
Scheduling Garbage Collection in Real-time Systems

Martin Kero
Martin.Kero@ltu.se

Simon Aittamaa
Simon.Aittamaa@ltu.se

Department of Computer Science
Luleå University of Technology

Luleå, Sweden

ABSTRACT
The key to successful deployment of garbage collection in
real-time systems is to enable provably safe schedulability
tests of the real-time tasks. At the same time one must
be able to determine the total heap usage of the system.
Schedulability tests typically require a uniformed model of
timing assumptions (inter-arrival times, deadlines, etc.). In-
corporating the cost of garbage collection in such tests typ-
ically requires both artificial timing assumptions of the gar-
bage collector and restricted capabilities of the task sched-
uler. In this paper, we pursue a different approach. We show
how the reactive object model of the programming language
Timber enables us to decouple the cost of a concurrently
running copying garbage collector from the schedulability
of the real-time tasks. I.e., we enable any regular schedu-
lability analysis without the need of incorporating the cost
of an interfering garbage collector. We present the garbage
collection demand analysis, which determines if the garbage
collector can be feasibly scheduled in the system.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
[Real-time and embedded systems]; D.3.4 [Programming
Languages]: Processors—Memory management (garbage
collection)

General Terms
Algorithms, Languages, Reliability, Verification

Keywords
Schedulability analysis, reactive systems

1. INTRODUCTION
As capabilities of embedded devices increase, the possi-

bilities and demands of more complex systems arise. This
leads to an ever increasing need of more sophisticated run-
time system features. The ability to use shared dynamic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-905-3/10/10 ...$10.00.

data and parallel/concurrent execution of tasks are both ex-
amples of features that enables the programmer to more
extensively utilize these new capabilities. However, the two
features in conjunction makes automatic memory manage-
ment (garbage collection) a necessity.

Garbage collection has widely been acknowledge for re-
ducing development time as well as enhancing reliability
of software systems. In the real-time system context, the
work on garbage collection can roughly be divided into two
categories. The first category concerns the development of
garbage collection algorithms suitable for real-time systems.
This line of work was initiated already in the late 70’s by
Baker [2], and has since then received most of the attention.
The second category, to which this paper belongs, concerns
schedulability analyses of garbage collected real-time sys-
tems. This line of research was initiated by Henriksson [14].

A real-time system is defined in terms of a set of tasks
for which timing assumptions are uniformly defined (inter-
arrival times and patterns, deadlines, etc.). Corresponding
schedulability tests crucially depend on the uniformed task
model [21]. Adapting such tests to incorporate the cost of
garbage collection typically imposes unnecessary restrictions
on both task model and scheduler. The main issue is that
schedulability analysis requires execution time estimates of
the tasks to be independent, whereas such estimate of a
garbage collector depends on a combination of memory and
timing behaviors of the real-time tasks.

In this paper, we pursue a different approach. We show
how an incremental copying garbage collector [18] deployed
as a concurrent process in the reactive environment of the
programming language Timber [23] enables us to decouple
the cost of garbage collection from the feasibility of the real-
time tasks. I.e., we enable any schedulability analysis for a
real-time system, without the need of incorporating the cost
of garbage collection into that analysis. Instead, we offer
another analysis, decoupled from the regular schedulability
analysis. Given a schedulable set of tasks, our analysis pro-
vides a sufficient test to determine if the garbage collector
can be scheduled in the system. We call this analysis gar-
bage collection demand analysis. Our approach relies on the
following two key properties:

1. Each atomic increment of the garbage collector can be
executed within a small and constant time (including
root-set scanning and synchronization operations).

2. In order to preserve schedulability of the task set, the
garbage collector runs as the lowest priority process.

The running time of a concurrent copying garbage collec-
tor depends on the amount of live heap memory and the
synchronization work due to interrupting mutators. Besides
timing assumptions for the task set, our analysis requires
upper-bounds on global live heap space and heap allocation
of each task as input parameters. Such analyses does not fit
within the scope of this paper. However, a forthcoming pa-
per presenting live heap space analysis for real-time systems
is in preparation [19].

The general motivation behind this paper is pervaded by
the ambition to achieve provable schedulability properties of
a real-time garbage collector, as opposed to improve perfor-
mance. Although improving schedulability is important, it
is not within the scope of this paper to embark that field.
Instead, our objective is to enable schedulability tests for
garbage collection independently of which scheduling policy
that is employed for the real-time tasks.

2. TIMBER – REACTIVE OBJECTS
Timber is a, strongly typed, object-oriented programming

language for reactive real-time systems. The basis of the lan-
guage is the reactive object. This section is a brief description
of the parts of the language that are relevant to the rest of
this paper. More in-depth descriptions can be found at the
Timber official homepage [23], in the draft language report
[5], the formal semantics definition [7], and the descriptions
of the reactive object model [25, 24].

The reactive objects in Timber are concurrent. That
means, activity in one object can execute concurrently with
activity in other objects. Furthermore, objects are the only
state carrying data structures (mutable data) and the only
way to access the state of an object is through its meth-
ods. State integrity is preserved by restricting methods of
one particular object to execute under mutual exclusion. In
order to preserve aliveness, methods cannot block-and-wait
for future events. Events are instead interpreted as method
calls and each method will eventually terminate, leaving the
object in an idle state. Methods can either be asynchronous
(equivalent to events in their own right) or synchronous ren-
dezvous operations.

Timber offers a capability to express timing constraints
directly in the model. Asynchronous methods (events) are
associated with both a baseline (earliest release time) and
a deadline (latest response time). If not explicitly set, the
baseline of a method invocation is inherited from the method
who called it. If the event is due to an interrupt, the baseline
is set to the time-stamp of the interrupt. Deadlines are ex-
pressed relative to the current baseline. Similar to baselines,
deadlines are inherited if not explicitly set.

Correct timing behavior of a method is that it must start
executing and finish within its permissible execution win-
dow. Baselines and deadlines can be adjusted by explicitly
expressing it in the definition of an asynchronous method
(or by the caller).

Aside from the reactive objects, Timber consists of a ex-
pression layer based on a pure (no side-effects, only im-
mutable data) call-by-value functional language.

3. THE TIMBER RUN-TIME MODEL
In order to meet the semantic specification of the lan-

guage, a Timber program will depend on the infrastructure

provided by the run-time kernel of the language. Conceptu-
ally, the kernel has to offer the following services:

• Create an object,

• Send a synchronous message, and

• Send an asynchronous message (possibly delayed).

In reality, creating an object maps to allocation of storage.
The only difference between allocating an object and an im-
mutable data structure (struct, tuple, cons cell, etc.) is that
in order to enable mutual exclusion between methods of the
same object, each object needs a lock field. A synchronous
rendezvous is simply accomplished by locking the object be-
fore running the code of the method, and release the lock
afterwards. An asynchronous method call on the other hand
requires a new message (conceptually an execution thread)
to be allocated and enqueued in the proper message queue
(timer queue if delayed). Once this message gets to run, it
simply makes a regular synchronous call.

The default scheduling mechanism in the kernel is a pre-
emptive priority scheduler based on deadlines. Delayed mes-
sages are scheduled based on baselines. The scheduler in-
teracts with three types of data; objects (includes locks),
messages (including executable code, possibly parameters, a
baseline, and a deadline), and threads (messages extended
with an execution context). Objects are the shared resources
for which messages acquire and release locks. Asynchronous
messages that are latent (either delayed or pending) are,
when scheduled to run, promoted to a unique thread. The
concurrency of a Timber program is thus accomplished by
the scheduler; which, for each independent schedulable mes-
sage, may allocate a new unique thread of execution.

The interface of the scheduler consists of four entry points.

1. Whenever a new asynchronous message is posted (ei-
ther internally by another method or externally by an
interrupt).

2. When a method calls lock or unlock for an object.

3. When a method terminates.

4. When a timer interrupt occurs.

The scheduler manages three main data structures. A
stack of active threads (including, of course, each thread’s in-
dividual stored execution context), a priority queue of pend-
ing messages, and a queue of delayed messages ordered by
earliest baseline first.

There are a few very important properties of the kernel
that are worth mentioning. All lock operations eventually
return, either with the acquired lock or with a deadlock er-
ror. The lock of an object may only be owned by one mes-
sage at a time. The highest priority thread, or the thread
holding a lock wanted by the highest priority thread, will
always be the one scheduled to run. All messages will run
after their baselines since a delayed message will be pro-
moted to the queue of pending messages once its baselines
has expired. The aliveness property of a Timber program is
crucially dependent upon the fact that a successful lock is
always followed by an unlock and that all locks are acquired
in a nested manner.

4. THE GC ALGORITHM
We will base our analysis on the incremental copying gar-

bage collector presented in [18]. In this section we give a
shortened description of the essential parts of the algorithm.
For a complete specification with correctness proofs see the
original presentation.

We use Cheney’s in-place breadth-first traversal of gray
objects [9], and we deploy a read barrier similar to that of
Brooks [6]; i.e., reads to old copies in white space are for-
warded to their corresponding new copies in the gray/black
heap. Furthermore, we use a write barrier in the style of
Steele [27], where the tri-color invariant is upheld by revert-
ing black objects to gray upon mutation.

Let x, y, z range over heap addresses, and let n range over
integers. Let u, v range over values and be either a heap
address or an integer. Let U and V range over sequences of
such values.

A heap node can be either a sequence of values (enclosed
by angle brackets 〈V 〉) or a single forwarding address (de-
noted •x). A heap H is a finite mapping from addresses to
nodes, as captured by the following grammar.

(heap) H ::= {x1 #→ o1, . . . , xn #→ on}
(node) o ::= 〈V 〉 | • x
(value) v ::= x | n

The domain dom(H) of a heap H = {x1 #→ o1, . . . , xn #→
on} is the set {x1, . . . , xn}. A heap look-up is defined as
H(x) = o if x #→ o ∈ H . We write U, V to denote the
concatenation of the value sequences U and V . Along the
same line, we write H,G for the concatenation of heaps H
and G, provided their domains are disjoint.

The heap is described as a triple of subheaps separated
by heap borders (|). A heap border has the same mean-
ing as the regular concatenation operator for heaps, but it
also provides necessary bookkeeping information. The three
subheaps capture the white, gray, and black part of the heap
as in the tricolor abstraction [10].

The algorithm is based on a labeled transition system
(LTS) [22], where garbage collection transitions are so called
internal (τ) transitions. Each individual τ transition consti-
tutes an atomic increment by the garbage collector. In Fig-
ure 1 and 2, all possible internal transitions are shown. De-
terminism between different internal transitions are achieved
by pattern matching, as each configuration matches only one
single clause. The clauses are furthermore divided into two
groups, which we call scan and copy transitions. A garbage
collection cycle is a sequence of such transitions beginning
with a Start transition and ending with a Done transition.

H0
Start−→ H1 −→ . . . −→ Hn−1

Done−→ Hn

Notice that an active garbage collection cycle is identified
by a non-empty white subheap.

In contrast, the external transitions, such as mutations

and allocations, are labeled, denoted by H
l−→ H ′. The

definition of these transitions are shown in Figure 3. We use
a single root pointer r to capture the root-set. Even though
a real system most likely will contain more than one root,
this can easily be captured in our model by adjusting the
content of the node pointed to by r. I.e., the actual root-set
is the content of the node labelled r.

At the beginning of a cycle the heap has the form ∅ | G, r #→
〈V 〉 | ∅, and initiating a garbage collection cycle (Start) in-
validates the whole heap except for the root node. That is,
all nodes but r are made white by placing them to the left
of the white-gray heap border. The algorithm then proceeds
by scanning gray nodes (ScanStart) and takes proper ac-
tions when embedded addresses are encountered. This is ac-
complished by a scan pointer that traverses the gray nodes.
The scan pointer is denoted by the symbol ↓ and has sim-
ilar function and purpose as the heap borders, i.e. regular
concatenation as well as bookkeeping information. When a
whole node has been scanned it is promoted from gray to
black (ScanDone). When there are no more gray nodes to
scan the garbage collector is finished (Done).

During scanning of a gray node, encountering an address
may result in one of three possible actions. If the address
found is not in the white heap, the algorithm just goes on
to examine the next gray node field (ScanAddr). If the
address is in the white heap, and the corresponding node
is a forwarding node, the forwarding address replaces the
encountered address (Forward). If, on the other hand,
the node found is a regular white node, copying is initi-
ated (CopyStart). This is done by allocating a new empty
node in the gray heap and locking the scan pointer, which
we denote by the alternative concatenation symbol symbol
↑z (where the index is the address of the new empty node).
The white node is then copied word by word (CopyWord)
until the whole node has been copied (CopyDone). At this
point, the address of the newly allocated node replaces the
old encountered address, and the original white node is con-
verted into a forwarding node.

5. SCHEDULING THE GC
The problem of scheduling garbage collection in real-time

systems is twofold. The requirements put on the garbage
collector scheduler are:

1. the garbage collector must not cause any task to miss
its deadline, and

2. the system must not run out of memory.

One can easily see that fulfilling one of the requirements may
cause a failure to meet the other. E.g., to avoid running
out of memory, the garbage collector needs to run, which
in turn may cause a task to fail meeting its deadline. This
scheduling problem is not easily solved and it becomes even
more difficult in our case because we use a copying collec-
tor, which, conceptually, has to finish before any garbage
memory can be reused.

5.1 Idle time GC
In the general case, finding and scanning the root-set in-

crementally is a very difficult task. The problem is that the
root-set is not constant. Finding all roots requires scanning
of, not only static fields and CPU registers, but also the
run-time stacks. Since the depth and content of the run-
time stacks are not constant, the cost of scanning them is
bound to be unpredictable. Scanning them incrementally
is also deemed to be notoriously hard due to their volatile
nature. In the worst case, the scanning process would need
to be restarted at each increment since the content of the
stacks may have been altered altogether. The idea of possi-
bly restart the scanning process of an arbitrary sized root-set

Start ∅ | G, r "→ 〈V 〉 | ∅ −→ G | r "→ 〈V 〉 | ∅

ScanStart W | G, x† "→ 〈V 〉 | B −→ W | G, x "→ 〈↓ V 〉 | B W (= ∅, †may be dirty

ScanInt W | G, x "→ 〈V ↓ n, V ′〉 | B −→ W | G, x "→ 〈V, n ↓ V ′〉 | B W (= ∅

ScanAddr W | G, x "→ 〈V ↓ y, V ′〉 | B −→ W | G, x "→ 〈V, y ↓ V ′〉 | B W (= ∅, y /∈ dom(W)

ScanRestart W | G, ẋ "→ 〈V ↓ V ′〉 | B −→ W | G, x "→ 〈↓ V, V ′〉 | B W (= ∅

ScanDone W | G, x "→ 〈V ↓〉 | B −→ W | G | x "→ 〈V 〉, B W (= ∅

Done W | ∅ | B −→ ∅ | B | ∅

Figure 1: Scan transitions.

W, y "→ •z, W ′ | G, x "→ 〈V ↓ y, V ′〉 | B
Forward −→

W, y "→ •z, W ′ | G, x "→ 〈V, z ↓ V ′〉 | B

W, y† "→ 〈U〉, W ′ | G, x "→ 〈V ↓ y, V ′〉 | B †may be dirty
CopyStart −→

W, y "→ 〈U〉, W ′ | z "→ 〈〉, G, x "→ 〈V ↑z y, V ′〉 | B z is fresh

W, y "→ 〈U, u, U ′〉, W ′ | G, z "→ 〈U〉, G′, x† "→ 〈V ↑z y, V ′〉 | B
CopyWord −→ †may be dirty

W, y "→ 〈U, u, U ′〉, W ′ | G, z "→ 〈U, u〉, G′, x† "→ 〈V ↑z y, V ′〉 | B

W, ẏ "→ 〈U〉, W ′ | G, z "→ 〈U ′〉, G′, x† "→ 〈V ↑z y, V ′〉 | B
CopyRestart −→ †may be dirty

W, y "→ 〈U〉, W ′ | G, z "→ 〈〉, G′, x† "→ 〈V ↑z y, V ′〉 | B

W, y "→ 〈U〉, W ′ | G, z "→ 〈U〉, G′, x† "→ 〈V ↑z y, V ′〉 | B
CopyDone −→ †may be dirty

W, y "→ •z, W ′ | G, z "→ 〈U〉, G′, x† "→ 〈V, z ↓ V ′〉 | B

Figure 2: Copy transitions.

at each increment is not very appealing, especially not when
it comes to real-time systems.

In order to remedy this problem, we will restrict the gar-
bage collector to only run at idle time. Although this policy
has been considered inferior to other approaches (in terms
of performance), it comes with a couple of substantial ad-
vantages.

5.1.1 Constant time root-set scanning
In a reactive system, such as Timber, the root-set during

idle time is very small. The queue of pending messages is
empty and no run-time stacks exist. In fact, the root-set
consists of only two elements, the interrupt vector and the
queue of delayed messages. The size of these data structures
are directly connected to the number of tasks defined. Since
periodic task releases are achieved by posting a delayed mes-
sage for the next instance of the task, each periodic task will
contribute with one message in the queue of delayed mes-
sages. Tasks that are connected to external events (hardware
interrupts) has their corresponding messages in the interrupt

vector. Thus, if the set of tasks is statically known, the size
of the root-set is also statically known.

5.1.2 Schedulability analysis is preserved
Since the garbage collector is the lowest priority process

in the system it will never compete for CPU time with the
real-time tasks. Nonetheless, if the garbage collector is run-
ning (which must be assumed in the worst case) some extra
overhead is put on the tasks due to synchronization issues.
Furthermore, even though the garbage collector is incremen-
tal, the longest atomic increment must be taken into account
as an execution time overhead for each task.

In the next section we will look into the details of these
overheads and show that the synchronization overhead, is
very small (zero for the hard real-time case).

6. GC OVERHEAD
Restricting the garbage collector to only run at idle time

reduces the problem of determining the time overhead due
to garbage collection significantly. The induced overhead
can be divided into two parts, the cost of actually inter-

H = W, x "→ 〈U〉, W ′ | G | B

MutW
w(p:i=q)−→ if read(H, r, p) = x and read(H, r, q) = y

H′ = W, ẋ "→ 〈U [i] := y〉, W ′ | G | B

H = W | G, x "→ 〈U〉, G′ | B

MutG
w(p:i=q)−→ if read(H, r, p) = x and read(H, r, q) = y

H′ = W | G, ẋ "→ 〈U [i] := y〉, G′ | B

H = W | G | B, x "→ 〈U〉, B′

MutB
w(p:i=q)−→ if read(H, r, p) = x and read(H, r, q) = y

H′ = W | ẋ "→ 〈U [i] = y〉, G | B, B′

Write H, x "→ 〈U〉, H′ w(p:i=n)−→ H, x "→ 〈U [i] := n〉, H′ if read(H, r, p) = x

Read H
r(p=n)−→ H if read(H, r, p) = n

H = W, x "→ 〈U〉, W ′ | G | B

AllocMutW
a(p:i)−→ if read(H, r, p) = x

H′ = W, ẋ "→ 〈U [i] := z〉, W ′ | z "→ 〈〉, G | B

H = W | G, x "→ 〈U〉, G′ | B

AllocMutG
a(p:i)−→ if read(H, r, p) = x

H′ = W | z "→ 〈〉, G, ẋ "→ 〈U [i] := z〉, G′ | B

H = W | G | B, x "→ 〈U〉, B′

AllocMutB
a(p:i)−→ if read(H, r, p) = x

H′ = W | ẋ "→ 〈U [i] := z〉, z "→ 〈〉, G | B, B′

Figure 3: Mutator transitions.

rupting the garbage collector while it is running, and the
cost of synchronizing with garbage collector (read and write
barriers).

6.1 Longest atomic increment of the GC
The longest atomic increment of the garbage collector

is easily determined directly from the algorithm definition
(Fig. 1 and 2). Since none of the transitions are dependent
on any variable-sized data the cost is constant in terms of
number of instructions to execute.

6.2 Synchronization
Generally, the need of synchronization for an incremental

garbage collector is to preserve the tri-color invariant [10].
However, for a copying garbage collector the situation is a
little bit trickier. Not only is the synchronization mechanism
needed to preserve the liveness view of the heap but also for
assuring that mutators access the new copies (if they exist)
of heap objects. The synchronization between mutators and
the garbage collector typically boils down to so called barrier
methods. One for reading and one for writing heap data.

The reactive objects of Timber enable us to reduce these
synchronizations substantially. The reason is that the only
mutable data structures are the objects. Immutable data,
as pointed out already by Doligez and Leroy [11] as well
as Huelsbergen and Larus [15], require no synchronization
actions.

Since access to objects must be made under mutual ex-
clusion, a combined read/write barrier can be used that is
invoked as part of the lock operation. That is, instead of
calling a barrier method for every heap access, we now only
need to invoke the barrier when an object is locked. Since
most methods only lock one object, the combined read/write
barrier is called only once per method invocation.

6.3 Hard real-time systems
Since an object should contain at least one method in

order to be meaningful, the concept of dynamic object cre-
ation ultimately leads to dynamic creation of tasks. How-
ever, generally speaking, in order to determine schedulabil-
ity, dynamic creation of tasks cannot be allowed. All tasks
must be statically known. Thus creating objects dynami-
cally cannot be allowed. These mutable objects can then
be allocated static. What is left in the dynamic heap is
now only immutable data which do not require any syn-
chronization. Synchronization overhead is hence eliminated
altogether. In Fig. 4, an example of how such a system is
arranged in memory is shown.

7. SCHEDULABILITY OF THE GC
We have so far shown that the first requirement of garbage

collection scheduling is fulfilled by our collector. We have
accomplished this by restricting the garbage collector to only

In
te

rr
up

t a
nd

 d
el

ay
ed

 m
es

sa
ge

s
Object

Static memory

Dynamic memory (heap)

Object Object

Only immutable data

Figure 4: Example of a Timber system with only
static objects.

run at idle time. In this section we will look at what is
required in order to fulfill the second requirement.

7.1 Garbage collection demand analysis
Baruah et al. presents a feasibility test for real-time tasks

called processor demand analysis [4, 3]. We present a feasi-
bility test for garbage collection in real-time systems called
garbage collection demand analysis. In contrast to checking
that the processor demand for all possible time windows are
less than the size of the window, our analysis determines the
required size of the window such that the garbage collection
demand is less than the size of the window. If such a window
size can be found and the required memory demands of that
window size can be met, our garbage collector can feasibly
be schedule in the system.

We will only look at the hard real-time case for the anal-
ysis, which means no mutable data will be present on the
heap and the transitions ScanRestart and CopyRestart
will never be taken.

We begin by looking at the execution time of the garbage
collector if it is allowed to run without interruptions, and
then we look at the cost contributed by tasks interrupting
the collector.

The garbage collector transitions are defined in Fig. 1 and
2. The Start and Done transition is only taken once per
garbage collection cycle. The number of transitions of each
kind can be derived from three basic parameters of the heap
to be collected:

M : Amount of reachable memory to copy (in words).
O : Number of reachable nodes on the heap.
R : Number of reachable references on the heap.

We can now formulate the execution time of garbage collec-
tion (Tgc) in terms of these parameters and execution times
of each transition (denoted by T<name of transition>).

Tgc =M ∗ TCopyWord+

O ∗ (TScanStart + TScanDone + TCopyStart+

TCopyDone) + R ∗ TScanAddr

+ (R − O) ∗ TForward + TStart + TDone

=M ∗ TCopyWord+

O ∗ (TScanStart + TScanDone + TCopyStart+

TCopyDone − TForward)+

R ∗ (TScanAddr + TForward)

+ TStart + TDone

(1)

Due to the fact that the tasks never can cause anymore
copying work for the garbage collector1 and we only have
immutable data on the heap, the only extra garbage collec-
tion cost of interruptions is due to new allocations. Similarly
to the heap parameters above we have three parameters due
to new allocations during garbage collection:

AM
i : Amount of new memory allocated by task i (in words).

AO
i : Number of nodes allocated by task i.

AR
i : Number of references allocated by task i.

We can now formulate the garbage collector execution time
due to new allocations made by task i (T A

i).

T A
i =AO

i ∗ (TScanStart + TScanDone)+

AR
i ∗ TScanAddr+

(AR
i − AO

i) ∗ TForward

=AO
i ∗ (TScanStart + TScanDone − TForward)+

AR
i ∗ (TScanAddr + TForward)

(2)

Now we will look at the total garbage collection demand
for a time window of size t. For the sake of simplicity we
will assume that the heap and allocation parameters are
constants. Even though this is not true in reality (reachable
memory, allocation rates, etc. tend to vary over time) we
can always assume the worst case. We will return to the
validity of this assumption at the end of this section.

Let n be the number of tasks, T A
i be the garbage collection

execution time due to allocations made by task i,
l

t
Pi

m
the

maximum number of releases of task i in a time window of
size t, Ci the execution time of task i, and Pi the period of
task i. We can now formulate the total garbage collection
demand (Cgc) in a time window of size t as follows.

Cgc(t) = Tgc +
nX

i=1

‰
t
Pi

ı
∗ (Ci + T A

i) (3)

Informally, Cgc consists of two independent parts. One
accounting for the execution time required to garbage collect
the heap, as if undisturbed. The second part accounts for
the extra time induced and consumed by tasks interrupting
the garbage collector.

Theorem 7.1. For any t such that Cgc(t) ≤ t the garbage
collector can be scheduled feasibly (w.r.t. time) with a period
of t.
1This is because new data is allocated in tospace and
garbage nodes can never become reachable again (see
Lemma 5.1 in [18]).

Proof By contradiction.

The memory needs of the system is formulated as a func-
tion of the period t of the garbage collector.

Mtot(t) = 2 ∗

M +
nX

i=1

‰
t
Pi

ı
∗ AM

i

!
(4)

In order to complete the proof of correctness of the fea-
sibility test, we need to show that it is sufficient to test
feasibility of the worst case of heap and allocation parame-
ters.

Lemma 7.2. If the garbage collector can feasibly be sched-
uled with a period of t for a system with heap parameters M ,
O, and R, and for all tasks i, allocation parameters AM

i , AO
i ,

and AR
i . Then, for any M ′ ≤ M , O′ ≤ O, R′ ≤ R, and for

all tasks i, AM
i

′ ≤ AM
i , AO

i
′ ≤ AO

i , and AR
i
′ ≤ AR

i , the
garbage collector can still be feasibly scheduled with a period
of t.

Proof Follows directly from the fact that Equation 1 and 2
are monotonic.

8. EXPERIMENTAL RESULTS
The objective of the experimental study is to confirm that

the model conceptually captures the execution time of the
garbage collector. In other words, for a particular platform,
there shall exist constants (e.g. TCopyWord) such that we
can construct the platform specific model of worst-case gar-
bage collection execution time by simply replacing the con-
stants in the general model by appropriate values. Natu-
rally, experimental results are by no means guaranteed to
reveal the worst-case behavior (i.e. the constants associated
with the actual worst-case behavior). However, if set up
appropriately, it will inevitably expose flaws of the model
(non-existence of constants). It should be noted that this
experimental study is by no means a performance evalua-
tion of the garbage collector or the way it is scheduled.

In the model, we have five parameters (M , O, R, AO
i , and

AR
i) that affects the execution time of the garbage collector

(Tgc and T A
i). The general approach we pursue is to measure

the effect of each parameter in isolation whilst keeping the
other parameters constant.

8.1 Hardware platform
The experimental platform we use is the LPC2468 Devel-

oper’s Kit from Embedded Artists [29], with the standard
LPC2468-16 OEM board replaced by an LPC2468-32 OEM
board. The LPC2468-32 OEM board contains a standard
NXP ARM7TDMI-S LPC2468 microcontroller [30] along
with 32 MB of SDRAM from Micron [28]. The reason we
choose this platform is simply because it has a sufficient
amount of memory (i.e. enables sufficiently wide ranges of
input parameter values for the measurements), a JTAG in-
terface, and a fairly simple memory hierarchy. The micro-
controller has no cache, but there exists a primitive buffering
mechanism within the External Memory Controller (EMC).

8.2 Software platform
In order to make it easy to run the measurements, we use

two different code-bases. The first code-base is provided by
Embedded Artists [29] and takes care of the initialization of

the LPC2468, setting the CPU clock to 57.6 MHz and ini-
tializes the External Memory Controller (EMC). When the
initialization of the LPC2468 is complete the microcontroller
will be stuck in an infinite-loop. Once the infinite-loop is
reached we connect to the microcontroller using the JTAG
interface and upload the second code-base into the SDRAM.
The second code-base consists of the test-code along with the
Timber Run-Time System (Timber RTS). The Timber RTS
used in the experiments is based on the standard ARM RTS
available in the Timber darcs repository [23]. The ARM
RTS has then been modified to support logging of several
events within the RTS, among other things the GC-time
and execution-time of messages. Special care is taken to
minimize the effects of the logging. While it is impossible
to completely remove the effects of logging the overhead is
very small, constant, and predictable. After the test-run is
complete we download the log from the internal SRAM of
the microcontroller via the serial port.

8.3 Measurements

8.3.1 Parameters affecting Tgc

We have three heap parameters affecting the resulting Tgc.
We setup the test runs in such way that each parameter
can be varied in isolation (except when varying number of
live nodes). The general configuration is a time-triggered
scheduling of the garbage collector. The live data on the
heap is a constant structure which is relocated 100 times by
the garbage collector for each parameter value. We collect
the total running time of each garbage collection cycle. Dur-
ing these measurements, we do not have any tasks running
concurrently with garbage collector. We do this procedure
for 1000 different values of the parameter in question.

Varying amount of live memory We use one live node,
which we vary the size from 1 to 1000 words containing
no references. The results of this is shown in Figure 5.

Varying amount of live references We use one live node
with a constant size of 1000 words, for which we vary
the number of self references from 1 to 1000. The re-
sults of this is shown in Figure 6.

Varying number of live nodes We use a linked list where
each node is of a constant size (16 words) and contain-
ing 1 reference (the next field). We vary the length of
the list (i.e. the number of live nodes) from 1 to 1000.
The results of this is shown in Figure 7. Due to the fact
that we cannot easily generate equivalent data struc-
tures with amount of live memory and number live ref-
erences constant and vary the number of nodes with
sought granularity, we actually vary all three parame-
ters in a controlled way (i.e. 16 words live memory, 1
live reference, and 1 live object per data point).

8.3.2 Parameters affecting T A
i

We have two heap parameters affecting the resulting T A
i .

We setup the test runs in such way that each parameter can
be varied in isolation. The general configuration is, again, a
time-triggered scheduling of the garbage collector, but now
accompanied with a task interrupting the GC once at every
run. The amount of live data on the heap is kept constant
over all runs as a constant payload of work to be done. We

G
C

tim
e

[u
s]

Live memory [Words]
0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 5: Measurement data of GC time as a func-
tion of live memory.

G
C

tim
e

[u
s]

Number of live references
0 200 400 600 800 1000

0
50

0
10

00
15

00
20

00

Figure 6: Measurement data of GC time as a func-
tion of number of live references.

collect the total running time of each garbage collection cy-
cle. We do this procedure for 1000 different values of the
parameter in question.

Varying amount of references allocated We allocate one
node with a constant size 1000, for which we vary the
number of self references from 1 to 1000. The results
of this is shown in Figure 8.

Varying number of nodes allocated We allocate a linked
list where each node is of a constant size (16 words)
and containing 1 reference (the next field). We vary
the length of the list (i.e. the number of live nodes)
from 1 to 1000. The results of this is shown in Figure 9.

From the measurements we can see that the behavior ap-
pears to be linear in all parameters. The scattered cluster-
ing of data points for some of the measurements can be ex-
plained by the, although relatively simple, non-flat behavior

G
C

tim
e

[m
s]

Length of live linked list
0 200 400 600 800 1000

0
5

10
15

20
25

30
35

Figure 7: Measurement data of GC time as a func-
tion of the length of the live linked list.

G
C

tim
e

[m
s]

Number of allocated references
0 200 400 600 800 1000

0
5

10
15

20

Figure 8: Measurement data of GC time as a func-
tion of number of references allocated by an inter-
rupting task.

of the EMC. The reason why, for some measurements, the
clustering forms distinct lines instead of being more evenly
distributed in an area is the discrete behavior of the EMC
(i.e., either hit or miss in the pre-fetch cache) together with
the way the heap parameters were controlled (keeping all
but one constant). Nonetheless, the overall tendency is lin-
ear which supports the validity of the model.

9. RELATED WORK
The key issue in scheduling concurrent garbage collection

in real-time systems is undoubtedly how the garbage collec-
tor should be able to compete with the real-time tasks. Typ-
ically, this amounts to finding appropriate timing assump-
tions for the collector task. Although the garbage collector
does not really have such timing properties, more or less arti-
ficial ones are necessary in order to determine schedulability

G
C

tim
e

[m
s]

Length of allocated linked list
0 200 400 600 800 1000

0
5

10
15

20
25

30

Figure 9: Measurement data of GC time as a func-
tion of the length of the linked list allocated by an
interrupting task.

of the whole system. Due to the quite complex dependency
between properties of the real-time tasks and the required
execution time for garbage collection, much of the focus in
this field have unfortunately diverged from pure schedula-
bility analysis towards improving measured performance.

In [12], Fu and Hauser presents a framework for describing
a broad class of real-time garbage collectors and their cor-
responding scheduling premises. They also accurately iden-
tify the key to enable provable schedulability guarantees of
a garbage collected system, to wit comprehensive knowledge
about the memory behavior of the real-time tasks as well as
the inter-dependencies between them and the garbage col-
lector.

In [13], Henriksson presents a feasibility test for garbage
collection based on response time analysis [16]. In contrast
to our work, he assumes a per task parameter for worst-
case garbage collection time required after one invocation
(Gi). This parameter slightly corresponds to our execution
time parameter due to new allocations (T A

i). However, he
does not present the connection between Gi and the actual
garbage collection algorithm used. This work was later ex-
tended by Gesteg̊ard-Robertz and Henriksson to compute
an upper-bound on the cycle time of the garbage collector
in order to meet total heap memory limits [26], which cor-
responds to a rearrangement of our memory needs formula
(Equation 4).

In [20], Kim et al. presents upper-bound estimates on the
execution time of a garbage collector based on Brook’s [6]
evacuation strategy. They present a schedulability test for
the whole system based on a worst-case response time anal-
ysis of a sporadic server. In addition, they also present a
live memory analysis to determine the worst-case local live
heap memory of each task. In contrast to our work, they do
not present a detailed connection between the parameters
used in the execution time estimate and the actual garbage
collection algorithm used. They are also limited to use rate
monotonic priorities to enable the sporadic server schedula-
bility test.

In [8], Chang presents a hybrid approach based on a lazy
freeing reference counting collector and a backup mark-sweep
collector. External fragmentation is avoided by using a fixed
block size. He also presents a schedulability test based on
a dual-priority scheduling scheme including the worst-case
cost for both the reference counting collector and the mark-
sweep collector. This is achieved by integrating the two gar-
bage collectors into the real-time scheduling framework as
tasks (i.e., derive appropriate timing assumptions for them).
The main difference between his approach and ours is that
he integrates the cost of garbage collection in the regular
schedulability analysis. This makes it more difficult to ex-
tend the regular schedulability test with more features (e.g.,
shared resources) without affecting the schedulability test of
the garbage collector.

Recently, Kalibera et al. developed schedulability tests for
both time-based and slack-based scheduling of time-triggered
garbage collection [17]. They show that none of them are
superior to the other (in terms of schedulability) and they
draw the conclusion that the choice of scheduling policy is
a key part of designing garbage collected real-time systems.

10. CONCLUSION
We have shown how the reactive object model of Tim-

ber enables us to decouple the schedulability analysis of
the real-time tasks from the cost of garbage collection. We
have, based on the incremental copying garbage collector
presented in [18] and the real-time programming language
Timber [23], developed a feasibility test for the collector.
We call this test garbage collection demand analysis, which
contains only clearly identified parameters of the real-time
system and their corresponding effect on garbage collection
time. Apart from formal verification of correctness, we have
confirmed the validity of the model through an experimental
study run on the LPC2468 Developer’s Kit from Embedded
Artists.

The key motivation behind our approach to schedule gar-
bage collection is to enable any scheduling policy (with cor-
responding feasibility test) for the real-time tasks. This
is achieved by identifying and exploiting key properties of
the run-time behavior of real-time tasks defined in Timber,
which allow us to decouple the cost of garbage collection
from the processor demand of the real-time tasks.

11. FURTHER WORK
Apart from timing assumptions and properties required by

regular schedulability analyses (such as inter-arrival times,
deadlines, worst-case execution times, etc.) our analysis also
requires global live heap space bounds and heap allocation
bounds for each task. Analyzing heap allocation properties
for each task corresponds quite well to execution time analy-
sis (with a slightly different cost model). Both are monotoni-
cally increasing accumulative properties. The results of such
program analyses are typically expressed as functions of the
programs input data [1]. In a real-time system, where tasks
maintain an ongoing interaction with the environment, in-
put data are typically tightly coupled with the state of the
system. As a fortunate coincidence, such state-dependent
properties corresponds very well to the behavior of global
live heap space. Kero et al. has a forthcoming paper in
preparation, presenting live heap space analysis for real-time
systems [19].

Acknowledgments
The authors would like to thank the anonymous referees for
their helpful comments.

12. REFERENCES
[1] E. Albert, S. Genaim, and M. Gómez-Zamalloa.

Parametric inference of memory requirements for
garbage collected languages. In 9th International
Symposium on Memory management, 2010.

[2] H. G. Baker. List processing in real time on a serial
computer. Communications of the ACM,
21(4):280–294, 1978.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier.
Preemptively scheduling hard-real-time sporadic tasks
on one processor. In 11th Real-Time Systems
Symposium, pages 182–190. IEEE Computer Society
Press, 1990.

[4] S. K. Baruah, L. E. Rosier, and R. R. Howell.
Algorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one
processor. Real-Time Systems, 2(4):301–324,
November 1990.

[5] A. Black, M. Carlsson, M. Jones, R. Kieburtz, and
J. Nordlander. Timber: A programming language for
real-time embedded systems. Technical Report
CSE-02-002, Dept. of Computer Science and
Engineering, Oregon Health and Science University,
April 2002.

[6] R. A. Brooks. Trading data space for reduced time
and code space in real-time garbage collection on stock
hardware. In LFP ’84: Proceedings of the 1984 ACM
Symposium on LISP and functional programming,
pages 256–262. ACM Press, August 1984.

[7] M. Carlsson, J. Nordlander, and D. Kieburtz. The
Semantic Layers of Timber. In The First Asian
Symposium on Programming Languages and Systems
(APLAS), Beijing, 2003. C Springer-Verlag., 2003.

[8] Y. Chang. Garbage Collection for Flexible Hard
Real-Time Systems. PhD thesis, University of York,
July 2007.

[9] C. J. Cheney. A nonrecursive list compacting
algorithm. Communications of the ACM,
13(11):677–678, 1970.

[10] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: an exercise in cooperation.
Communications of the ACM, 21(11):966–975, 1978.

[11] D. Doligez and X. Leroy. A concurrent, generational
garbage collector for a multithreaded implementation
of ML. In Proceedings of the 20th ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 113–123, 1993.

[12] W. Fu and C. Hauser. A real-time garbage collection
framework for embedded systems. In Proceedings of
the 2005 workshop on Software and compilers for
embedded systems, pages 20–26, New York, NY, USA,
2005. ACM.

[13] R. Henriksson. Predictable Automatic Memory
Management for Embedded Systems. In OOPSLA’97
Workshop on Garbage Collection and Memory
Management, 1997.

[14] R. Henriksson. Scheduling Garbage Collection in
Embedded Systems. PhD thesis, Lund Institute of
Technology, 1998.

[15] L. Huelsbergen and J. R. Larus. A Concurrent
Copying Garbage Collector for Languages that
Distinguish (Im)mutable Data. In Principles Practice
of Parallel Programming, pages 73–82, 1993.

[16] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal,
29(5):390–395, 1986.

[17] T. Kalibera, F. Pizlo, A. L. Hosking, and J. Vitek.
Scheduling hard real-time garbage collection.
Real-Time Systems Symposium, IEEE International,
pages 81–92, 2009.

[18] M. Kero, J. Nordlander, and P. Lindgren. A Correct
and Useful Incremental Copying Garbage Collector. In
Proceedings of the 2007 international symposium on
Memory Management (ISMM’07), Montréal, Québec,
Canada, October 2007.

[19] M. Kero, P. Pietrzak, and J. Nordlander. Live heap
space bounds for real-time systems. In preparation.
http://staff.www.ltu.se/~keero/LiveHeap.pdf,
2010.

[20] T. Kim, N. Chang, and H. Shin. Joint scheduling of
garbage collector and hard real-time tasks for
embedded applications. Journal of Systems and
Software (JSS), 58(3):245–258, September 2001.

[21] C. M. Krishna and K. G. Shin. Real-Time Systems.
McGraw-Hill, 1997.

[22] R. Milner. Communicating and mobile systems: the
π-calculus. Cambridge University Press, 1999.

[23] J. Nordlander, M. Carlsson, A. Gill, P. Lindgren, and
B. von Sydow. The Timber homepage.
http://timber-lang.org, 2008.

[24] J. Nordlander, M. Carlsson, M. Jones, and J. Jonsson.
Programming with Time-Constrained Reactions, 2005.

[25] J. Nordlander, M. P. Jones, M. Carlsson, D. Kieburtz,
and A. Black. Reactive Objects. In Fifth IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, Arlington, VA,
2002.

[26] S. G. Robertz and R. Henriksson. Time-triggered
garbage collection: robust and adaptive real-time gc
scheduling for embedded systems. In LCTES ’03:
Proceedings of the 2003 ACM SIGPLAN conference
on Language, compiler, and tool for embedded systems,
pages 93–102, New York, NY, USA, 2003. ACM.

[27] G. L. Steele. Multiprocessing compactifying garbage
collection. Communications of the ACM,
18(9):495–508, September 1975.

[28] Webpage.
http://download.micron.com/pdf/datasheets/dram/
mobile/256MbSDRAMx32 low power.pdf, April 2010.

[29] Webpage. http://embeddedartists.com/, April 2010.
[30] Webpage.

http://www.standardics.nxp.com/products/lpc2000/
lpc24xx/, April 2010.

