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Interpolation of Some Concrete Symmetric Spaces

by

F. Feher and L. Maligranda

A natural problem in interpolation theory is to find necessary and sufficient
conditions for interpolation properties to hold among spaces of the same type.
A necessary condition in terms of the fundamental functions of the spaces in-
volved was studied by e.g. G. G. Lorentz and T. Shimegaki [7], E. I. Pustyl -
nik [13]1, R. Sharpley [16]. In this paper we discuss examples of symmetric
spaces for which this condition is also sufficient for the interpolation prop-
erty.

1. Notations and Basic Lemmas

A pair A = (AO, Al) of Banach spaces is called a Banach coupfe if both AO and
A1 are continuously embedded into some Hausdorff topological vector space. We
denote by A (A) := Ag 0 Ay and A = Ag+ A, with the natural norms. A Ba-
nach space A is called intermediate with respect to & if 4 (A)cA < ] (K) with
continuous inclusions. If A = (AgsA;) and B = (B,:8;) are two Banach couples,
then Tet L (A,B) denote the Banach space of all linear operators T: J (A) + J(B)
such that the restrictions of T to the spaces Ai are bounded operators from

Ai' into B; (i=0,1) with the norm

T 7 gy = max { ||T . T ¥
|| IIL{A,B) max { || II[AU’BO] El il{Al’BI]

If A and B are Banach spaces intermediate with respect to A and B, respective-
1y, then we say that (A,B) is an {interpofation coupfe with respect to A and B
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if every operator Te€ L(A,B) is a bounded operator from A into B,

Remark 1. We may define the interpolation couple (A,B) in an analogous way for any
subspace A+ {0} of [ (A), even if A(A) & A, and for any space B> 4 (B),
even if B& J (B ). In this case we say that (A,B) is a g-interpofation coupfe
(generalized) with respect to A and B. Finally, let P denote the set of all
funci:'ions w: R+ R, such that (s ) <max {1,s/t} @(t) for all s,t € 1R+,
and P := { @ € P; ¢ is concave }. On P we define an involution by

¢ (t) == 1/ (1/t). The following Lemma is easily verified:

Lemma 1. Let @y, ¥y, @€ P and y (t) := wo(t) © (ml(t) / @ (t)) for teR, .
Then § € P; moreover , Y€ P, &f vy, ©;, 9E€ P.

In the sequel let AD’ Al, A and BO’ Bl‘ B be symmetric Banach lattices (Banach
function spaces) over the interval I=(0,£), 0< £ < =, with Lebesgue measure in
the sense of {6], and with the fundamental functions @gs P1s @ and Ups ¥ps Vs
respectively. Recall that the fundamental function of a symmetric Banach lat-
tice A is defined by v, (t) = || I(O,t) |1 where I(O,t) is the characteristic
function of the interval (0,t). Let @y = lpoltpl and ‘1’0”’1‘

The smallest (largest) symmetric space contained in (containing) A with the
same fundamental function is defined by

L
A, = {x; ![xli[&p 1=, (04) Hxll,,,**é x* (s )@y (s) ds <=}

(M,

2= {x; |[x]]y :=sup vy (t) x**(t)<=1).
('} tel
Here x* means the non-increasing rearrangement of the function x

t
and x = t7L [ xx (s) ds.
0

A necessary condition for the interpolation of symmetric spaces is well known:
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Lemma 2. I {A,B) is an g-interpolation coupfe with nespect to A and B, then
Zhere exists a constant ¢ > 0 such that for all s,t € I

¥o(t) ¥ {t)

Pt 0 1

(1) _H'w s <cmx { ol " Te(5)

Moreover, (1) is equivalent to each of the following conditions:
X '4’0(5) @1(5) CD(t)

(1a) AL 63 I ) il )

fon some ¢ > 0 and all t,s €1

l(t) ‘Pl(t)
(1b) ¢ (t)=< by (t) f(—%'(’f)—) s @y (t) f(w)‘“"(t)

gorn some f € P, c>0 and all t € 1.

For the proof Lemma 2 see [17] and [71, respectively.
In general, condition (1) is not sufficient for (A,B) to be an g-interpolation
couple. Indeed, the following "weak converse' of Lemma 2 holds:

Lemma 3. I§ (1) hofds (on equivalently {la) ox (1b) |, then
L(AB) = [, (A), M, (B)1.

HTH (a8 < c.max [IT]| 5
L(A,B) fadl,1 (Ao My 1 (TeL (R,B)).

For the proof of Lemma 3 recall that the Calderdn operator of the interpolation
segment o := (A,B) is given by
Lls) o)

L
S{o) [x](t) := é’x {s)d {min T " U TE) }) (x€ Aw0+ Awl).

Hence, the minimum occuring in (la) can be expressed by
min ‘90(5) . ‘91(5)
N € T (E)

} = S{o)I l(O,t)] (s),

and (1) is equivalent to
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(1*) 5(0) Tleg,¢y1 (5) " 4(s) < ¢ wft) (t,s €1I).

On the other hand, it can be shown (comp.[ 15,p. 497/498] )
that for every operator Tel (A,B) one has

(Tx)** (s) < (max_||T][| ) S(a) [ x*1(s)
i=0,1 U o M -
for all x € Aw +-Alp . From (1*) it therefore follows that
0 1

(Tlg,g)*™ (v (s) < Mco(t)

with M:=max ||T]| and c= constant of (1a).

. [A ,M ]

i=0,1 W’y
i i

Finally, by passing from 1(0 t) to simple functions and then to limits of

simple functions one obtains Lemma 3.

Remark 2. If the space B belongs to Sharpley’s class U (see also [51), then
the assertion of Lemma 3 means that every operator TE€ L (A,B) is of weak type
(A,B), provided (1) holds. This way of looking at the Temma explains, why con-
dition (1) is not sufficient for the g-interpolation property, in general.

In the sequel, we collect some concrete examples of Banach lattices for which
- nevertheless - (1) s sufficient.

2. Interpolation of Lorentz and Marcinkiewicz spaces

In [8] it is proved that a coup1g ( Qp s Aw) is an g-interpolation couple with
respect to ( Awo, jf\.w1 ) and (A 5’ Awl ), if and only if (1) holds. In [16] a
shorter proof of this statement is given.

We now discuss the interpolation property for couples of the type (M,M) and
(A,M), respectively, giving new proofs of the results of [17] » [131 .

Theorem 1 (R. Sharpley). A couple ( ﬂp 5 M¢ ) 4s8 an g-intenpolation couple

with nespect to (Mwo ; Mwl) and (M% , Mwl), if and only if (1) holds.
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Theorem 2 (E.I. Pustyl™nik). Let min { w0(0+), @ (0+)} = 0.
A couple ( Qp, MLlj ) 44 an g-interpolation coupfe with nespeet Zo ( ﬁw ,Awl)
0

and (M, M, ), if and only &f (1) hotds.
0 W

Our proof of the above two theorems is based upon the following lemma [4].

Lemma 4. Let A = (Agshy) be any Banach couple, K (t,a; A) the Peetre K-func-
tional with respect o A lwith t> 0, a € [ (R) ), and By:= (M, . M, ).
Then Te L ( A, W), & and onty if @ 71

Yglt)
o 0 )
(2) (Ta)**(t)% wo(t} K ( lPl('C) y @ 3§ A )

with some ¢ > 0 and for all t> 0, a€ ] (A).

Proof. If a = ay+ a; € I (A) with a; €A, (i=0,1) and t>0, then
Ha{]HAO ”al”Al
(Ta)**x(t) < (Tag)** (t) + (Tay)**(t) < ¢4 O T EAC

" bp(t)
e ( ||ao||A0 + RGN ifalllAl ).

Passing to the infimum over all representations, we obtain (2).
Conversely,if (2) holds, then, since K (t,a;A) < t! [la;11y for ae A; (i=0,1),
i

we have

-1E§%ET- ||31{A0

Ty <y g

=_C i
o e [Py = e ey TR

if ag AO

yielding T€ L(A, ﬁw).
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Proof of Theorem 1. Since K{t,x; ch > M) = | [x*= min {wo, ¢1}|| (see [18]),
u -]

¥1

for any operator Te L (ﬂw . M\b) and for all x € Mo < Moin {09, 0, } =M(p0+ M‘°1

it follows from Lemma 4 that

Tx ) #ene < 2 & (DO ‘91 1
(Tx)*=(t) ¢ [[x**min { wO{t) > wl(tT ”m

2c! 2c!

Y= [[x** @ ”ﬂ’:—Wﬂ_ ”x”Mw

with some ¢'> 0, Hence T is a bounded- operator from M(p into an .

Proof of Theorem 2. Since

£
A‘pl) = 6’ X* (s)d (min lwg (s), tuy(s)h

K(t,x; A
‘90:
(see [15] ), for any

+ A

TeL( Ato i Mw) and all x € Aw € Anin {wO’ w1}=Ata0 0

it follows from Lemma 4 that
o(s)  o(s)

£
(Tx)*=(t) < ¢ éx*(s} d (min {W . .w_lrﬂ_ 1)

[ £

< L d = £
T é x*(s) d o (s) "@'('fr”x“hw

with some c'>0; 1i.e. TEIA@, MlP}'

3. Calderdn-LozanovskiY Spaces and Interpolation

Let & = (AgsA;) be a couple of Banach lattices on (%, u) and Tet 9 €P. Some-
times we regard ¢ as a function on R, x R_ by defining @(s,t) := s (t/s).
We denote by ¢ (A) the Calderin-Lozanovs kil 4pace of all classes of measurable
functions x on 2 such that |x| <A ¢ ( lxoj . |x1] ) u-a.e. for some X; € A,
with ”xi”Ai < 1 (i=0,1) and some A <o . If g€ P, then @(A) with the norm

[ x| |0:= inf A is a Banach lattice intermediate to A.
If, in particular, o(t) = t%, 0< 0 < 1, theno(k) = 8578 A2, This space was
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introduced by A.P. Calderen [3]. Moreover, he considered the space m(ﬁ} with
Al = L as a generalization of an Orlicz space. The properties of the spaces
@(A) were studied in detail by G. Ja. LazanovskiY [9] .

In [8] Lozanovski¥ proved that @(A) is not an interpolation functor even if

@ (t) 2, A, p. Calderdn, P. P, Zabreiko, V. A. Yestakov , and G. Ja. Loza-
novskii gave some conditions such that Aé'@ A(i] becomes an interpolation functor.
These results were extended to @(A) by V. I. Ovchinnikov [12]. In particular,
he proved

< i

Thegrem (Ovchinnikov (12, Thm.3] ). Let A = (AO,Al) and B = (BO‘BI.) be two cou-
ples of Banach Latiices on (2, u) and (94 »uy), nespectively, and fet @€ P.
1§ © (B) has the Fatou property,then ( @(R), w(B)) is an interpolation couple
with respect to A and B .

From this theorem the following can be derived:

Theorem 3. Assume that Uy (B) and $;= (B) have Fatar noms, and fet I = R_.
If (1) hotds, then (@ (A}, § (B)) 44 an g-interpofation coupfe with nespect to
(9 (R), @(R)) and ( Iy (B), ¥y (B) ).

For the proof of this theorem we use a lemma on reiteration, namely:

Lemma 5. Let @gs ®)» @, FE P, c>0, and g(t) := tpo(t) f (cpl(t) / wo(t)). If
g<c, then f (r.po(ﬁ), ml(f\)} < ¢ (A) ; moreover, if w < c g, then

P (n}‘: f(‘ﬂo (ﬁ) ’wl{ﬁ))-

The proof of Lemma 5 is analogous to a Lemma of [3,p.166] where the case
f(t) = t? is considered.

Proof of Theorem 3. Let T€ L(( @y (A), :;1 (ADs (9g(B)s ¥, (B) ).
Since ( T( J;O(ﬁ), q':l(E)) w= F (IIUO(E)", q;_l (B)"), see [g], it follows from
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Ovchinnikov's theorem that T is a bounded operator from 7 (tpo(f\}, Eil(ﬁ)) into
F {@0(5), @1(5)). If (1) holds for I = R, , then by Lemma 2 one has

o<c oy F(o/4) and Jg F (§;/ %) < §

for some f€ ¥ and some c>0. On account of Lemma 5 this yields that
Telo (R), ¥ (B)1.

If we?’ and A = (AO,A ) is a couple of symmetric spaces on I, then the space
@ (R) is also symmetric and has a fundamental function equivalent to

||1(0,t)” ~ gy(t) / @y (t). From Lemma 2 and Theorem 3 we therefore obtain a

characterization of the interpolation property for symmetric Calderdn-Lozanov-

skit spaces.

Theorem 4. let & = (AgsA;) and B = (BgsBy) be fwo couples of symmetric spaces
on R, duch that By and By have the Fatou property, and q;m( R} = Yo (R =R, .
The coupﬁa {9(R), $(B)) is an g-<intenpofation couple with ne.apec',t o
(tou (), ml(ﬁ}) and ( wO(B), Ell(E)) if and only if (1) holds.

As an application of this theorem we finally give interpolation theorems for
Orlicz spaces and for Musielak-Orlicz spaces. Indeed, if M is a convex Orlicz
function and L the corresponding Orlicz space, then 1.M can be wr"ltten as a
Calderon- Lozanovsku space, namely Ly =w l.l,Lw) with @ (t):= t M (llt)
Applying Theorem 4 to this case one therefore immediately has

Theorem 5. A couple of Onlicz spaces ( Ly LN) L8 an g-intenpofation couple
with respect to “'Mg LMl) and (L Ng® LN ) 4§ and only if condition (1) hofds,
on, equivalently, iff

=]
-1 M
_M:I.(EL < ¢ max { QI(U) , (U) (uy v> 0).
N (v) Ny (V) N1 (v}

This theorem was stated in [14] without proof.
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If ( 2,u) is a complete o-finite measure space, and M a convex Musielak-Orlicz
function with respect to Q, then L(M}denotes the corresponding Musielak-Orlicz
space with Luxemburg norm (for details see [111 ). This space is symmetric if
M (u,t) does not depend upaon t, and we have

Theorem 6. Let L{MG}, L{Ml}, L{M} and L{NO}, L{Nl}, L{N} be Musiefah-Onlicz
spaces on { Q,u) and (9, ul}, respectively. We assume that for all u> 0

1

(3)  MHu.t) = @ (M (u,t), M72(u,t))

N L(uys) = @ (N3F (us5), Ny (u,s))

fon some @ € P, where the {nverse functions are taken with rnespect fo u fox
eveny fixed t€ 2\ E, u (E) = 0, and s € {4\ Ep s 1y (E]) = 0. Then

( Limy » L{N}) is an intenpolation coupfe with respect X0 ( L{MD}, L{Ml}) and

(Lew 1ol 1)
g} Y

The proof follows from Theorem 5, the equality L{N}"'= L{N}and the fact that
(3) implies Lyyy = @ (bgy ye Loy ) @4 bowy = @ Longpr bongr -
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