Green ionic liquids for the production of fully biobased and biodegradable all-cellulose composites

Benoît Duchemin, Aji Mathew and Kristiina Oksman

Division of Manufacturing and Design of Wood and Bionanocomposites
Luleå University of Technology

10th International Conference on Wood and Biofiber Plastic Composites & Cellulose Nanocomposites Symposium, Madison, Wisconsin, USA.
All-cellulose composites

• Fully biobased and biodegradable composite material composed solely of cellulose.
• Manufactured by:
 – (i) mixing fully dissolved cellulose and undissolved cellulose
 – (ii) by consolidating partially dissolved cellulose.
• The material needs to be regenerated (precipitated) and dried.
• Excellent mechanical properties.
Outline

• Background:
 – General idea
 – Partial dissolution
 – Comparison with other materials
 – Solvents

• Experimental procedures:
 – Materials
 – Characterization
 – Manufacturing

• Results:
 – XRD
 – Mechanical properties
 – SEM
 – DP

• Conclusions
 – Schematic
 – General remarks
The philosophy behind all-cellulose composites

Composite → Matrix → Reinforcement

Regenerated cellulose obtained by cellulose dissolution, insureing excellent interfacial chemical bonding

Natural fibre from ramie, wood pulp, rice husk, MCC, BC, etc

Regenerated fibre: high-strength, high modulus, high orientation fibres

Cellulose I crystallites: $E_{\text{cellulose I}} > E_{\text{cellulose II}}$

<table>
<thead>
<tr>
<th></th>
<th>$E_{\text{cellulose I}}$ (GPa)</th>
<th>$E_{\text{cellulose II}}$ (GPa)</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>138</td>
<td>88</td>
<td>Nishino 1995</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>75</td>
<td>Ishikawa 1997</td>
</tr>
</tbody>
</table>
Manufacturing by partial dissolution: step 1

- Crystallites ~3-7 nm initially present in the material.
- Non-crystalline phase surrounding the crystallites and making the microfibrils.
- Solvent
Future Trends in Packaging Materials

Manufacturing by partial dissolution: step 2

- Crystallites
- Non-crystalline phase
- Solvent
- Dissolved cellulose
Future Trends in Packaging Materials

Manufacturing by partial dissolution: steps 3 and 4

- Crystallites
- Dissolved cellulose
- Precipitation medium
- Regenerated cellulose
Future Trends in Packaging Materials

What all-cellulose composites are not

- Tracing paper
- Vulcanized paper
- Cellophane
- Regenerated films from NMMO

Specialty papers

Regenerated cellulose
Mechanical properties of all-cellulose composites compared

Regular paper, GF weave/epoxy, regenerated cellulose films, MFC composites (low resin content), nanofibrillated cellulose paper, all-cellulose composites
Mechanical properties of all-cellulose composites compared

- Young's modulus (GPa)
- Strain (%)

Regular paper, GF weave/epoxy, regenerated cellulose films, MFC composites (low resin content), nanofibrillated cellulose paper, all-cellulose composites
Mechanical properties of all-cellulose composites compared

Regular paper, **GF weave/epoxy**, regenerated cellulose films, MFC composites (low resin content), nanofibrillated cellulose paper, all-cellulose composites
Future Trends in Packaging Materials

Mechanical properties of all-cellulose composites compared

Regular paper, GF weave/epoxy, regenerated cellulose films, MFC composites (low resin content), nanofibrillated cellulose paper, all-cellulose composites
Future Trends in Packaging Materials

Mechanical properties of all-cellulose composites compared

Regular paper, GF weave/epoxy, regenerated cellulose films, MFC composites (low resin content), nanofibrillated cellulose paper, all-cellulose composites
Future Trends in Packaging Materials

The *greenness* of all-cellulose composites...

...is determined by the choice of solvent

<table>
<thead>
<tr>
<th>Factors</th>
<th>Efficiency</th>
<th>Temperature</th>
<th>Viscosity</th>
<th>Recyclability</th>
<th>Hygroscopicity</th>
<th>V.O.C.</th>
<th>Pre-treatment</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiCl/DMAc</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔️</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Ionic liquids (*)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

(*): BmimCl (a.k.a. \([C_4\text{mim}]\text{Cl}\)), BmimBr, BmimSCN, BmPyCl, AmimCl, EmimAc, EmimDEPO, ...
Outline

• Background:
 – General idea
 – Partial dissolution
 – Comparison with other materials
 – Solvents

• Experimental procedures:
 – Materials
 – Characterization
 – Manufacturing

• Results:
 – XRD
 – Mechanical properties
 – SEM
 – DP

• Conclusions
 – Schematic
 – General remarks
Materials

- **Whatman filter paper** grade 40 (95 g/m², ash content < 0.007%) from cotton linters, DP = 1240.

- **Microfibrillated cellulose** (Daicel chemicals, lot # 75203) from wood pulp, vacuum filtered and hot pressed at 100°C and 1.5 MPa, DP = 1000.

- **1-butyl-3-methylimidazolium chloride**, [C₄mim]Cl, 95% purity, BASF.
Characterization

- **Mechanical testing:** Shimadzu Autograph AG-X, 55% R.H., 20 °C, 1 mm/min, 20 mm gage length.

- **X-ray diffraction:** Siemens D5000, Cu Kα source ($\lambda = 0.15418$ nm), 40 kV acceleration voltage and 40 mA current. CrI calculated using Segal's method (1959).

- **Scanning electron microscopy:** Jeol JSM 6460LV, 10 kV acceleration voltage, samples gold coated and mounted on carbon tabs.

- **Degree of polymerization:** dissolution in 4.6 wt.% LiOH/15 wt. % urea (Cai 2006).
• Thorough drying at 103°C
• Immersion of MFC or filter paper in [C₄mim]Cl
• Dissolution at 80°C for a time \(t \)
• Cooling for 1 hr at room conditions
• Water exchange for 2 * 24 hr at room temperature
• DI water rinsing
• Drying in a vacuum bag, 60°C overnight and pressure < 0.1 atm.
Future Trends in Packaging Materials

Outline

• Background:
 – General idea
 – Partial dissolution
 – Comparison with other materials
 – Solvents

• Experimental procedures:
 – Materials
 – Characterization
 – Manufacturing

• Results:
 – XRD
 – Mechanical properties
 – SEM
 – DP

• Conclusions
 – Schematic
 – General remarks
XRD: Filter paper

- Initially: highly crystalline cellulose I.
- Broadening of the (200) peak indicative of dissolution.
- Broadening increases with dissolution time.
- (200) peak of cellulose I at ca. 22.8° remains throughout the transformation.
• Initially: highly crystalline cellulose I.
• Slight broadening of the (200) peak indicative of limited dissolution.
• Cellulose I allomorph clearly remains throughout the transformation.
XRD: \(CrI \) changes

- Only very limited change for MFC.
- More drastic decrystallization occurring for filter paper.
Future Trends in Packaging Materials

Mechanical properties

- More spectacular changes could be observed for FP (□) than for MFC (■).
- MFC performed the best in terms of tensile strength and stiffness.
Future Trends in Packaging Materials

SEM: filter paper

Microfibrillar structure (initially)

Fully consolidated structure (160 min dissolution)
Future Trends in Packaging Materials

SEM: MFC

Submicron fibrillar structure (initially)

Partially consolidated, “skin-core” morphology (160 min dissolution)
The DP is reduced by ~40%!
Future Trends in Packaging Materials

Outline

• Background:
 – General idea
 – Partial dissolution
 – Comparison with other materials
 – Solvents

• Experimental procedures:
 – Materials
 – Characterization
 – Manufacturing

• Results:
 – XRD
 – Mechanical properties
 – SEM
 – DP

• Conclusions
 – Schematic
 – General remarks
Future Trends in Packaging Materials

Schematic of the differences in solvent penetration

Filter paper

Microfibrillated cellulose

Initially

Solvent penetration

Final composite
Parameter interaction

- DISSOLUTION TIME
- LEVEL OF DEFIBRILLATION
- DEGREE OF POLYMERIZATION
- AMOUNT OF MATRIX & CONSOLIDATION
- CRYSTALLINITY
- HOMOGENEOUS OR SANDWICH STRUCTURE
- MECHANICAL PROPERTIES
Conclusions

• **Filter paper:**
 – Impressive increase in strength, stiffness and strain at break
 – CrI losses
 – Excellent consolidation.

• **MFC:**
 – Moderate increase in strength and stiffness
 – Highest mechanical properties
 – Limited solvent penetration due to tight interfibrillar network and high solvent viscosity.
 – High crystallinity.

• **[C₄mim]Cl:**
 – Depolymerized the cellulose
 – Could be recycled by evaporation and re-used.
Acknowledgments & references

The authors would like to thank the KEMPE Foundations, Örnsköldsvik, Sweden for the financial support of this work. We would also like to thank Mikael Niemistö for the viscosity measurements.

Gindl, W. & Keckes, J., 2005. All-cellulose nanocomposite. Polymer, 46(23), 10221-10225.

Soykeabkaew, N. et al., 2008. All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Composites Science and Technology, 68(10-11), 2201-2207.

The greenness of all-cellulose composites...

...is determined by the choice of solvent.

- LiCl/DMAc: has been used so far for most all-cellulose composites, but...
- NMMO: is considered as being the greenest solvent industrially. However...
- Low temperatures solvents NaOH, NaOH/urea, LiOH...
- Strong acids
- Ionic liquid: not perfect (yet) but already very advantageous

FACTORS: EFFICIENCY; PRICE; AVAILABILITY; RECYCLABILITY; TOXICITY; PRESENCE OF V.O.C.; OTHER HAZARDOUS ASPECTS; EASINESS OF USE (WORKING TEMPERATURE, VISCOSITY, HYGROSCOPICITY)....
IL naming

- BmimCl (a.k.a. [C4mim]Cl): 1-butyl-3 methylimidazolium chloride
- BmimBr: 1-butyl-3 methylimidazolium chloride
- BmimSCN: 1-butyl-3 methylimidazolium sulfocyanate
- BmPyCl: 1-butyl-3-methylpyridinium chloride
- AmimCl: 1-allyl-3 methylimidazolium chloride
- EmimAc: 1-ethyl-3 methylimidazolium acetate
- EmimDEP: 1-ethyl-3 methylimidazolium diethylphosphate
- DmimDMP: 1,3-dimethylimidazolium dimethylphosphate
Isotropic biocomposites: comparison chart
Unidirectional composites: comparison chart