-coded (Fig. 2). The assigned uncertainty values represent: 1) observed in field, mine or drill-core; 2) interpreted from geophysical data; 3) Interpreted from structural data or extrapolated from geophysical data, and 4) inferred / unknown.

6 Description of the model

The current 3D-model shows a series of parallel, regional-scale, south-dipping faults which are cross cut by a set of north-dipping ones (Fig. 2). In the central Skellefte district a set of sub-vertical faults approximately perpendicular to the previously named ones are presented. The geometry of the ore bodies, which are mainly adjacent to the faults, generally reflect the deformation features of the associated faults. The lower-strain domains between the major faults are characterized by either semi-regional scale syn- and anticycles with inclined or doubly-plunging fold axes, for example the Vargfors basin, or uniformly-dipping strata sub-parallel to the faults. In general, significantly more domains with gently-dipping bedding have been recognized which allows for enhanced stratigraphical correlations in the future. Several intrusive suits are represented by irregular bodies and coloured according to their age.

Figure 2. Screenshot from gOcad showing the regional scale, geological 3D-model and the uncertainty model of the ore-bearing Skellefte district.
Acknowledgements

The 4D-modelling workgroup at Luleå University of Technology, Uppsala University and Geovista is acknowledged for contributions to the model. We thank the Boliden Group for the supply with data. This 3D-model was developed in the course of the VINNOVA 4D-modelling project and the ProMine project financed by the Swedish state, the Boliden Group and the European Union, respectively.

References


Ehsan SA, Malehmir A, Dehghannejad M (2012) Re-processing and interpretation of 2D seismic data from the Kristineberg mining area, northern Sweden. Accepted for publication in Geophysical Prospecting

Garcia Juanatey MA, Hüber J, Tryggvason A, Pedersen LB (2012) Imaging the Kristineberg mining area with two perpendicular magnetotelluric profiles in the Skellefte Ore District, northern Sweden. Accepted for publication in Geophysical Prospecting


Koistinen T, Stephens MB, Bogatchev V, Nordgren O, Wennérström M, Korkonen J (2001) Geological map of the Fennoscandian Shield, scale 1:2 000 000. Geological Surveys of Finland, Norway and Sweden and the North-West Department of Natural Resources of Russia


