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Abstract: In this paper we present an ultrasonic pulse-
echo technique for estimating the methane (CH4) content
in binary mixtures of CH4 and carbon dioxide (CO2). The
method is based on parametric estimation of phase velocity
and frequency dependent attenuation in combination with
Partial Least-Squares Regression (PLSR). The technique
is verified using experiments on mixtures with a volume
fraction of CO2 in the range of 0 % –10 %. The exper-
iments show that the CH4 content can be accurately esti-
mated with high repeatability.
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A. Introduction
Biogas manufactured from urban waste has been identi-

fied as a potential replacement of fossil fuels in the trans-
port sector. The biogas is upgraded to a high methane
content and then inserted into a natural gas grid. In or-
der for this to work, the quality of the upgraded gas must
be guaranteed, which means it should essentially contain
only methane (CH4) with a small fraction of carbon diox-
ide (CO2), i.e. < 10 % by volume.

For natural gas, which is by far the most commonly
available energy gas, several measurement techniques are
available, see for example [1], [2]. For other gas mixtures,
like biogas or synthesis gas (CO, H2 and CO2), there is
a lack of non-invasive on-line techniques. The long term
goal of this project is to develop a method based on ul-
trasound for combined volume flow measurement and gas
composition analysis. The method should be applicable to
a wide variety of gas mixtures.

Previous work shows that the composition of a gas mix-
ture significantly affects the acoustic wave propagation
through the gas [3], [4]. Some work has also suggested
how to extract these effects from experimental data us-
ing multivariate statistical tools, see [5], [6] and references
therein.

In [7], it was identified that Partial Least-Squares Re-
gression (PLSR) can be used to connect measured ul-
trasonic pulse spectra to the composition of mixtures of
ethane and oxygen. The paper used a non-parametric
method to estimate pulse spectra, which showed some lim-
itations, mainly due to the high uncertainty of the spec-
tral estimation, and the inherent sensitivity to experimental

noise in this procedure.
This paper extends the results of [7] by estimating the

frequency dependent attenuation and phase velocity of the
gas mixtures using a parametric technique [8], and then
using PLSR to estimate the gas composition.

B. Theory
When sound propagates through gases, two properties

can be directly observed: speed of sound and attenuation.
Both of these are frequency dependent. They depend on
the details of underlying physics [3], [4], [9], [10]. Good
physical models are crucial for the understanding of the
problem, so that proper instrumentation can be designed.
However, even if a good model of the underlying physics
is available, the parameters of such a model are not neces-
sarily identifiable from bandlimited ultrasound data. Fur-
thermore, the end goal is not to describe the model, but
to measure some implicit property (e.g. energy content or
volume fractions). The choice of model should therefore
depend on the objective of the study.

Using the pulse-echo setup described in Section C. we
obtain two echoes that have traveled different distances
through the gas mixture. Given these two echoes, we
then estimate the frequency dependent attenuation and the
phase velocity. These two quantities serve as input to
a multivariate statistical calibration technique called Par-
tial Least Squares Regression (PLSR) used to estimate the
composition of the gas mixture.

B.1. Attenuation and phase velocity
Assuming linear acoustics, estimating the frequency de-

pendent attenuation and phase velocity from ultrasound
pulses essentially concerns estimation of the spectrum of
a linear system H(ω), representing the gas mixture. Given
the transfer function H(ω), we can calculate the attenua-
tion α(ω) and the phase velocity cp(ω), where ω is the fre-
quency (in rad/s). In the ultrasonic pulse-echo setup, the
input and output signals p1(t) and p2(t) needed to identify
H(ω) are defined as in Fig. 1.

The estimation procedure for determining H(ω) is de-
scribed in detail in [8]. In addition to the estimate of H(ω),
the identification procedure also yields an estimate of the
covariance of the parameters of H(ω). This enables us to
do the uncertainty analysis described in Sec. B.3..
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From the estimate of H(ω) we calculate attenuation and
phase velocity. Let each row, xT

n , of the matrix X be the at-
tenuation and phase velocity corresponding to a given vol-
ume fraction of CO2, sampled at the frequencies ω = ωk,
where ωk = 2πFsk/K, k = 0 . . .K − 1, K is the number
of samples, and Fs is the sampling frequency. The volume
fraction of CO2 is then the corresponding row, yn, of the
response matrix Y. That is

X =


αT

1 cT
1

αT
2 cT

2
...

...
αT

N cT
N

 , Y =


y1

y2

...
yN

 (1)

where αn = [ α(ω0) α(ω1) · · · α(ωK−1) ]T , cn =
[ cp(ω0) cp(ω1) · · · cp(ωK−1) ]T . Here, the sub-
script n denotes the n:th row of X and Y, corresponding
to experiments with different volume fractions of CH4.

B.2. PLS Regression
The PLS method was developed by Herman Wold [11],

and has been applied to many areas in experimental sci-
ences. The details of the PLS calculations can be found in
[7] and [12]. Here, only a brief summary is given.

The central idea of PLS, as opposed to principal com-
ponent regression (PCR) and ordinary least-squares (OLS)
estimation [13], is that PLS determines a set of basis func-
tions (PLS components) for both the X block and the Y
block, in such a way that they best describe the cross-
covariance between the blocks. In other words, instead
of looking at variations in phase velocity and attenuation
alone (the X block), we look at variation in X that corre-
lates with variation in Y.

B.2.1. Predicting Y from X
Using Eqs. (3)–(11) in [7], the X block and Y block are

first transformed into their PLS component representation,

X = TPT + E, (2)
Y = TQT + F, (3)

where E and F are residual matrices of the X and Y blocks,
respectively. Given an existing set of PLS components, the
estimate of Y is given by

Ŷ = XW̃QT , (4)

where W̃ and Q are given by Eqs. (15) and (11) in [7],
respectively. Here, the matrix W̃QT is determined from a
calibration experiment, and later used to estimate Ŷ.

B.2.2. Determining PLS model order
As in all modeling, finding an appropriate model or-

der is an important, and difficult, problem. There are nu-
merous criteria available for model order selection, some
which tend to overestimate the model-order, while others
are overly conservative [14]. For PLS modeling problems,
cross-validation is the most commonly used method [15].

In this paper we have one training data set to estimate a
PLS model and one validation set. We evaluate the model

by looking at the Q2 statistic [16] as a function of the num-
ber of components in the PLS model. For our experiments,
we found that two PLS components is the best model order,
which yields a Q2 value of 0.9998.

B.3. Uncertainty analysis
The phase velocity and attenuation for each gas com-

position are estimated using the parametric model in [8].
Along with these estimates we also obtain a covariance
matrix for the parameters of H(ω). This enables us to
generate a randomized distribution of the attenuation and
phase velocity curves, and eventually also a randomized
distribution of the estimated gas compositions.

Given the covariance matrix for the model parameters,
the following procedure is applied in order to obtain a ran-
domized distribution of the estimated gas compositions:

1. Randomize a large number of model parameter vec-
tors, given the covariance matrix, Cθ , where θ is a
vector with the parameters of the model H(ω) (i.e.
the prior distribution).

2. Calculate the attenuation and phase velocity corre-
sponding to each of the models.

3. For each randomized model, run the PLSR as de-
scribed above, to obtain an empirical (posterior) dis-
tribution of the estimated gas compositions.

4. Estimate the uncertainty from the empirical distribu-
tions obtained in step 4.

Note that this procedure incorporates both uncertainty
due to the noise in the ultrasonic measurements, as well as
estimation errors from the PLSR step.

C. Experiments
C.1. Experimental design

In order to evaluate the performance of the proposed
method, a series of experiments was designed. For all mea-
surements, we used calibration gas mixtures from Air Liq-
uide Gas AB (Kungsängen, Sweden) with an analysis un-
certainty of 1 % (relative to the CO2 content).

Experiments were made at a static pressure of 8 bar at
room temperature (see details in the next section), for vol-
ume fractions of CO2 of 0 %, 2 %, 4 %, 6 %, 8 %, and
10 %, respectively. The order of the experiments was ran-
domized in order to avoid misinterpretations due to sys-
tematic variations in any ambient variables beyond our
control.

C.2. Setup
For all the experiments in this paper, the ultrasound

echoes were measured in a pulse-echo configuration (see
Fig. 1). A 300 kHz air transducer (D-Flow Technology
AB, Luleå, Sweden) was mounted in a measurement cell,
transmitting pulses through the gas towards a spherical
stainless steel reflector. As input to the phase velocity and
attenuation estimation algorithm, the second and fourth
echo, as indicated in Fig. 1, were used. The reason for
not using the first echo was that it contained some traces
from the excitation. The fourth echo was exploited instead
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Fig. 1. The measurement cell and the pulse-echo principle. The transducer emits an unknown sound wave. The reflections from the
bottom of the measurement cell is then recorded. Consecutive echoes can be recorded, as indicated in the figure. In this paper, the
second and the fourth echo are used, denoted p1(t) and p2(t), respectively.

of the third in order to maximize the propagation path and
thus amplify the effects of dispersion and attenuation in the
gas mixture.

A custom-built pressure chamber was used to achieve
the desired static pressures. For the experiments presented
here, the static pressure was set to 8.0 bar ±0.01 bar. The
pressure in the chamber was measured with an ANDER-
SON TPP Pressure Transmitter.

To excite and receive ultrasound pulses, a Panametrics
Pulser/Receiver Model 5052 was used. In transmitting
mode, the pulser/receiver was set to deliver maximum en-
ergy to the transducer, which corresponds to a short voltage
peak with 380 V amplitude with an energy of 104 µJ. In
the measurements presented here, the gain of the pulser’s
receiver input was set to 40 dB.

All pulses were sampled at 100 MHz using a 14-
bit CompuScope 14100 oscilloscope card (Gage Applied
Technologies Inc., Lachine, QC Canada). The pulses
where later down-sampled 12 times off-line to reduce the
amount of data to process.

For each measurement, the temperature was recorded
using an encapsulated PT100 probe mounted through the
wall of the pressure chamber. The average temperature of
the gas mixtures throughout the measurements was 20.4 ◦C
± 0.2 ◦C (± σ), where σ is the standard deviation of all
measured temperatures.

D. Results
Figures 2 and 3 show the results of from the parametric

estimation of attenuation and phase velocity, respectively.
Fig. 2 shows the result for pure CH4 and for a mixture con-
taining 10 % CO2 and 90 % CH4. Fig. 2 also presents the
corresponding ±2σ intervals, estimated using the proce-
dure described in Sec. B.3.. For the phase velocity, Fig. 3
illustrates all estimates. From the figure we see that there
is a significant change in phase velocity as the composition
of the gas mixture changes. In Fig. 3 no uncertainty inter-
vals are shown, for the simple reason that they are much
too narrow to be visible in the plot.

The attenuation and phase velocity estimates then served
as input to the PLSR step. The PLS model was built from
one experiment series, and the estimates in Fig. 4 were ob-
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Fig. 2. Estimated attenuation coefficients α (in Np/m) as a
function of the frequencies present in the pulse, for 0 % and 10 %
CO2. The error bars indicate the ±2σ uncertainties. The corre-
sponding curves for volume fractions of 2 %, 4 %, 6 %, and 8 %
lie in between these curves and have been left out for the sake of
clarity.

tained using a repeated experiment. Fig. 4 shows that accu-
rate estimates of the CO2 volume fractions were obtained.
Studying the uncertainty intervals (±2σ) we also note that
the resolution is excellent, enabling the measurement of
small changes in CO2 content.

E. Discussion
The use of a spherical reflector in the measurement cell

(see Fig. 1) could cause bias errors in the estimates of
phase velocity and attenuation, since the distance from the
transducer surface to the reflector is not unambiguously
known in the current setup. For this reason, we can not
claim that the measurements of phase velocity and attenu-
ations are correct, to an absolute value. However, since the
PLS regression step explores variations in these properties
and not absolute values, the nature of the setup should not
affect the final estimate of the CO2 and CH4 content.

As in all ultrasound measurement systems, environmen-
tal factors such as pressure and temperature fluctuations,
will affect the measured ultrasound pulses. Pressure and
temperature can be measured and incorporated into the
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Fig. 3. Estimated phase velocities cp (in m/s). The figure shows
the average value over 10 000 estimates. The uncertainties are
too small to be shown in the plot.
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Fig. 4. True vs. estimated volume fractions of CO2. The error
bars indicate the±2σ interval for each estimated volume fraction.

PLS regression model, or if their effects are known, into
the estimates of the attenuation and phase velocity. Even
if changes in pressure and temperature are monitored, they
are likely to decrease the performance of the estimator un-
less they are properly taken care of. This will be addressed
in future research. However, for the small changes ob-
served in the experiments presented in this paper, no sig-
nificant effect on the estimated volume fractions should be
expected.

F. Conclusions
In this paper we have demonstrated how the principle of

PLS regression (PLSR) can be combined with parametric
estimation of frequency dependent attenuation and phase
velocity to obtain accurate estimates of the quality of up-
graded biogas. We show that under constant pressure and
temperature conditions, the volume fraction of CO2 can be
accurately estimated with high repeatability, using a tech-
nique based solely on ultrasonic pulse-echo measurements.
Since the gas is a binary mixture of CO2 and CH4, this also
gives an estimate of the CH4 content, which is the domi-
nant factor when assessing the quality of upgraded biogas.
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