
Proceedings of the International Symposium on
Banach and Function Spaces IV
(Kitakyushu, Japan, 2012), pp. 123–133, 2014

123

INTERPOLATION OF CESÀRO AND COPSON SPACES

SERGEY V. ASTASHKIN AND LECH MALIGRANDA

Abstract. Interpolation properties of Cesàro and Copson spaces
are investigated. It is shown that the Cesàro function space Cesp(I),

where I = [0, 1] or [0,∞), is an interpolation space between Cesp0 (I)
and Cesp1 (I) for 1 < p0 < p1 ≤ ∞ and 1/p = (1 − θ)/p0 + θ/p1
with 0 < θ < 1. The same result is true for Cesàro sequence spaces.
For Copson function and sequence spaces a similar result holds even

in the case when 1 ≤ p0 < p1 ≤ ∞. At the same time, Cesp[0, 1]
is not an interpolation space between Ces1[0, 1] and Ces∞[0, 1] for
any 1 < p < ∞.

1. Introduction

Let us begin with some necessary definitions and notations related to
the interpolation theory of operators as well as Cesàro and Copson spaces.

For two normed spaces X and Y the symbol X
C
↪→ Y means that the

imbedding X ⊂ Y is continuous with the norm which is not bigger than

C, i.e., ∥x∥Y ≤ C∥x∥X for all x ∈ X, and X ↪→ Y means that X
C
↪→ Y for

some C > 0. Moreover, X = Y means that X ↪→ Y and Y ↪→ X, that is,
the spaces are the same and the norms are equivalent. If f and g are real
functions, then the symbol f ≍ g means that c−1 g ≤ f ≤ c g for some
c ≥ 1.

For more detailed definitions of a Banach couple, intermediate and
interpolation spaces with some results introduced briefly below, see [9,
pp. 91-173, 289-314, 338-359] and [7, pp. 95-116].
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For a Banach couple X̄ = (X0, X1) of two compatible Banach spaces
X0 and X1 consider two Banach spaces X0 ∩ X1 and X0 + X1 with its
natural norms

∥f∥X0∩X1 = max (∥f∥X0 , ∥f∥X1), for f ∈ X0 ∩X1,

and

∥f∥X0+X1
= inf {∥f0∥X0

+ ∥f1∥X1
: f = f0 + f1, f0 ∈ X0, f1 ∈ X1},

for f ∈ X0 +X1.
A Banach space X is called an intermediate space between X0 and X1

if X0 ∩X1 ↪→ X ↪→ X0 +X1. Such a space X is called an interpolation
space between X0 and X1 if, for any bounded linear operator T : X0 +
X1 → X0 + X1 such that the restriction T|Xi

: Xi → Xi is bounded for
i = 0, 1, the restriction T|X : X → X is also bounded and ∥T∥X→X ≤
C max {∥T∥X0→X0 , ∥T∥X1→X1} for some C ≥ 1. If C = 1, then X is
called an exact interpolation space between X0 and X1.

One of the most important interpolation methods is the K-method
known also as the real Lions-Peetre interpolation method. For a Banach
couple X̄ = (X0, X1) the Peetre K-functional of an element f ∈ X0 +X1

is defined for t > 0 by

K(t, f ;X0, X1) = inf{∥f0∥X0 + t∥f1∥X1 : f = f0 + f1, f0 ∈ X0, f1 ∈ X1}.

Then the spaces of the K-method of interpolation are

(X0, X1)θ,p = {f ∈ X0 +X1 : ∥f∥θ,p

=
(∫ ∞

0

[t−θK(t, f ;X0, X1)]
p dt

t

)1/p
< ∞}

if 0 < θ < 1 and 1 ≤ p < ∞, and

(X0, X1)θ,∞ = {f ∈ X0 +X1 : ∥f∥θ,∞ = sup
t>0

K(t, f ;X0, X1)

tθ
< ∞}

if 0 ≤ θ ≤ 1. It is not hard to check that (X0, X1)θ,p is an exact interpo-
lation space between X0 and X1 for arbitrary 0 < θ < 1 and 1 ≤ p ≤ ∞.

Very useful in calculations is the so-called reiteration formula showing
the stability of the K-method of interpolation. If 1 ≤ p0, p1, p ≤ ∞, 0 <
θ0, θ1, θ < 1 and θ0 ̸= θ1, then

(1)
(
(X0, X1)θ0,p0 , (X0, X1)θ1,p1

)
θ,p

= (X0, X1)(1−θ)θ0+θθ1,p,
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with equivalent norms (see [7, Theorem 2.4, p. 311] or [8, Theorems 3.5.3]
or [19, Theorem 1.10.2]) and in the extreme cases

(2)
(
X0, (X0, X1)θ1,p1

)
θ,p

= (X0, X1)θθ1,p,

and

(3)
(
(X0, X1)θ0,p0 , X1

)
θ,p

= (X0, X1)(1−θ)θ0+θ,p,

with equivalent norms (see [12], formulas 3.16 and 3.17).
Now, to treat interpolation results for Cesàro and Copson spaces we

need to define these spaces. The Cesàro sequence spaces cesp are the sets
of real sequences x = {xk} such that

∥x∥ces(p) =

[ ∞∑
n=1

(
1

n

n∑
k=1

|xk|

)p]1/p
< ∞, for 1 ≤ p < ∞,

and

∥x∥ces(∞) = sup
n∈N

1

n

n∑
k=1

|xk| < ∞, for p = ∞.

The Cesàro function spaces Cesp = Cesp(I) are the classes of Lebesgue
measurable real functions f on I = [0, 1] or I = [0,∞) such that

∥f∥Ces(p) =

[∫
I

(
1

x

∫ x

0

|f(t)| dt
)p

dx

]1/p
< ∞, for 1 ≤ p < ∞,

and

∥f∥Ces(∞) = sup
0<x∈I

1

x

∫ x

0

|f(t)| dt < ∞, for p = ∞.

The Cesàro spaces are Banach lattices which are not symmetric except as
they are trivial, namely, ces1 = {0}, Ces1[0,∞) = {0}. By a symmetric
space we mean a Banach lattice X on I satisfying the additional property:
if g∗(t) = f∗(t) for all t > 0, f ∈ X and g ∈ L0(I) (the set of all classes of
Lebesgue measurable real functions on I) then g ∈ X and ∥g∥X = ∥f∥X
(cf. [7], [13]). Here and next f∗ denotes the non-increasing rearrangement
of |f | defined by f∗(s) = inf{λ > 0 : m({x ∈ Ω : |f(x)| > λ}) ≤ s}, where
m is the usual Lebesgue measure (see [13, pp. 78-79] or [7, Theorem
6.2, pp. 74-75]). Moreover, by the classical Hardy inequalities (cf. [11,
Theorems 326 and 327] and [14, Chapter 3]),

lp
p′

↪→ cesp, Lp(I)
p′

↪→ Cesp(I), 1 < p ≤ ∞
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(in what follows 1
p + 1

p′ = 1), and if 1 < p < q < ∞, then cesp
1
↪→ cesq

1
↪→

ces∞. Also for I = [0, 1] and 1 < p < q < ∞ we have

L∞
1
↪→ Ces∞

1
↪→ Cesq

1
↪→ Cesp

1
↪→ Ces1 = L1(ln 1/t) and Ces∞

1
↪→ L1.

For 1 ≤ p < ∞ the Copson sequence spaces copp are the sets of real
sequences x = {xk} such that

∥x∥cop(p) =

[ ∞∑
n=1

( ∞∑
k=n

|xk|
k

)p]1/p
< ∞,

and the Copson function spaces Copp = Copp(I) are the classes of Lebesgue
measurable real functions f on I = [0,∞) or I = [0, 1] such that

∥f∥Cop(p) =

[∫ ∞

0

(∫ ∞

x

|f(t)|
t

dt

)p

dx

]1/p
< ∞, for I = [0,∞),

and

∥f∥Cop(p) =

[∫ 1

0

(∫ 1

x

|f(t)|
t

dt

)p

dx

]1/p
< ∞, for I = [0, 1].

We have cop1 = l1, Cop1(I) = L1(I) and by the classical Copson inequal-
ities (cf. [11, Theorems 328 and 331], [6, p. 25] and [14, p. 159]), which

are valid for 1 < p < ∞, we obtain lp
p
↪→ copp, Lp(I)

p
↪→ Copp(I).

We can define similarly the spaces cop∞ and Cop∞ but then it is easy
to see that cop∞ = l1(1/k) and Cop∞(I) = L1(1/t)(I). Moreover, for

I = [0, 1] we have Lp
p
↪→ Copp

1
↪→ Cop1 = L1.

It is important to mention that if 1 < p < ∞, then

(4) cesp = copp and Cesp[0,∞) = Copp[0,∞).

The first equality was proved by Bennett (cf. [6], Theorems 4.5 and
6.6) and the second one in the paper [4], Theorem 1(ii). Moreover, if
1 < p ≤ ∞, then

(5) Copp[0, 1]
p′

↪→ Cesp[0, 1] and Copp[0, 1] ̸= Cesp[0, 1],

which was proved in [4], Theorem 1(iii).
Structure of the Cesàro sequence and function spaces was investigated

by several authors (see, for example, [6], [15] and [1], [2], [3] and the
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references given there). Here we are interested in studying interpolation
properties of Cesàro and Copson spaces.

The main aim of this paper is to survey and supplement the results of
our recent paper [4].

2. Interpolation of Copson spaces

Interpolation properties of Copson spaces are rather completely de-
scribed by the following theorem.

Theorem 1. Let I = [0, 1] or [0,∞). If 1 ≤ p0 < p1 ≤ ∞ and 1
p =

1−θ
p0

+ θ
p1

with 0 < θ < 1, then

(6) (copp0 , copp1)θ,p = copp and (Copp0(I), Copp1(I))θ,p = Copp(I).

Proof. In the case of sequence spaces we shall use the following identifi-
cation of Copson spaces as interpolation spaces with respect to weighted
l1-spaces which was recently obtained in [4, Theorem 1 (i)]:

(7) (l1, l1(1/k))1−1/p,p = copp,

for every 1 < p < ∞. Therefore, assuming firstly that 1 < p0 < p1 < ∞,
by reiteration equality (1), we have

(copp0 , copp1)θ,p =
(
(l1, l1(1/k))1−1/p0,p0

, (l1, l1(1/k))1−1/p1,p1

)
θ,p

= (l1, l1(1/k))(1−θ)(1−1/p0)+θ(1−1/p1),p

and since (1− θ)(1− 1/p0)+ θ(1− 1/p1) = 1− 1−θ
p0

− θ
p1

= 1− 1
p it follows

that the last space is (l1, l1(1/k))1−1/p,p = copp.
In the case when 1 < p0 < p1 = ∞, using reiteration formula (3), the

equality cop∞ = l1(1/k) and (7) twice, we obtain

(copp0 , cop∞)θ,p = (copp0 , l1(1/k))θ,p =
(
(l1, l1(1/k))1−1/p0,p0

, l1(1/k)
)
θ,p

= (l1, l1(1/k))(1−θ)(1−1/p0)+θ,p = (l1, l1(1/k))1− 1−θ
p0

,p

= (l1, l1(1/k))1−1/p,p = copp.

Analogously, if 1 = p0 < p1 < ∞, by the equality cop1 = l1 and formulas
(7) and (2), we obtain

(cop1, copp1)θ,p =
(
l1, (l1, l1(1/k))1−1/p1,p1

)
θ,p

= (l1, l1(1/k))θ(1−1/p1),p
= (l1, l1(1/k))1−1/p,p = copp.
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Finally, if p0 = 1 and p1 = ∞, the result follows from (7) and equalities
cop∞ = l1(1/k) and cop1 = l1.

The proof is completely similar for Copson function spaces only instead
of (7) we use the corresponding identification of Copson function spaces
as interpolation spaces with respect to weighted L1-spaces [4, Theorem 1
(ii) and (iii)]:

(L1(I), L1(1/t)(I))1−1/p,p = Copp(I)

and equalities Cop∞(I) = L1(1/t)(I) and Cop1(I) = L1(I). �

3. Interpolation of Cesàro spaces

Interpolation properties of Cesàro spaces are more non-trivial and in-
teresting.

Theorem 2. Let I = [0, 1] or [0,∞). If 1 < p0 < p1 ≤ ∞ and 1
p =

1−θ
p0

+ θ
p1

with 0 < θ < 1, then

(8) (cesp0 , cesp1)θ,p = cesp and (Cesp0(I), Cesp1(I))θ,p = Cesp(I).

Proof. If p1 < ∞, equalities (8) are immediate consequence of equalities
(4) and (6). Moreover, if p1 = ∞, the second formula in (8) in the case
I = [0,∞) is proved in [4, Corollary 2]. Let us prove the first one assuming
that p1 = ∞.

We claim that the operator

Pf(t) :=
∞∑
k=1

∫ k+1

k

f(s) ds · χ[k,k+1)(t), t > 0,

where by χA is denoted the characteristic function of a set A, is bounded
in Cesp[0,∞) for all 1 < p ≤ ∞. In fact, if i ≤ x < i+ 1, i = 1, 2, . . . , we
have∫ x

1

|Pf(s)| ds =
i−1∑
k=1

∫ k+1

k

|f(s)| ds+
∫ i+1

i

|f(s)| ds·(x−i) ≤
∫ x+1

1

|f(s)| ds,
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and in the case when 1 < p < ∞ we obtain

∥Pf∥pCes(p) ≤
∫ ∞

1

(
1

x

∫ x+1

1

|f(s)| ds
)p

dx

≤ 2p
∫ ∞

1

(
1

x+ 1

∫ x+1

1

|f(s)| ds
)p

dx

= 2p
∫ ∞

2

(
1

u

∫ u

1

|f(s)| ds
)p

du ≤ 2p∥f∥pCes(p).

Similarly, ∥Pf∥Ces(∞) ≤ 2∥f∥Ces(∞). Thus, our claim is proved.
Next, it is easy to see that Pf = f for arbitrary function f from the sub-

space Up of the space Cesp[0,∞) generated by the sequence {χ[k,k+1)(t)}∞k=1.
Therefore, Up is a complemented subspace of the space Cesp[0,∞) for ar-
bitrary 1 < p ≤ ∞, and applying the well-known result of Baouendi and
Goulaouic [5, Theorem 1] (see also [19, Theorem 1.17.1]) and the second
equality from (8) in the case I = [0,∞) and p1 = ∞, we have

(Up0 , U∞)θ,p = Up

where 1
p = 1−θ

p0
. On the other hand, it is not hard to show (see also [18])

that, for every 1 < p ≤ ∞,∥∥∥ ∞∑
k=1

ckχ[k,k+1)

∥∥∥
Ces(p)

≍ ∥(ck)∥ces(p),

whence the mapping

(ck)
∞
k=1 7−→

∞∑
k=1

ckχ[k,k+1)

is an isomorphism from cesp onto Up, 1 < p ≤ ∞. Combining this with
the previous equality, we obtain the result.

In the case I = [0, 1] the space Cesp[0, 1], for every 1 ≤ p < ∞, is
not an intermediate space between L1[0, 1] and Ces∞[0, 1]. On the other
hand, we have

Ces∞[0, 1]
1
↪→ Cesp[0, 1]

1
↪→ Ces1[0, 1] = L1(ln 1/t)[0, 1]

1
↪→ L1(1− t)[0, 1].

Moreover, as it was shown in [4, Theorem 2], if 1 < p < ∞, then

(9) (L1(1− t)[0, 1], Ces∞[0, 1])1−1/p,p = Cesp[0, 1].
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Therefore, if I = [0, 1], equality (8) can be proved in the same way as in
Theorem 1 by using reiteration formulas (1) and (3). �

Remark 1. The space cesp for 1 < p < ∞ can be obtained as an
interpolation space with respect to the couple (l1, l1(2

−n)) by the so-
called K+-method being a version of the standard K-method, precisely,

cesp = (l1, l1(2
−n))K

+

lp(1/n)
(cf. [10, the proof of Theorem 6.4]) but, by now,

for this interpolation method there isn’t suitable reiteration theorem.

Remark 2. Another proof of the second equality in (8) for the spaces on
I = [0,∞) was also given by Sinnamon [17, Corollary 2]. Moreover, it is
contained implicitly in the paper [16] (cf. explanation in [4], Section 3).

Remark 3. If 1 < p < ∞, then the restriction of the space Cesp[0,∞) to
the interval [0, 1] coincides with the intersection Cesp[0, 1] ∩ L1[0, 1] (cf.
[4], Remark 5). Therefore, if we “restrict” second formula in (8) for [0,∞)
to [0, 1] we obtain only

(Cesp0 [0, 1] ∩ L1[0, 1], Cesp1 [0, 1] ∩ L1[0, 1])θ,p = Cesp[0, 1] ∩ L1[0, 1],

where 1 < p0 < p1 < ∞ and 1
p = 1−θ

p0
+ θ

p1
. This also shows that the

real method (·, ·)θ,p “well” interpolates the intersection of Cesàro spaces
on the segment [0, 1] with the space L1[0, 1] or, more precisely, we have

(Cesp0 [0, 1] ∩ L1[0, 1], Cesp1 [0, 1] ∩ L1[0, 1])θ,p

= (Cesp0
[0, 1], Cesp1

[0, 1])θ,p ∩ L1[0, 1],

for all 1 < p0 < p1 ≤ ∞, 0 < θ < 1 and 1
p = 1−θ

p0
+ θ

p1
.

Recalling that Ces1[0, 1] = L1(ln 1/t), let us consider the problem
whether Cesp[0, 1], 1 < p < ∞, is an interpolation space between Ces1[0, 1]
and Ces∞[0, 1].

Note that for arbitrary 1 < p < ∞ the following embedding holds:

(10) (Ces1[0, 1], Ces∞[0, 1])1−1/p,p
1
↪→ Cesp[0, 1].

To prove (10), let us show, firstly, that for any f ∈ Ces1 = Ces1[0, 1] and
all 0 < t ≤ 1 we have

(11) K(t, f) := K(t, f ;Ces1, Ces∞) ≥
∫ t

0

(Cf)∗(s) ds,
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where Cf(x) = 1
x

∫ x

0
|f(s)| ds, x ∈ (0, 1]. In fact, we can assume that

f ≥ 0. If f = g+h, g ≥ 0, h ≥ 0, g ∈ Ces1, h ∈ Ces∞, then Cf = Cg+Ch
and, therefore, by the well-known formula for K-functional with respect
to the couple (L1, L∞) (see, for example, [13, Chapter II, § 3]),

∥g∥Ces(1) + t ∥h∥Ces(∞)

= ∥Cg∥L1 + t ∥Ch∥L∞

≥ inf{∥y∥L1 + t ∥z∥L∞ : Cf = y + z, y ∈ L1, z ∈ L∞}

= K(t, Cf ;L1, L∞) =

∫ t

0

(Cf)∗(s) ds.

Taking the infimum over all suitable g and h we get (11). Next, by the
definition of the real interpolation spaces, we obtain

∥f∥p1−1/p,p ≥
∫ 1

0

[
t1/p−1K(t, f)

]p dt

t
=

∫ 1

0

t−pK(t, f)p dt

≥
∫ 1

0

t−p

[∫ t

0

(Cf)∗(s) ds

]p
dt ≥ ∥Cf∥pLp[0,1]

= ∥f∥pCes(p),

and the proof of imbedding (10) is complete.
However, the opposite imbedding does not hold. Moreover, in [4, The-

orem 6] the following result is proved.

Theorem 3. For any 1 < p < ∞ the space Cesp[0, 1] is not an interpo-
lation space between the spaces Ces1[0, 1] and Ces∞[0, 1].

Remark 4. Equality (9) and the last theorem show that the weighted
space L1(1− t)[0, 1] is in a sense the ”proper“ end of the scale of Cesàro
spaces Cesp[0, 1], 1 < p ≤ ∞.

Remark 5. It would be worth to find an example of the operator which
is bounded in Ces1[0, 1] and Ces∞[0, 1] but unbounded in Cesp[0, 1] for
any 1 < p < ∞.

After the negative answer given in Theorem 3 it is interesting to
identify a space which we get by the K-method applied to the couple
(Ces1[0, 1], Ces∞[0, 1]). A long calculation in [4, Theorems 3 and 5] shows
the following

Theorem 4. For every 1 < p < ∞ we have

(12) (Ces1[0, 1], Ces∞[0, 1])1−1/p,p = Cesp(ln
e

t
)[0, 1],
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where the weighted Cesàro function space Cesp(ln
e
t )[0, 1] is a Banach

space generated by the norm

∥f∥Ces(p,ln) :=
(∫ 1

0

( 1
x

∫ x

0

|f(t)| dt
)p

ln
e

x
dx
)1/p

.

The crucial point in proving Theorem 4 is the following description
of the K-functional for the couple (Ces1[0, 1], Ces∞[0, 1]) : for every f ∈
Ces1[0, 1] and for all 0 < t ≤ 1 we have

K(t, f ;Ces1[0, 1], Ces∞[0, 1])

≍ ∥fχ[0,τ1(t)]∪[τ2(t),1]∥Ces(1) + t ∥fχ[τ1(t),τ2(t)]∥Ces(∞),

where τ1(t) = t/ ln(e/t) and τ2(t) = e−t (cf. [4, Theorem 3]). Clearly, if
t ≥ 1, we have K(t, f ;Ces1[0, 1], Ces∞[0, 1]) = ∥f∥Ces(1).

Note that Cesp(ln
e
t )[0, 1]

1
↪→ Cesp[0, 1] for every 1 < p < ∞, and this

imbedding is strict.
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Math. (N.S.) 20 (2009), no. 3, 329–379.
[3] S. V. Astashkin and L. Maligranda, Geometry of Cesàro function spaces, Funkt-
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dia Math. 215 (2013), no. 1, 39–70.

[5] M. S. Baouendi and C. Goulaouic, Commutation de l’intersection et des foncteurs
d’interpolation, C. R. Acad. Sci. Paris Sér. A-B 26 (1967), 313–315.

[6] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc., vol.
120, AMS, Providence 1996.

[7] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New

York 1988.
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INTERPOLATION OF CESÀRO AND COPSON SPACES 133

[12] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970),
177–199.

[13] S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators,
Nauka, Moscow, 1978 (Russian); English transl. in Amer. Math. Soc., Providence
1982.

[14] A. Kufner, L. Maligranda and L.-E. Persson, The Hardy Inequality. About its

History and Some Related Results, Vydavatelsky Servis, Plzen 2007.
[15] L. Maligranda, N. Petrot and S. Suantai, On the James constant and B-convexity
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